
Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Memory Representations in Rewriting Logic
Semantics Definitions

Mark Hills(Presented by Grigore Roşu)
mhills@cs.uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

30 March 2008

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 1 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

1 Overview and Motivation

2 SILF and Stacked Memory

3 KOOL and Garbage Collection

4 Conclusions

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 2 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Rewriting Logic Semantics
Executability/Performance
Memory-Representation Optimization

Outline

1 Overview and Motivation

2 SILF and Stacked Memory

3 KOOL and Garbage Collection

4 Conclusions

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 3 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Rewriting Logic Semantics
Executability/Performance
Memory-Representation Optimization

Rewriting Logic Semantics

Rewriting logic semantics provides a powerful environment for
language prototyping and design:

Rewriting logic provides formalism for specifying language
semantics

K definitional style provides methods to model complex
language features, such as jumps (goto, break, continue,
exceptions) and dynamic method dispatch

Tool support provides ability to try language features quickly
by executing and analyzing programs directly in semantics

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 4 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Rewriting Logic Semantics
Executability/Performance
Memory-Representation Optimization

Executability

Executability raises new questions that don’t make sense with
non-executable semantics, such as:

How fast can programs be executed using the semantics?

In what ways can features be modified to maintain equivalent
behavior but improve performance?

What changes to the semantics will improve analysis
performance? Will these improve execution performance as
well?

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 5 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Rewriting Logic Semantics
Executability/Performance
Memory-Representation Optimization

The Importance of Performance

Execution performance can be critical for experimenting with
language features – programs can quickly become too large (in

code size, memory usage, etc) to evaluate in the semantics
otherwise.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 6 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Rewriting Logic Semantics
Executability/Performance
Memory-Representation Optimization

Semantics Changes and Analysis Performance

Prior work focused on improving analysis performance by
modifying language semantics:

KOOL language modified to use auto-boxing (automatic
conversion of scalars to objects where needed) and memory
pools (shared and unshared)

Auto-boxing improved execution and analysis performance:
reduced number of method calls, use of memory, complexity
of language operations

Memory pools improved analysis performance: non-shared
memory operations used equations, reduced state space size

More details in [HillsRosu07].

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 7 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Rewriting Logic Semantics
Executability/Performance
Memory-Representation Optimization

Costs of Semantics Changes

Improving performance by modifying language semantics can come
at a cost:

Changes believed to be equivalent, but would need to do
formal proof to show this to be the case

Changes to language features break modularity, making it
harder to reuse features in other languages

“Performance-aware” definitions become more complicated

Semantics of language features may not be best place for
performance improvements – auto-boxing is an optimization,
but moving it into semantics of message dispatch makes it
part of the language feature

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 8 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Rewriting Logic Semantics
Executability/Performance
Memory-Representation Optimization

Memory-Representation Optimization

Memory representation part of language-independent
definition, provides interface containing operations that allow
features to interact with memory

Often reused in other languages, so improvements could be
leveraged in multiple definitions

Use of interface to memory maintains modularity of language
features, minimizing number of changes needed outside
memory modules – i.e., improvements to memory
representation need not change individual language features

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 9 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Outline

1 Overview and Motivation

2 SILF and Stacked Memory

3 KOOL and Garbage Collection

4 Conclusions

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 10 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

SILF

SILF is a basic imperative language – Simple Imperative
Language with Functions

Includes many features found in imperative languages,
including global variables and arrays

Does not include some features which make memory
management hard – no address capture, no dynamic memory
allocation

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 11 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

SILF: Flat Memory Model

Original memory model was “flat” – memory represented as a
single set of location/value pairs

Memory never “cleaned up” – continues growing as new
locations allocated

1 sorts StoreCell Store .
2 subsort StoreCell < Store .
3 op [_,_] : Location Value -> StoreCell .
4 op nil : -> Store .
5 op __ : Store Store -> Store [assoc comm id: nil] .
6

7 eq k(lookupLoc(L) -> K) store(Mem [L,V])
8 = k(val(V) -> K) store(Mem [L,V]) .

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 12 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Improving SILF Memory Performance

Improving ACI matching performance during lookup should
improve evaluation performance

Key Idea 1: Only global locations and locations in current
function (i.e., stack frame) are visible – restricting lookups to
just these should improve performance

Key Idea 2: Without address capture and pointers, addresses
are not visible on function return, so it should be possible to
discard allocated memory on returning

Key ideas lead to use of “memory stacks”, similar to stack frames
used in standard imperative and OO language implementations.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 13 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Improving SILF Memory Performance

Improving ACI matching performance during lookup should
improve evaluation performance

Key Idea 1: Only global locations and locations in current
function (i.e., stack frame) are visible – restricting lookups to
just these should improve performance

Key Idea 2: Without address capture and pointers, addresses
are not visible on function return, so it should be possible to
discard allocated memory on returning

Key ideas lead to use of “memory stacks”, similar to stack frames
used in standard imperative and OO language implementations.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 13 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Stacked Memory Model

Memory represented as a stack of smaller stores

Top of stack contains store for current function, bottom
contains global store

Stack frame contains location number of smallest location in
its store, with visible locations ≥ this in function store,
locations < this in global store

Function call pushes new frame, return pops top frame

1 sort StackFrame Stack .
2 subsort StackFrame < Stack .
3 op [_,_] : Nat Store -> StackFrame .
4 op nil : -> Stack .
5 op _,_ : Stack Stack -> Stack [assoc id: nil] .

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 14 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Stacked Memory Model: Example

Stack frame for f

...

Globals

1 function f(x) begin

2 var y; // 1

3 y = g(3); // 2

4 return y

5 end

6

7 function g(x) begin

8 ... return x // 3

9 end

Example shows memory layout at code location 1

Global variables located in bottom frame

Variables local to current function f in top frame

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 15 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Stacked Memory Model: Example

Stack frame for g

Stack frame for f

...

Globals

1 function f(x) begin

2 var y; // 1

3 y = g(3); // 2

4 return y

5 end

6

7 function g(x) begin

8 ... return x // 3

9 end

Code location 2 contains a function call

New memory frame for g pushed onto top of stack

Items in f no longer visible

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 16 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Stacked Memory Model: Example

Stack frame for f

...

Globals

1 function f(x) begin

2 var y; // 1

3 y = g(3); // 2

4 return y

5 end

6

7 function g(x) begin

8 ... return x // 3

9 end

Code location 3 contains a function return

Memory frame for function g popped from stack

Memory stack now structured the same as before the call

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 17 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Stacked Memory Model Interface

Lookups triggered by language features redirected to use stacks,
maintaining same interface to memory:

1 eq k(lookupLoc(L) -> K) store(ST)

2 = k(val(stackLookup(L,ST)) -> K) store(ST) .

3

4 ceq stackLookup(loc(N),([Nb,Mem], ST)) = lvsLookup(loc(N),Mem)

5 if N >= Nb .

6

7 ceq stackLookup(loc(N),([Nb,Mem], ST, [Nb’,Mem’]))

8 = lvsLookup(loc(N),Mem’)

9 if N < Nb .

10

11 eq lvsLookup(L,([L,V] Mem)) = V .

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 18 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Performance

Standard (Flat) Memory Model Stacked Memory Model

Test Case Time (sec) Time (sec)

factorial 3.711 0.747

factorial2 1664.280 11.245

ifactorial 1.047 0.978

ifactorial2 43.861 15.441

fibonacci 29.014 1.939

qsort 111.623 15.374

ssort 21.557 14.657

factorial recursively calculates 20!, 40!, ..., 200!; factorial2
recursively calculates 1!, 2!, ..., 200!; ifactorial and ifactorial2
are iterative versions of factorial and factorial2, respectively;
fibonacci recursively calculates fib of 1, 2, ..., 15; qsort and
ssort each sort 2 arrays of 100 elements each

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 19 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

SILF
SILF Memory Model
Stacked Memory Model
Example
Evaluation

Evaluation

Clear improvement in performance in all cases

Limited changes to put new model in place: 6 equations,
dealing with function call/return or memory, were modified

Similar changes should be useful for other languages with
similarly constrained memory models

Lack of support for languages that can return allocated
memory limits usefulness – not applicable to all imperative
languages

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 20 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Outline

1 Overview and Motivation

2 SILF and Stacked Memory

3 KOOL and Garbage Collection

4 Conclusions

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 21 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

KOOL

KOOL is a standard object-oriented language: K-based
Object-Oriented Language

Provides standard OO features: classes, methods, inheritance,
dynamic dispatch, etc

Includes memory features of languages like Java: references,
dynamic allocation, no explicit memory deallocation

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 22 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

KOOL: Flat Memory Model

Like SILF, memory model is “flat”, using a finite map and
never performing clean-up

Unlike SILF, uses Maude MAP module versus custom set
definition

Memory usage in KOOL much higher than in SILF – KOOL is
a “pure” OO language, i.e., all values are objects, all
operations (even arithmetic) involve object creation and
method invocation (call by value)

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 23 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Improving KOOL Memory Performance

Use of references, ability to return newly-allocated objects
rules out a solution similar to that in SILF

So, use a classic memory management solution: Garbage
Collection (GC)

Goal: Add garbage collection to KOOL with minimal changes to
the existing language definition.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 24 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Improving KOOL Memory Performance

Use of references, ability to return newly-allocated objects
rules out a solution similar to that in SILF

So, use a classic memory management solution: Garbage
Collection (GC)

Goal: Add garbage collection to KOOL with minimal changes to
the existing language definition.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 24 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Improving KOOL Memory Performance

Use of references, ability to return newly-allocated objects
rules out a solution similar to that in SILF

So, use a classic memory management solution: Garbage
Collection (GC)

Goal: Add garbage collection to KOOL with minimal changes to
the existing language definition.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 24 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Garbage Collection in KOOL

Mark/sweep collector: works well with circular structures,
easy to define and reason about

Runs in two steps:

Mark: Identify all reachable locations in memory
Sweep: Discard all unreachable (unmarked) locations

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 25 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Defining the Store for GC

1 protecting MAP{Location,ValueTuple} *
2 (sort Map{Location,ValueTuple} to Store) .
3

4 op [_,_,_] : Value Nat Nat -> ValueTuple .

Before, Store defined as a Map from Location to Value;
now, defined as Map from Location to ValueTuple

ValueTuple includes two flags, one marking the memory
location as shared/unshared, the other used as the GC mark
bit (we’re interested in the second here)

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 26 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Triggering GC

Triggering GC done using triggerGC computation item

GC triggered after a predefined number of allocations

Triggering sets the state component ingc to indicate GC has
started

In KOOL triggerGC used in allocation operations inside
memory modules – no definitions of language features
(method dispatch, etc) need to be changed

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 27 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Step 1: Initialization

When GC triggered, all mark flags on memory set to 0 (not
marked) to start

mem state component renamed to gcmem – keeps
rules/equations that modify memory from firing, since they
will fail to match

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 28 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Step 2: Mark Root Locations

First step in marking will find root locations (locations found
directly in computation parts of state) and mark them (using
markLocsInSet)

Operations defined recursively to find roots in different state
components, like:

KStateLocs finds root locations in state components
MStackLocs finds root locations in method stack
KLocs finds root locations in computation

1 ceq threads(KS) ingc(gcMarkRoots ) gcmem(Mem )

2 = threads(KS) ingc(gcMarkTrans(LS)) gcmem(markLocsInSet(Mem,LS))

3 if LS := KStateLocs(KS) .

4

5 eq KStateLocs(env(Env) TS) = ListToSet(envLocs(Env)) KStateLocs(TS) .

6 eq KStateLocs(k(K) CS) = KLocs(K) KStateLocs(CS) .

7 eq KStateLocs(mstack(MSTL) CS) = MStackLocs(MSTL) KStateLocs(CS) .

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 29 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Step 3: Mark Locations Reachable from Roots

Once root locations have been marked, need to find all other
reachable locations

Example: computation may hold reference to an object;
object may then reference other objects

Iterative process: keep marking reachable locations until fixed
point reached

Uses valLocs operation to get locations held in a value (like
locations of object references held in object fields)

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 30 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Step 4: Sweep

Once iterative marking reaches a fixpoint, switch GC mode to
sweep

Sweeping is simple: all unmarked locations discarded

When sweeping is complete, gcmem renamed to mem and
allocation counter reset to 0 – GC is complete

1 eq ingc(gcSweep) gcmem(Mem ) =
2 ingc(noGC(0)) mem(removeUnmarked(Mem) ) .
3

4 eq removeUnmarked(_‘,_(L |-> [V,N,0], Mem))
5 = removeUnmarked(Mem) .
6 eq removeUnmarked(Mem) = Mem [owise] .

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 31 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

GC Example

Graphic shows representation of K configuration

k contains current computation, mstack contains the method
stack, with most of the configuration elided

Boxes numbered 1 through 10 represent memory locations

Circles with numbers show which objects at which locations
hold references to other objects

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 32 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

GC Example

First part of mark step in GC marks roots

Locations 1, 5 and 8 are present in k

Location 7 is referenced in the method stack (so it would be
visible on method return)

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 33 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

GC Example

Next, see which locations are reachable from the roots

First step discovers location 6 reachable from location 5

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 34 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

GC Example

Continue marking reachable locations

Locations 9 and 10 both reachable from location 6

No more reachable locations – 6 is already marked, so we
don’t loop between 10 and 6

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 35 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

GC Example

Finally, GC sweeps unmarked/unreachable locations

Locations 2, 3, and 4 unreachable, so discarded

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 36 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Performance

GC Disabled GC Enabled
Test Case Time (sec) Store Size Time (sec) Store Size Collections
factorial 103.060 22193 119.987 300 22
ifactorial 97.100 21103 116.811 106 21
fibonacci 401.334 76915 399.785 935 76
addnums NA NA 516.023 946 93
garbage 259.500 32013 147.211 20 32

addnums and garbage both perform repeated calculations or
allocations; other examples are identical to those for SILF

Store Size is the final size of memory

Collections is the number of GCs performed

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 37 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

KOOL
KOOL Memory Model
Garbage Collection
Example
Evaluation

Evaluation

GC results mixed: some examples with GC enabled cause
reduced performance, others run faster or even allow
execution to finish (versus segfault)

Adding GC required only changes in the memory operations,
with no changes in feature definitions

GC is modular: some operations are generic for all collectors,
with specific operations used to interrogate current state and
computation (only these are language-specific)

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 38 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Related Work
Future Work
Conclusions
Citations

Outline

1 Overview and Motivation

2 SILF and Stacked Memory

3 KOOL and Garbage Collection

4 Conclusions

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 39 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Related Work
Future Work
Conclusions
Citations

Related Work

Presented work part of rewriting logic semantics project
[MeseguerRosu04, MeseguerRosu07]

Most prior work on performance of rewriting logic definitions
has focused on analysis performance, including:

Java source and bytecode analysis
[FarzanEtAl04b, FarzanEtAl04a]
Analysis of KOOL programs [HillsRosu07]
Partial order reduction techniques [FarzanMeseguer07]

Extensive work has been done on garbage collection
[JonesLins96], including in pure OO languages
[UngarJackson88, UngarJackson92]

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 40 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Related Work
Future Work
Conclusions
Citations

Future Work

Canonical representations of memory: would use GC, could
improve performance

Further experimentation with GC, other analyses (escape
analysis, etc)

Can Maude be extended with direct support for arrays (or
other data structures) that would eliminate need for this
work? Would this have drawbacks (in debugging definitions,
for instance)?

GC as a language definition transformation

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 41 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Related Work
Future Work
Conclusions
Citations

Conclusions

Improved performance of language definitions allows use of
more realistic programs during language design

Changes to shared language modules can improve
performance with minimal alterations to feature definitions,
can be leveraged across multiple languages

A stacked memory model like that added to SILF can show
significant improvements where it can be used

Adding GC to languages like KOOL can be done with little
additional effort, but has mixed results, improving
performance for some programs but degrading it for others

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 42 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Related Work
Future Work
Conclusions
Citations

Questions?

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 43 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Related Work
Future Work
Conclusions
Citations

Citations

A. Farzan, F. Chen, J. Meseguer, and G. Roşu.
Formal Analysis of Java Programs in JavaFAN.
In Proceedings of CAV’04, volume 3114 of LNCS, pages
501–505. Springer, 2004.

A. Farzan and J. Meseguer.
Partial Order Reduction for Rewriting Semantics of
Programming Languages.
In Proceedings of WRLA’06, volume 176 of ENTCS, pages
61–78. Elsevier, 2007.

A. Farzan, J. Meseguer, and G. Roşu.
Formal JVM Code Analysis in JavaFAN.
In Proceedings of AMAST’04, volume 3116 of LNCS, pages
132–147. Springer, 2004.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 44 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Related Work
Future Work
Conclusions
Citations

Citations

M. Hills and G. Roşu.
On Formal Analysis of OO Languages using Rewriting Logic:
Designing for Performance.
In Proceedings of FMOODS’07, volume 4468 of LNCS, pages
107–121. Springer, 2007.

R. Jones and R. Lins.
Garbage Collection: Algorithms for Automatic Dynamic
Memory Management.
John Wiley & Sons, Inc., New York, NY, USA, 1996.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 44 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Related Work
Future Work
Conclusions
Citations

Citations

J. Meseguer and G. Roşu.
Rewriting Logic Semantics: From Language Specifications to
Formal Analysis Tools .
In Proceedings of IJCAR’04, volume 3097 of LNAI, pages
1–44. Springer, 2004.

J. Meseguer and G. Rosu.
The rewriting logic semantics project.
Theoretical Computer Science, 373(3):213–237, 2007.
Also appeared in SOS ’05, volume 156(1) of ENTCS, pages
27–56, 2006.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 44 / 44



Outline
Overview and Motivation

SILF and Stacked Memory
KOOL and Garbage Collection

Conclusions

Related Work
Future Work
Conclusions
Citations

Citations

D. Ungar and F. Jackson.
Tenuring Policies for Generation-Based Storage Reclamation.
In Proceedings of OOPSLA’88, pages 1–17, 1988.

D. Ungar and F. Jackson.
An Adaptive Tenuring Policy for Generation Scavengers.
ACM TOPLAS, 14(1):1–27, 1992.

Mark Hills Memory Representations in Rewriting Logic Semantics Definitions 44 / 44


	Outline
	Overview and Motivation
	
	
	

	SILF and Stacked Memory
	
	
	
	
	

	KOOL and Garbage Collection
	
	
	
	
	

	Conclusions
	
	
	
	


