
Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Meta-Programming and MDE with Rascal

Jeroen van den Bos, Mark Hills, Paul Klint, Tijs van der Storm
and Jurgen J. Vinju

CWI, INRIA ATEAMS, NFI

2nd Workshop on Algebraic Methods in Model-Based Software
Engineering (AMMSE 2011)

Zurich, Switzerland, 30 June 2011

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 1/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 2/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 2/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 2/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 2/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 2/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal: From Algebraic Specification to
Meta-Programming

Or...

Lessons learned: ASF to ASF+SDF to Rascal

Some background: design principles of Rascal

Overviews of several Rascal applications, with a focus on MDE
and (briefly) linking to existing algebraic specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 3/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Plug for the Paper

Or...

Lessons learned: ASF to ASF+SDF to Rascal

Some background: design principles of Rascal

Overviews of several Rascal applications, with a focus on MDE
and (briefly) linking to existing algebraic specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 3/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Plug for the Paper

Or...

Lessons learned: ASF to ASF+SDF to Rascal

Some background: design principles of Rascal

Overviews of several Rascal applications, with a focus on MDE
and (briefly) linking to existing algebraic specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 3/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Plug for the Paper

Or...

Lessons learned: ASF to ASF+SDF to Rascal

Some background: design principles of Rascal

Overviews of several Rascal applications, with a focus on MDE
and (briefly) linking to existing algebraic specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 3/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Plug for the Paper

Or...

Lessons learned: ASF to ASF+SDF to Rascal

Some background: design principles of Rascal

Overviews of several Rascal applications, with a focus on MDE
and (briefly) linking to existing algebraic specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 3/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 4/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

What’s Rascal?

Rascal is

a programming language

for source code analysis and transformation

with rich data types, higher-order functions,

specialized control flow, and advanced pattern matching,
including matching over concrete syntax.

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 5/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

What’s Rascal?

Rascal is

a programming language

for source code analysis and transformation

with rich data types, higher-order functions,

specialized control flow, and advanced pattern matching,
including matching over concrete syntax.

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 5/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

What’s Rascal?

Rascal is

a programming language

for source code analysis and transformation

with rich data types, higher-order functions,

specialized control flow, and advanced pattern matching,
including matching over concrete syntax.

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 5/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

What’s Rascal?

Rascal is

a programming language

for source code analysis and transformation

with rich data types, higher-order functions,

specialized control flow, and advanced pattern matching,
including matching over concrete syntax.

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 5/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

What’s Rascal?

Rascal is

a programming language

for source code analysis and transformation

with rich data types, higher-order functions,

specialized control flow, and advanced pattern matching,
including matching over concrete syntax.

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 5/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal Features

Familiar, C or Java-like syntax

Immutable data

Rich built-in data types and pattern matching

Domain-specific constructs (traversals, comprehensions, regular
expressions, fixed-point computation)

Arbitrary context-free grammars with generalized parsing

String templates

Java and Eclipse integration

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 6/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Extract, Analyze, SYnthesize

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 7/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal is EASY

Rascal follows the EASY paradigm:

Information is Extracted from the program, such as the
program’s abstract syntax

This information is then used to Analyze the program, for
instance to check consistency, generate a control flow graph, or
bind names to definitions

Finally, the extracted information and the analysis results are
used to Synthesize the desired results, such as by transforming
the code or generating visualizations

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 8/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Domain Analysis for Rascal: Meta-Programming

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 9/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 10/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Which Language is This?

PROCEDURE Swap(VAR x, y: INTEGER );

VAR

temp: INTEGER;

BEGIN

temp := x;

x := y;

y := temp

END Swap;

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 11/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Why Look at a Standard Programming Language?

Similar challenges across standard PLs, DSLs, modelling
languages, etc

Similar desired functionality: IDEs, consistency checking,
program analysis, code generation, etc

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 12/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Why Look at Oberon-0?

Part of work done for tools competition at this year’s LDTA

Focused on features as a showcase for Rascal – shows what one
could do for a language defined in Rascal

Features include checkers, code generation, visualization, IDE
menu links

Not too Oberon specific: features shown are ones you could
use for your own language

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 13/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Goals of Oberon-0 Implementation

Modular

Functional

Visual

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 14/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Goals of Oberon-0 Implementation

Modular

Functional

Visual

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 14/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Goals of Oberon-0 Implementation

Modular

Functional

Visual

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 14/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Parsing in Rascal

Grammars defined using Rascal grammar definition notation

A Rascal program then builds a Java-based parser for the
grammar

Parser is GLL with filtering rules used to remove ambiguities

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 15/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Example: Oberon-0 Grammar

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 16/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Rascal Meta-Programming Architecture

Grammar 
Source Code

Rascal 
Parser

AST 
Builder

Rascal 
Interpreter

Interpreter 
Source Code

Java 
Compiler

Parser 
Generator

Rascal 
Programs

AST 
Generator

AST Source 
Code

AST Builder 
Source Code

Input
Output

build-time
run-time

Parse 
Tree AST

Parser 
Source Code

build-time flow

run-time flow

data

operation

legend

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 17/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Code Outlining Example: Java in Eclipse

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 18/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Outlining Support in Rascal: Building the Outline

Outlines are built over the concrete syntax of a language

Labels indicate the display name in the outline view

Locations allow the user to jump to the outlined item

Once the outliner is registered, the runtime keeps the view up
to date as the source is edited

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 19/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Code Outlining Example: Oberon-0 in Rascal

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 20/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Annotators

Annotators allow annotations to be added to language
constructs and displayed in the editor

Typical examples: name resolution, type checking – want errors
to be displayed graphically to users, marking error locations

public Module checkModule(Module x) {

m = implode(x);

<m, st> = resolve(m);

errors = { error(l, s) | <l, s> <- st.scopeErrors };

if (errors == {}) {

errors = check(m, st.symbolTable);

}

return x[@messages = errors];

}

registerAnnotator("l4", checkModule);

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 21/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Annotator Example: Type Checking Oberon-0

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 22/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Contributors

Contributors provide a way to add more advanced functionality

Each contribution is a menu item – execution is triggered by
the user

Examples: interaction with external tools, compilation,
visualization

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 23/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

An Example Contributors Menu

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 24/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Parsing
Outliners
Annotators
Contributors Overview
Rascal-based Contributors

Visualization Contribution: Control Flow Graph

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 25/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 26/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Goals

First, define a language, with support tools, for entities

Then, extend this to support packages for modularity

Next, extend this language to support entity instances

Finally, add modular extensions to the language

Note: Work by Tijs van der Storm, presented at LWC’11 by Jurgen
J. Vinju

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 27/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Goals

First, define a language, with support tools, for entities

Then, extend this to support packages for modularity

Next, extend this language to support entity instances

Finally, add modular extensions to the language

Note: Work by Tijs van der Storm, presented at LWC’11 by Jurgen
J. Vinju

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 27/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Entities and Instances

Immediate IDE: highlighting, folding, error marking, etc

Java and SQL generation

Online checking and error marking

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 28/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

An IDE for Entities

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 29/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Generating Java Code

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 30/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Generating SQL Code

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 31/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Defining Entity Concrete Syntax

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 32/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Defining Entity Abstract Syntax

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 33/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

String Template-based Code Generation

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 34/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Checking Entities

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 35/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Registering the Contributors

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 36/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Adding Packages: Package Concrete Syntax

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 37/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Resolving Names

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 38/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Generating Java Code

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 39/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Results

4 languages defined in total

5 total IDEs (1 for Rascal, plus 4 more)

3 checkers defined

3 Java code generators created

1 SQL code generator created

2 XML code generators created

Total SLOC: 950

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 40/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
Derric

Derric

Developed for digital forensics

Allows specification of file formats using a DSL

Compiled to optimized Java code

Total code size: 1871 SLOC

Highly competitive in both speed and precision

Developed by a PhD student working at the NFI (Dutch
Forensics Institute)

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 41/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Integration with External Tools

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 42/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Integration with External Tools

Integrating Rascal with K Specifications in Maude

Contributors in Rascal-based IDEs are not limited to those
written in Rascal

Example: linking a Rascal-based front-end with a Maude-based
analysis framework

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 43/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Integration with External Tools

What is Needed to Make the Link (Rascal)?

Grammar for the language

Maudeifier to generate Maude-readable form of program

Support for starting, reading from, writing to, and stopping
Maude

Support for preparing individual tasks and reading back results

Eclipse interaction to display results

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 44/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Integration with External Tools

What is Needed to Make the Link (Maude)?

Specification support for Rascal source locations (if used)

Result generation in parsable format (not necessarily human
readable)

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 45/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Integration with External Tools

Displaying Analysis Results

Information from the external tool can be used to set up
annotations...

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 46/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Integration with External Tools

Displaying Analysis Results (2)

... and to add other information, such as entries in an Eclipse
Problems view.

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 47/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Outline

1 Introduction to Rascal

2 Rascal for Language Development

3 Developing Modelling Languages

4 Tying into Existing Specifications

5 Rascal: Future Development Plans

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 48/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal Development: A Rough Future Timeline

Syntax: features and documentation finished by the end of
September for an early October release

Performance: ongoing work on improving the performance of
program evaluation, with special focus on function call and
pattern match performance

Type Checking: currently uses a runtime type system,
switching over to static system – work mostly done, but
integrating into Rascal more closely, improving performance so
it can run constantly as files are edited

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 49/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal Development: A Rough Future Timeline

Syntax: features and documentation finished by the end of
September for an early October release

Performance: ongoing work on improving the performance of
program evaluation, with special focus on function call and
pattern match performance

Type Checking: currently uses a runtime type system,
switching over to static system – work mostly done, but
integrating into Rascal more closely, improving performance so
it can run constantly as files are edited

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 49/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal Development: A Rough Future Timeline

Syntax: features and documentation finished by the end of
September for an early October release

Performance: ongoing work on improving the performance of
program evaluation, with special focus on function call and
pattern match performance

Type Checking: currently uses a runtime type system,
switching over to static system – work mostly done, but
integrating into Rascal more closely, improving performance so
it can run constantly as files are edited

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 49/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal in Moving to Eclipse.org!

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 50/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Wrapping Up

The Rascal Language

Rascal for Language Development

MDE: Entities

MDE: Derric

Linking to Existing Specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 51/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Wrapping Up

The Rascal Language

Rascal for Language Development

MDE: Entities

MDE: Derric

Linking to Existing Specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 51/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Wrapping Up

The Rascal Language

Rascal for Language Development

MDE: Entities

MDE: Derric

Linking to Existing Specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 51/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Wrapping Up

The Rascal Language

Rascal for Language Development

MDE: Entities

MDE: Derric

Linking to Existing Specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 51/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Wrapping Up

The Rascal Language

Rascal for Language Development

MDE: Entities

MDE: Derric

Linking to Existing Specifications

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 51/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

For More Information...

Rascal: http://www.rascal-mpl.org

IMP: http://www.eclipse.org/imp

CWI SEN1: http://www.cwi.nl/sen1

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 52/52

http://www.rascal-mpl.org
http://www.eclipse.org/imp
http://www.cwi.nl/sen1

	Introduction to Rascal
	Rascal for Language Development
	Developing Modelling Languages
	Tying into Existing Specifications
	Rascal: Future Development Plans

