
Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Building an IDE with Rascal

Mark Hills

CWI & INRIA ATEAMS

18 May 2011

Hills Building an IDE with Rascal 1/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outline

1 Setting the Stage

2 Parsing

3 Outliners and Annotators

4 Contributors

5 Conclusions

Hills Building an IDE with Rascal 2/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outline

1 Setting the Stage

2 Parsing

3 Outliners and Annotators

4 Contributors

5 Conclusions

Hills Building an IDE with Rascal 2/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outline

1 Setting the Stage

2 Parsing

3 Outliners and Annotators

4 Contributors

5 Conclusions

Hills Building an IDE with Rascal 2/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outline

1 Setting the Stage

2 Parsing

3 Outliners and Annotators

4 Contributors

5 Conclusions

Hills Building an IDE with Rascal 2/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outline

1 Setting the Stage

2 Parsing

3 Outliners and Annotators

4 Contributors

5 Conclusions

Hills Building an IDE with Rascal 2/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Running Example: Oberon-0
Some Oberon-0 Code

Building on Past Work

GIPE and GIPE II: Centaur (LeLisp, Prolog)

ASF+SDF (Lisp, then C, with Java front-end)

Rascal (C and Java, now completely in Java), building on the
Eclipse IDE Meta-Tooling Platform (Eclipse IMP) for language
IDE support

Hills Building an IDE with Rascal 3/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Running Example: Oberon-0
Some Oberon-0 Code

Running Example: Oberon-0

A subset of Oberon, a successor to Pascal and Modula-2

Developed as part of a language workbench competition

Includes common, basic features from many languages:
variables, constants, procedures, arrays, records, simple control
flow constructs

Goal was to develop a number of language tools: editor, type
checker, compiler, etc

Hills Building an IDE with Rascal 4/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Running Example: Oberon-0
Some Oberon-0 Code

A Swap Procedure in Oberon-0

PROCEDURE Swap(VAR x, y: INTEGER);

VAR

temp: INTEGER;

BEGIN

temp := x;

x := y;

y := temp

END Swap;

Hills Building an IDE with Rascal 5/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Running Example: Oberon-0
Some Oberon-0 Code

Arrays and Procedures in Oberon-0

MODULE testL4;

VAR

x: ARRAY 4 OF INTEGER;

i: INTEGER;

PROCEDURE f(i: INTEGER; z: ARRAY 4 OF INTEGER);

BEGIN

Write(z[i]); WriteLn ()

END f;

BEGIN

i := 0;

WHILE i < 4 DO

x[i] := i; f(i,x);

i := i + 1

END

END testL4.

Hills Building an IDE with Rascal 6/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Parsing in Rascal

Grammars defined using Rascal grammar definition notation

A Rascal program then builds a Java-based parser for the
grammar

Parser is GLL – filtering rules used to remove ambiguities

Hills Building an IDE with Rascal 7/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Example: Oberon-0 Grammar

Hills Building an IDE with Rascal 8/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Rascal Meta-Programming Architecture

Grammar
Source Code

Rascal
Parser

AST
Builder

Rascal
Interpreter

Interpreter
Source Code

Java
Compiler

Parser
Generator

Rascal
Programs

AST
Generator

AST Source
Code

AST Builder
Source Code

Input
Output

build-time
run-time

Parse
Tree AST

Parser
Source Code

build-time flow

run-time flow

data

operation

legend

Hills Building an IDE with Rascal 9/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outliners
Annotators

Outliners in IDEs

Outlines provide a quick overview of code, indicating which
constructs (classes, methods, functions, variables, etc) have
been defined

Outlines also provide a way to browse the code quickly –
selecting an element in the outline takes the programmer to the
appropriate part of the code

Hills Building an IDE with Rascal 10/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outliners
Annotators

Code Outlining Example: Java in Eclipse

Hills Building an IDE with Rascal 11/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outliners
Annotators

Outlining Support in Rascal: Building the Outline

Outlines are built over the concrete syntax of a language
Labels indicate the display name in the outline view
Locations allow the user to jump to the outlined item

public node outlineModule(Module x) {

return outlineDecls(x.decls)[@label="<x.name>"];

}

Node outlineDecls(Declarations decls) {

cds = outline([constDecl()[@label="<cd.name>"][@\loc=cd@\loc] |

/ConstDecl cd := decls.consts])[@label="Constants"];

tds = outline([typeDecl()[@label="<td.name>"][@\loc=td@\loc] |

/TypeDecl td := decls.types])[@label="Types"];

vds = outline([varDecl()[@label="<vd.names>"][@\loc=vd@\loc] |

/VarDecl vd := decls.vars])[@label="Variables"];

return outline([cds, tds, vds]);

}

Hills Building an IDE with Rascal 12/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outliners
Annotators

Outlining Support in Rascal: Registering the Outliner

registerOutliner registers an outliner function with the IDE

The IDE then calls this function to build the outline
automatically as the file changes

The IDE also provides the outline view, using the location and
name info to build the view content

registerOutliner("l4", outlineModule);

Hills Building an IDE with Rascal 13/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outliners
Annotators

Code Outlining Example: Oberon-0 in Rascal

Hills Building an IDE with Rascal 14/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outliners
Annotators

Annotators

Annotators allow annotations to be added to language
constructs and displayed in the editor

Typical examples: name resolution, type checking – want errors
to be displayed graphically to users, marking error locations

public Module checkModule(Module x) {

m = implode(x);

<m, st> = resolve(m);

errors = { error(l, s) | <l, s> <- st.scopeErrors };

if (errors == {}) {

errors = check(m, st.symbolTable);

}

return x[@messages = errors];

}

registerAnnotator("l4", checkModule);

Hills Building an IDE with Rascal 15/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Outliners
Annotators

Annotator Example: Type Checking Oberon-0

Hills Building an IDE with Rascal 16/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Contributors Overview
Rascal-based Contributors
Integration with External Tools

Contributors

Contributors provide a way to add more advanced functionality

Each contribution is a menu item – execution is triggered by
the user

Examples: interaction with external tools, compilation,
visualization

Hills Building an IDE with Rascal 17/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Contributors Overview
Rascal-based Contributors
Integration with External Tools

An Example Contributors Menu

Hills Building an IDE with Rascal 18/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Contributors Overview
Rascal-based Contributors
Integration with External Tools

Visualization Contribution: Control Flow Graph

Hills Building an IDE with Rascal 19/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Contributors Overview
Rascal-based Contributors
Integration with External Tools

Contributors: Integration with External Tools

Contributors in Rascal-based IDEs are not limited to those
written in Rascal

Example: linking a Rascal-based front-end with a Maude-based
analysis framework

Hills Building an IDE with Rascal 20/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Contributors Overview
Rascal-based Contributors
Integration with External Tools

Contributors: Integration with External Tools

Information from the external tool can be used to set up
annotations...

Hills Building an IDE with Rascal 21/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Contributors Overview
Rascal-based Contributors
Integration with External Tools

Contributors: Integration with External Tools

... and to add other information, such as entries in an Eclipse
Problems view.

Hills Building an IDE with Rascal 22/23

Setting the Stage
Parsing

Outliners and Annotators
Contributors
Conclusions

Conclusions

Building on IMP, Rascal provides a number of hooks to add
support for language IDEs

Support based on higher-level constructs in Rascal: instead of
generating from a language specification, Rascal provides
abstractions for working with programming languages and
programs, providing high degree of customizability

Bridge to Java allows IDE features to be based on tools written
in Rascal and/or Java and on external tools

Hills Building an IDE with Rascal 23/23

	Setting the Stage
	Running Example: Oberon-0
	Some Oberon-0 Code

	Parsing
	Outliners and Annotators
	Outliners
	Annotators

	Contributors
	Contributors Overview
	Rascal-based Contributors
	Integration with External Tools

	Conclusions

