_x__ a is an element of A ____ a is a subset of A ____ {a} is an element of A _x__ {a} is a subset of A _x__ { } is an element of A _x__ { } is a subset of A _x__ {{ }} is a subset of A ____ The cardinality of A is 1. _x__ The cardinality of A is 2.
A = { } and B = {{ }}, or A = {1} and B = {1, {1}}
P({a,{a}}) = {{ }, {a}, {{a}}, {a,{a}}}
5, 8, 11, 14, 17, 20, 23, ...
Throughout this homework, ~ is used to mean "not".
_b__ and a. negation _d__ or b. conjunction _a__ not c. implication _c__ if-then d. disjunction
_x__ 3 > 2 and 7 < 8 ____ 3 > 2 and 8 < 7 ____ 2 > 3 and 7 < 8 _x__ 2 > 3 or 7 < 8 _x__ 3 > 2 or 8 < 7 ____ 2 > 3 or 8 < 7 _x__ ~(2 > 3) ____ ~(3 > 2)
____ If 3 * 2 = 6 then 4 + 3 = 8. _x__ If 3 * 2 = 6 then 5 > 4. _x__ If 3 * 2 = 7 then 4 + 3 = 8. _x__ If 3 * 2 = 7 then 4 + 3 = 7.
A B A -> B ~B ~A ~B -> ~A B -> A ~A -> ~B ------------------------------------------------------------------ T | T | T | F | F | T | T | T T | F | F | T | F | F | T | T F | T | T | F | T | T | F | F F | F | T | T | T | T | T | T
They are logically equivalent.
If bells ring then angels sing. a. If bells do not ring then angels do not sing. b. If angels sing then bells ring. c.<--- If angels do not sing then bells do not ring. d. If bells do not ring then angels sing.