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Rascal Features

Familiar, C or Java-like syntax

Immutable data

Rich built-in data types and pattern matching

Domain-specific constructs (traversals, comprehensions, regular
expressions, fixed-point computation)

Arbitrary context-free grammars with generalized parsing

String templates

Java and Eclipse integration
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Rascal is EASY

Rascal follows the EASY paradigm:

Information is Extracted from the program, such as the
program’s abstract syntax

This information is then used to Analyze the program, for
instance to check consistency, generate a control flow graph, or
bind names to definitions

Finally, the extracted information and the analysis results are
used to Synthesize the desired results, such as by transforming
the code or generating visualizations
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Which Language is This?

PROCEDURE Swap(VAR x, y: INTEGER );

VAR

temp: INTEGER;

BEGIN

temp := x;

x := y;

y := temp

END Swap;
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Why Look at a Standard Programming Language?

Similar challenges across standard PLs, DSLs, modelling
languages, etc

Similar desired functionality: IDEs, consistency checking,
program analysis, code generation, etc
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Why Look at Oberon-0?

Part of work done for tools competition at this year’s LDTA

Focused on features as a showcase for Rascal – shows what one
could do for a language defined in Rascal

Features include checkers, code generation, visualization, IDE
menu links

Not too Oberon specific: features shown are ones you could
use for your own language
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Parsing in Rascal

Grammars defined using Rascal grammar definition notation

A Rascal program then builds a Java-based parser for the
grammar

Parser is GLL with filtering rules used to remove ambiguities
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Rascal Meta-Programming Architecture

Grammar 
Source Code
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Parser

AST 
Builder
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Interpreter
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Source Code

Java 
Compiler

Parser 
Generator
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Programs
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AST Source 
Code
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Input
Output

build-time
run-time

Parse 
Tree AST

Parser 
Source Code

build-time flow

run-time flow

data

operation

legend
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Outlining Support in Rascal: Building the Outline

Outlines are built over the concrete syntax of a language

Labels indicate the display name in the outline view

Locations allow the user to jump to the outlined item

Once the outliner is registered, the runtime keeps the view up
to date as the source is edited
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Annotators

Annotators allow annotations to be added to language
constructs and displayed in the editor

Typical examples: name resolution, type checking – want errors
to be displayed graphically to users, marking error locations

public Module checkModule(Module x) {

m = implode(x);

<m, st> = resolve(m);

errors = { error(l, s) | <l, s> <- st.scopeErrors };

if (errors == {}) {

errors = check(m, st.symbolTable);

}

return x[@messages = errors];

}

registerAnnotator("l4", checkModule);
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Contributors

Contributors provide a way to add more advanced functionality

Each contribution is a menu item – execution is triggered by
the user

Examples: interaction with external tools, compilation,
visualization
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Goals

First, define a language, with support tools, for entities

Then, extend this to support packages for modularity

Next, extend this language to support entity instances

Finally, add modular extensions to the language

Note: Work by Tijs van der Storm, presented at LWC’11 by Jurgen
J. Vinju
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Next, extend this language to support entity instances

Finally, add modular extensions to the language

Note: Work by Tijs van der Storm, presented at LWC’11 by Jurgen
J. Vinju

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 27/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

A Language for Entities and Instances
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Adding Packages
Summary of Results
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Entities and Instances

Immediate IDE: highlighting, folding, error marking, etc

Java and SQL generation

Online checking and error marking
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A Language for Entities and Instances
Entities
Adding Packages
Summary of Results
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Results

4 languages defined in total

5 total IDEs (1 for Rascal, plus 4 more)

3 checkers defined

3 Java code generators created

1 SQL code generator created

2 XML code generators created

Total SLOC: 950
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Derric

Developed for digital forensics

Allows specification of file formats using a DSL

Compiled to optimized Java code

Total code size: 1871 SLOC

Highly competitive in both speed and precision

Developed by a PhD student working at the NFI (Dutch
Forensics Institute)
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Integration with External Tools

Integrating Rascal with K Specifications in Maude

Contributors in Rascal-based IDEs are not limited to those
written in Rascal

Example: linking a Rascal-based front-end with a Maude-based
analysis framework
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Integration with External Tools

What is Needed to Make the Link (Rascal)?

Grammar for the language

Maudeifier to generate Maude-readable form of program

Support for starting, reading from, writing to, and stopping
Maude

Support for preparing individual tasks and reading back results

Eclipse interaction to display results
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Integration with External Tools

What is Needed to Make the Link (Maude)?

Specification support for Rascal source locations (if used)

Result generation in parsable format (not necessarily human
readable)
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Integration with External Tools

Displaying Analysis Results

Information from the external tool can be used to set up
annotations...
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Integration with External Tools

Displaying Analysis Results (2)

... and to add other information, such as entries in an Eclipse
Problems view.
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Rascal Development: A Rough Future Timeline

Syntax: features and documentation finished by the end of
September for an early October release

Performance: ongoing work on improving the performance of
program evaluation, with special focus on function call and
pattern match performance

Type Checking: currently uses a runtime type system,
switching over to static system – work mostly done, but
integrating into Rascal more closely, improving performance so
it can run constantly as files are edited

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 49/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal Development: A Rough Future Timeline

Syntax: features and documentation finished by the end of
September for an early October release

Performance: ongoing work on improving the performance of
program evaluation, with special focus on function call and
pattern match performance

Type Checking: currently uses a runtime type system,
switching over to static system – work mostly done, but
integrating into Rascal more closely, improving performance so
it can run constantly as files are edited

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 49/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal Development: A Rough Future Timeline

Syntax: features and documentation finished by the end of
September for an early October release

Performance: ongoing work on improving the performance of
program evaluation, with special focus on function call and
pattern match performance

Type Checking: currently uses a runtime type system,
switching over to static system – work mostly done, but
integrating into Rascal more closely, improving performance so
it can run constantly as files are edited

Van den Bos, Hills, Klint, Van der Storm, Vinju Meta-Programming and MDE with Rascal 49/52



Introduction to Rascal
Rascal for Language Development

Developing Modelling Languages
Tying into Existing Specifications

Rascal: Future Development Plans

Rascal in Moving to Eclipse.org!
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For More Information...

Rascal: http://www.rascal-mpl.org

IMP: http://www.eclipse.org/imp

CWI SEN1: http://www.cwi.nl/sen1
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