
A Comparison of Machine Learning Code Quality in 
Python Scripts and Jupyter Notebooks

Kyle Adams (Moravian University), Aleksei Vilkomir (East Carolina University), and 
Mark Hills (Appalachian State University)

37th Annual CCSC:Southeastern Conference (CCSC-SE 2023)
November 3-4, 2023
Coastal Carolina University, Conway, SC

1



The origin story: 2022 summer REU at ECU

• In An Empirical Exploration of Python Machine Learning API Usage, 
Vilkomir explored how developers use different ML libraries in their 
code

• One incidental finding: code is often messy, maybe as a result of 
copying in examples, with repeated imports and imports of libraries 
that are never used

• This led to a 2022 REU project at ECU with Adams, Vilkomir, and 
Hills, focused on code quality in Jupyter notebooks as compared to 
Python scripts

• But, then something happened…

2

https://thescholarship.ecu.edu/handle/10342/8796


A Large-Scale Comparison of Python Code in Jupyter 
Notebooks and Scripts (Grotov et al., MSR, 2022)

3

• Published at MSR after the start of the REU by about 2 weeks, but 
found on arXiv when we started, this paper essentially studied the 
exact topic we had selected

• Studied a huge corpus – essentially, all Python scripts and notebooks 
on GitHub that were released under an open-source license



Findings from Grotov, and a new project idea

• Grotov et al. found significant differences in structural metrics and 
code style metrics between notebooks and scripts

• Notebook code seems to be simpler, on average, but with higher 
coupling and more style errors

• Some style errors seem to reflect normal ways of using notebooks, so 
notebooks may need specialized linters

• “Another interesting aspect of comparison is the domain where the 
files come from. In our work, we aim to compare notebooks and 
scripts in general, whereas selecting scripts solely from the same 
domain that Jupyter notebooks come from (machine learning, 
education, etc.) can lead to other interesting insights.”

4



Pivoting to machine learning, assembling the corpus

• Kaggle (https://www.kaggle.com/) hosts competitions focused on 
machine learning and data science

• Meta Kaggle (https://www.kaggle.com/datasets/kaggle/meta-Kaggle) 
includes data about public competitions, datasets, and solutions –
and, it provides an API

• Starting corpus: Top 100k projects from Kaggle, based on Meta 
Kaggle API, sorted by popularity (stars)

• One note: we could be missing some of the best solutions if they 
were not marked as public

5

https://www.kaggle.com/
https://www.kaggle.com/datasets/kaggle/meta-Kaggle


Assembling the corpus: some stats

• Using the API, we obtained 69,858 ML files

• 12,136 Python scripts

• 57,722 Jupyter notebooks

• Other files were present, but disregarded (e.g., data files, 
documentation)

• Some files from top 100k projects could not be downloaded

6



Collecting results

• Our methodology was intentionally similar to that of Grotov to make 
for an easier comparison

• Matroskin was used to compute structural metrics over Python code 
included in Jupyter notebooks

• Hyperstyle was used to compute style errors (PEP-8 violations) in 
Python scripts

• Scripts were used to convert between notebook and script formats 
so each tool could be run across all files in the corpus; other scripts 
automated running Matroskin and Hyperstyle across all files in the 
corpus, collecting and processing results

7



Challenges along the way

• Matroskin only works on notebooks, so we needed to convert scripts to 
notebooks – each script became a notebook with a single cell

• Hyperstyle only works on scripts, so we needed to convert notebooks to 
scripts – each notebook becomes a script where each cell is a function

• Some results from Matroskin could not be processed (for 385 notebooks 
and 154 scripts) due to errors in the result format, we are still not sure why

• Hyperstyle needed to be run for each file to get accurate results, but would 
randomly hang on specific files, needed to script this carefully

8



Exploring the results: Structural metrics (Functions)

• Function counts give unique occurrences, uses are total occurrences

• Functions can be built-in to Python (Built In), user-defined (Defined), 
directly imported (API), or “Other” (e.g., through implicit imports), 
based on results of Matroskin

9

Metric Notebook Mean (STD) Script Mean (STD)
API Functions Count 6.95 (6.69) 10.20 (10.06)
API Functions Uses 13.17 (20.24) 23.29 (81.93)
Defined Functions Count 3.45 (6.00) 3.39 (6.86)
Defined Functions Uses 5.83 (13.31) 4.72 (12.91)
Built In Functions Count 4.83 (3.30) 3.80 (3.20)
Built In Functions Uses 22.51 (35.88) 14.78 (25.26)
Other Functions Uses 86.02 (99.11) 28.73 (54.03)



Exploring the results: Structural metrics (Functions)

• Scripts tend to import and use more API functions, while notebooks 
use more built-in functions

• Notebooks have significantly more “other” functions, most likely from 
importing entire libraries of functions instead of using targeted imports 
(arguably, not good coding practice)

10

Metric Notebook Mean (STD) Script Mean (STD)
API Functions Count 6.95 (6.69) 10.20 (10.06)
API Functions Uses 13.17 (20.24) 23.29 (81.93)
Defined Functions Count 3.45 (6.00) 3.39 (6.86)
Defined Functions Uses 5.83 (13.31) 4.72 (12.91)
Built In Functions Count 4.83 (3.30) 3.80 (3.20)
Built In Functions Uses 22.51 (35.88) 14.78 (25.26)
Other Functions Uses 86.02 (99.11) 28.73 (54.03)



Exploring the results: Structural metrics (Other)

• Counted lines of source code (SLOC), comments (Comments SLOC), 
Markdown comments (Extended Comments SLOC), and Blank Lines

• Other metrics include cyclomatic complexity, average number of 
arguments per function, function coupling, and cell coupling (which 
treats cells like functions)

11

Metric Notebook Mean (STD) Script Mean (STD)
SLOC 174.48 (216.45) 105.02 (180.11)
Comments SLOC 27.93 (48.51) 26.96 (57.13)
Extended Comments LOC 75.40 (113.45) N/A (N/A)
Blank Lines Count 30.42 (46.97) 32.53 (46.69)
Cyclomatic Complexity 6.18 (9.28) 12.00 (23.71)
NPAVG 0.71 (0.27) 1.00 (0.24)
Cell Coupling 48.44 (358.84) N/A (N/A)
Function Coupling 10.49 (101.02) 12.59 (105.80)



Exploring the results: Structural metrics (Other)

• Notebooks seem to have significantly more code, but lower 
cyclomatic complexity (so, more straight-line code)

• Calls to script functions have, on average, more parameters (but this 
clusters around 1 for both)

• Cell coupling in notebooks seems significant, which could make 
comprehension challenging

12

Metric Notebook Mean (STD) Script Mean (STD)
SLOC 174.48 (216.45) 105.02 (180.11)
Comments SLOC 27.93 (48.51) 26.96 (57.13)
Extended Comments LOC 75.40 (113.45) N/A (N/A)
Blank Lines Count 30.42 (46.97) 32.53 (46.69)
Cyclomatic Complexity 6.18 (9.28) 12.00 (23.71)
NPAVG 0.71 (0.27) 1.00 (0.24)
Cell Coupling 48.44 (358.84) N/A (N/A)
Function Coupling 10.49 (101.02) 12.59 (105.80)



Comparing structural metrics with Grotov

• Both scripts and notebooks for ML tend to have a higher SLOC than 
the Grotov corpus

• In Grotov, notebooks and scripts had a similar number of uses of 
built-in functions, while we found more (on average, about half again 
as many) in notebooks

• Both scripts and notebooks for ML had higher CC

• Our interpretation: good tools for reasoning about Python code in ML 
notebooks and scripts, including uses of imported and built-in 
functions, could help ML developers

13



Exploring the results: Style metrics (Best Practices)

• Overall, notebooks have a lower # of warnings per file (average of 
14.21) as compared to scripts (23.77), codes are from PEP-8

• Warnings here may be related to copying code and not removing 
unused parts (W0611, W0404 with duplicate imports, W0612, 
W0613)

• W0621 seems separate, but could be caused by copying as well
14

Error Code Error Desc Notebook % Script %
W0611 Import module or variable is not used 41 64
W0621 Redefining name from outer scope 22 27
W0404 Re-imported module 16 13
W0612 Unused variable name 8 14
W0613 Unused argument 4 9



Exploring the results: Style metrics (Code Style)

• C0411 and C0412 again are problems related to imports (PEP-8 
specifies rules for import ordering and grouping), and could be 
caused by copying in code

• Spacing issues (C0305, W0311) could also be caused by this, but 
(along with W0311) could also be caused by unfamiliarity with Python

15

Error Code Error Desc Notebook % Script %
C0411 Import order not followed 38 57
C0412 Imports not grouped by package 21 19
C0305 Trailing newlines 20 15
W0301 Unnecessary semicolon 7 4
W0311 Bad indentation 5 11



Exploring the results: Style metrics (Error Proneness)

• E0001 may mean that notebook cells that don’t run have errors, and 
could be an artifact of the analysis

• E0611 and E1101 relate to naming, and could either be errors or 
analysis limitations (names could reference library dependencies)

• W0104 and W0106 could be detecting statements and expressions 
that display info in cells (side-effects) but are not used directly

16

Error Code Error Desc Notebook % Script %
E1101 Variable accessed for nonexistent member 47 59
E0001 Syntax error 47 3
W0104 Statement seems to have no effect 33 6
E0611 No name in module 29 54
W0106 Expression is assigned to nothing 9 1



Comparing style metrics with Grotov

• We have an overlap with 2 warning codes: W0611 (Import module or 
variable is not used) and W0621 (Redefining name from outer scope)

• Other top warning codes from best practices, code style, and error 
proneness categories are distinct between the ML-focused and 
Grotov sets of code

• 13 of 15 in Grotov are more common in notebooks, while this is only 
true for 7 of the ones reported here

• Past studies have tended to show that notebooks have lower quality, 
but that isn’t obviously true for this domain (although error proneness 
does seem to be higher)

17



Threats to validity

• Internal: we are converting between script and notebook formats, this 
could cause issues especially with the style metrics, although we are 
not seeing notebooks having consistently higher numbers of style 
warnings so do not believe this is a significant issue

• External: it is unclear how representative Kaggle code is of general 
Python ML code

• We have looked at multiple competitions and a large number of 
submitted solutions with the goal of having a representative corpus

• Looking at well-maintained code on GitHub may be a better option, but 
Kaggle may give more insight into issues novices face

18



Related work

• One branch of work: studies to see how notebooks are used for 
collaboration

• Another: code quality (focusing on good and bad practices) and 
reproducibility

• More closely related: analysis of notebooks to identify dependencies 
in notebooks, visualize dependencies, and provide additional 
information on notebook cells

• Pynblint (Quaranta et al., CAIN 2022) is a linter specifically for 
notebooks

19



Related work: Grotov, Siddik & Bezemer

• Grotov already described above – this focused on comparing 
notebooks and scripts across all domains

• Siddik & Bezemer (SCAM 2023, presented about a month ago) 
focuses instead specifically on differences between ML and non-ML 
notebooks, but does not look at scripts

20



Conclusions

• We do see clear differences between ML notebooks and scripts, but 
need more in-depth statistical analysis to determine which of these 
are truly significant

• We also see differences between ML files and the general domain of 
Grotov, indicating that ML-focused tools may be useful for both 
novices and practitioners

• Many problems seem to be related to copying and tweaking code 
from examples, leading to naming, import, and potentially style (e.g., 
indentation) issues (and maybe some of the syntax errors seen for 
notebooks) that proper tooling could improve

21



• Alex Vilkomir: http://www.cs.ecu.edu/alex/

• Mark Hills: https://cs.appstate.edu/hillsma/

• Zenodo: https://zenodo.org/doi/10.5281/zenodo.8122384

22

Thank you!
Any Questions?

Discussion

http://www.cs.ecu.edu/alex/
https://cs.appstate.edu/hillsma/
https://zenodo.org/doi/10.5281/zenodo.8122384

