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Rewriting Logic Semantics

Rewriting logic semantics provides a powerful environment for
language prototyping and design:

Rewriting logic provides formalism for specifying language
semantics

K definitional style provides methods to model complex
language features, such as jumps (goto, break, continue,
exceptions) and dynamic method dispatch

Tool support provides ability to try language features quickly
by executing and analyzing programs directly in semantics
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Executability

Executability raises new questions that don’t make sense with
non-executable semantics, such as:

How fast can programs be executed using the semantics?

In what ways can features be modified to maintain equivalent
behavior but improve performance?

What changes to the semantics will improve analysis
performance? Will these improve execution performance as
well?
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The Importance of Performance

Execution performance can be critical for experimenting with
language features – programs can quickly become too large (in

code size, memory usage, etc) to evaluate in the semantics
otherwise.
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Semantics Changes and Analysis Performance

Prior work focused on improving analysis performance by
modifying language semantics:

KOOL language modified to use auto-boxing (automatic
conversion of scalars to objects where needed) and memory
pools (shared and unshared)

Auto-boxing improved execution and analysis performance:
reduced number of method calls, use of memory, complexity
of language operations

Memory pools improved analysis performance: non-shared
memory operations used equations, reduced state space size

More details in [HillsRosu07].
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Costs of Semantics Changes

Improving performance by modifying language semantics can come
at a cost:

Changes believed to be equivalent, but would need to do
formal proof to show this to be the case

Changes to language features break modularity, making it
harder to reuse features in other languages

“Performance-aware” definitions become more complicated

Semantics of language features may not be best place for
performance improvements – auto-boxing is an optimization,
but moving it into semantics of message dispatch makes it
part of the language feature
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Memory-Representation Optimization

Memory representation part of language-independent
definition, provides interface containing operations that allow
features to interact with memory

Often reused in other languages, so improvements could be
leveraged in multiple definitions

Use of interface to memory maintains modularity of language
features, minimizing number of changes needed outside
memory modules – i.e., improvements to memory
representation need not change individual language features
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SILF

SILF is a basic imperative language – Simple Imperative
Language with Functions

Includes many features found in imperative languages,
including global variables and arrays

Does not include some features which make memory
management hard – no address capture, no dynamic memory
allocation
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SILF: Flat Memory Model

Original memory model was “flat” – memory represented as a
single set of location/value pairs

Memory never “cleaned up” – continues growing as new
locations allocated

1 sorts StoreCell Store .
2 subsort StoreCell < Store .
3 op [_,_] : Location Value -> StoreCell .
4 op nil : -> Store .
5 op __ : Store Store -> Store [assoc comm id: nil] .
6

7 eq k(lookupLoc(L) -> K) store(Mem [L,V])
8 = k(val(V) -> K) store(Mem [L,V]) .
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Improving SILF Memory Performance

Improving ACI matching performance during lookup should
improve evaluation performance

Key Idea 1: Only global locations and locations in current
function (i.e., stack frame) are visible – restricting lookups to
just these should improve performance

Key Idea 2: Without address capture and pointers, addresses
are not visible on function return, so it should be possible to
discard allocated memory on returning

Key ideas lead to use of “memory stacks”, similar to stack frames
used in standard imperative and OO language implementations.
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Stacked Memory Model

Memory represented as a stack of smaller stores

Top of stack contains store for current function, bottom
contains global store

Stack frame contains location number of smallest location in
its store, with visible locations ≥ this in function store,
locations < this in global store

Function call pushes new frame, return pops top frame

1 sort StackFrame Stack .
2 subsort StackFrame < Stack .
3 op [_,_] : Nat Store -> StackFrame .
4 op nil : -> Stack .
5 op _,_ : Stack Stack -> Stack [assoc id: nil] .
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Stacked Memory Model: Example

Stack frame for f

...

Globals

1 function f(x) begin

2 var y; // 1

3 y = g(3); // 2

4 return y

5 end

6

7 function g(x) begin

8 ... return x // 3

9 end

Example shows memory layout at code location 1

Global variables located in bottom frame

Variables local to current function f in top frame
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Stacked Memory Model: Example

Stack frame for g

Stack frame for f

...

Globals

1 function f(x) begin

2 var y; // 1

3 y = g(3); // 2

4 return y

5 end

6

7 function g(x) begin

8 ... return x // 3

9 end

Code location 2 contains a function call

New memory frame for g pushed onto top of stack

Items in f no longer visible
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Stacked Memory Model: Example

Stack frame for f

...

Globals

1 function f(x) begin

2 var y; // 1

3 y = g(3); // 2

4 return y

5 end

6

7 function g(x) begin

8 ... return x // 3

9 end

Code location 3 contains a function return

Memory frame for function g popped from stack

Memory stack now structured the same as before the call
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Stacked Memory Model Interface

Lookups triggered by language features redirected to use stacks,
maintaining same interface to memory:

1 eq k(lookupLoc(L) -> K) store(ST)

2 = k(val(stackLookup(L,ST)) -> K) store(ST) .

3

4 ceq stackLookup(loc(N),([Nb,Mem], ST)) = lvsLookup(loc(N),Mem)

5 if N >= Nb .

6

7 ceq stackLookup(loc(N),([Nb,Mem], ST, [Nb’,Mem’]))

8 = lvsLookup(loc(N),Mem’)

9 if N < Nb .

10

11 eq lvsLookup(L,([L,V] Mem)) = V .
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Performance

Standard (Flat) Memory Model Stacked Memory Model

Test Case Time (sec) Time (sec)

factorial 3.711 0.747

factorial2 1664.280 11.245

ifactorial 1.047 0.978

ifactorial2 43.861 15.441

fibonacci 29.014 1.939

qsort 111.623 15.374

ssort 21.557 14.657

factorial recursively calculates 20!, 40!, ..., 200!; factorial2
recursively calculates 1!, 2!, ..., 200!; ifactorial and ifactorial2
are iterative versions of factorial and factorial2, respectively;
fibonacci recursively calculates fib of 1, 2, ..., 15; qsort and
ssort each sort 2 arrays of 100 elements each
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Evaluation

Clear improvement in performance in all cases

Limited changes to put new model in place: 6 equations,
dealing with function call/return or memory, were modified

Similar changes should be useful for other languages with
similarly constrained memory models

Lack of support for languages that can return allocated
memory limits usefulness – not applicable to all imperative
languages
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KOOL

KOOL is a standard object-oriented language: K-based
Object-Oriented Language

Provides standard OO features: classes, methods, inheritance,
dynamic dispatch, etc

Includes memory features of languages like Java: references,
dynamic allocation, no explicit memory deallocation
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KOOL: Flat Memory Model

Like SILF, memory model is “flat”, using a finite map and
never performing clean-up

Unlike SILF, uses Maude MAP module versus custom set
definition

Memory usage in KOOL much higher than in SILF – KOOL is
a “pure” OO language, i.e., all values are objects, all
operations (even arithmetic) involve object creation and
method invocation (call by value)
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Improving KOOL Memory Performance

Use of references, ability to return newly-allocated objects
rules out a solution similar to that in SILF

So, use a classic memory management solution: Garbage
Collection (GC)

Goal: Add garbage collection to KOOL with minimal changes to
the existing language definition.
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Garbage Collection in KOOL

Mark/sweep collector: works well with circular structures,
easy to define and reason about

Runs in two steps:

Mark: Identify all reachable locations in memory
Sweep: Discard all unreachable (unmarked) locations
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Defining the Store for GC

1 protecting MAP{Location,ValueTuple} *
2 (sort Map{Location,ValueTuple} to Store) .
3

4 op [_,_,_] : Value Nat Nat -> ValueTuple .

Before, Store defined as a Map from Location to Value;
now, defined as Map from Location to ValueTuple

ValueTuple includes two flags, one marking the memory
location as shared/unshared, the other used as the GC mark
bit (we’re interested in the second here)
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Triggering GC

Triggering GC done using triggerGC computation item

GC triggered after a predefined number of allocations

Triggering sets the state component ingc to indicate GC has
started

In KOOL triggerGC used in allocation operations inside
memory modules – no definitions of language features
(method dispatch, etc) need to be changed
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Step 1: Initialization

When GC triggered, all mark flags on memory set to 0 (not
marked) to start

mem state component renamed to gcmem – keeps
rules/equations that modify memory from firing, since they
will fail to match
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Step 2: Mark Root Locations

First step in marking will find root locations (locations found
directly in computation parts of state) and mark them (using
markLocsInSet)

Operations defined recursively to find roots in different state
components, like:

KStateLocs finds root locations in state components
MStackLocs finds root locations in method stack
KLocs finds root locations in computation

1 ceq threads(KS) ingc(gcMarkRoots ) gcmem(Mem )

2 = threads(KS) ingc(gcMarkTrans(LS)) gcmem(markLocsInSet(Mem,LS))

3 if LS := KStateLocs(KS) .

4

5 eq KStateLocs(env(Env) TS) = ListToSet(envLocs(Env)) KStateLocs(TS) .

6 eq KStateLocs(k(K) CS) = KLocs(K) KStateLocs(CS) .

7 eq KStateLocs(mstack(MSTL) CS) = MStackLocs(MSTL) KStateLocs(CS) .
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Step 3: Mark Locations Reachable from Roots

Once root locations have been marked, need to find all other
reachable locations

Example: computation may hold reference to an object;
object may then reference other objects

Iterative process: keep marking reachable locations until fixed
point reached

Uses valLocs operation to get locations held in a value (like
locations of object references held in object fields)
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Step 4: Sweep

Once iterative marking reaches a fixpoint, switch GC mode to
sweep

Sweeping is simple: all unmarked locations discarded

When sweeping is complete, gcmem renamed to mem and
allocation counter reset to 0 – GC is complete

1 eq ingc(gcSweep) gcmem(Mem ) =
2 ingc(noGC(0)) mem(removeUnmarked(Mem) ) .
3

4 eq removeUnmarked(_‘,_(L |-> [V,N,0], Mem))
5 = removeUnmarked(Mem) .
6 eq removeUnmarked(Mem) = Mem [owise] .
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GC Example

Graphic shows representation of K configuration

k contains current computation, mstack contains the method
stack, with most of the configuration elided

Boxes numbered 1 through 10 represent memory locations

Circles with numbers show which objects at which locations
hold references to other objects
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GC Example

First part of mark step in GC marks roots

Locations 1, 5 and 8 are present in k

Location 7 is referenced in the method stack (so it would be
visible on method return)
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GC Example

Next, see which locations are reachable from the roots

First step discovers location 6 reachable from location 5
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GC Example

Continue marking reachable locations

Locations 9 and 10 both reachable from location 6

No more reachable locations – 6 is already marked, so we
don’t loop between 10 and 6
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GC Example

Finally, GC sweeps unmarked/unreachable locations

Locations 2, 3, and 4 unreachable, so discarded
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Performance

GC Disabled GC Enabled
Test Case Time (sec) Store Size Time (sec) Store Size Collections
factorial 103.060 22193 119.987 300 22
ifactorial 97.100 21103 116.811 106 21
fibonacci 401.334 76915 399.785 935 76
addnums NA NA 516.023 946 93
garbage 259.500 32013 147.211 20 32

addnums and garbage both perform repeated calculations or
allocations; other examples are identical to those for SILF

Store Size is the final size of memory

Collections is the number of GCs performed
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Evaluation

GC results mixed: some examples with GC enabled cause
reduced performance, others run faster or even allow
execution to finish (versus segfault)

Adding GC required only changes in the memory operations,
with no changes in feature definitions

GC is modular: some operations are generic for all collectors,
with specific operations used to interrogate current state and
computation (only these are language-specific)
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Related Work

Presented work part of rewriting logic semantics project
[MeseguerRosu04, MeseguerRosu07]

Most prior work on performance of rewriting logic definitions
has focused on analysis performance, including:

Java source and bytecode analysis
[FarzanEtAl04b, FarzanEtAl04a]
Analysis of KOOL programs [HillsRosu07]
Partial order reduction techniques [FarzanMeseguer07]

Extensive work has been done on garbage collection
[JonesLins96], including in pure OO languages
[UngarJackson88, UngarJackson92]
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Future Work

Canonical representations of memory: would use GC, could
improve performance

Further experimentation with GC, other analyses (escape
analysis, etc)

Can Maude be extended with direct support for arrays (or
other data structures) that would eliminate need for this
work? Would this have drawbacks (in debugging definitions,
for instance)?

GC as a language definition transformation
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Conclusions

Improved performance of language definitions allows use of
more realistic programs during language design

Changes to shared language modules can improve
performance with minimal alterations to feature definitions,
can be leveraged across multiple languages

A stacked memory model like that added to SILF can show
significant improvements where it can be used

Adding GC to languages like KOOL can be done with little
additional effort, but has mixed results, improving
performance for some programs but degrading it for others
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