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Initial Motivation

e Units of measurement are
Important!

e |Initial work: built units checkers for
BC and for a small subset of C

1.Feng Chen, Grigore Rosu, and Ram Prasad
Venkatesan. Rule-Based Analysis of
Dimensional Safety. In Proceedings of
RTA’0S.

2.Grigore Rosu and Feng Chen. Certifying
Measurement Unit Safety Policy. In
Proceedings of ASE’0S.
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Why That Wasn't Enough

e Farly work was not modular
e Could not easily extend semantics (e.g., cover more of C)
e Could not add new analyses

e Could not share specification fragments between
analyses

e Goal: build a semantics-based, modular analysis
framework
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Solution: Policy Frameworks! \

Q

e Modular static analysis framework
e Built in Maude with K-style rewriting logic semantics
¢ | anguage generic: analysis domains

¢ | anguage-specific, analysis-generic: base semantics,
annotation-aware parser

® Analysis-specific: analysis semantics, annotation
language

Friday, June 15, 2012



CPF and SILF-PF

e CPF: C Policy Framework, analysis policies for units of measurement and
pointer analysis

e \Worked on real C code, found unit bugs seeded in NASA test code (C++
converted to C)

e SILF-PF: SILF Policy Framework, policies for units and types

¢ Units domain shared between C and SILF

3. Mark Hills, Feng Chen, and Grigore Rosu. A Rewriting Logic Approach to Static Checking of
Units of Measurement in C. In Proceedings of RULE’0S8.

4. Mark Hills and Grigore Rosu. A Rewriting Logic Semantics Approach To Modular Program
Analysis. In Proceedings of RTA’10.
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Modularity Works, so What’s Wrong?

e Transformed specification challenge into software
engineering challenge!

* Need to define “boilerplate” functionality to interact with existing
framework

e Need to know which hooks are available for extension
e Need to know what modules can be extended
* Need to write lots of redundant cases for error propagation

* Need to define custom annotation languages and parsers
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Define Functionality to Interact with Framework

* Analysis domains based on definition of Policy Values

* Multiple policies can be active at once, need to
generate annotation filters

* Need to define pretty-printing for error message
generation
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Current Code: Defining Types in SILF

ops $int $bool : -> BaseType .
op $notype : -> PolicyVal .
op $array : BaseType -> PolicyVal .

eq pv2pv($(‘int)) = Fint .
eq pv2pv($(‘'bool) = $bool .
eq pv2pv($(‘array) (T)) = Sarray(pv2pv(T)) .

eq ta2pv($(‘int)) = Fint .
eq ta2pv($('bool)) = $bool .
eq ta2pv($(‘array) (T) ) = $array(ta2pv(T)) .

eq pretty-print($int) = "$int" .

eq pretty-print($bool) = "$bool" .

eq pretty-print($notype) = "$notype" .

eq pretty-print($array(T)) = "Sarray(" + pretty-print(T) + )" .
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Proposed Code:

Policy TYPES

PolicyVal $int;
PolicyVal $bool;
PolicyVal $noType:

End Policy

Defining

Policy Name
rovides Filtering

~

J

Policies in a Policy DSL

e

——

PolicyVal $array(PolicyVal as pv

0

Annotation

Filtering Rules

Generated

~

) display as "$array[<$pv>]"; L

\_

Default Pretty
Printing Rules

~

J

Custom Pretty
Printing Rule

~

J

13
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Which Hooks Can Be Extended”?

e Extension points, i.e. “hooks”, are operators with no
defining equations

e New policies provide equations to add functionality

e How to find hooks? all ops in a module? all ops of a
given sort or sorts”?
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Proposed Solution: Maude Reflection Saisie Hesk

Definitions

/
op defaultintVal : -> Value [metadata "hook"] . /

ops + - */ % : Exp Exp -> Computationltem [metadata "hook"] .

Maude> red hookRelToRascal(computeHookRel('GENERIC-ARITH-SEMANTICS)) .
reduce in HOOK-OPS : hookRelToRascal(computeHookRel(' GENERIC-ARITH-
SEMANTICS))

rewrites: 201 in Oms cpu (Oms real) (11823529 rewrites/second)
result String: "[hook(\"GENERIC-ARITH-SEMANTICS\" \"%\",\"Exp\",\"Exp\"],

\"Computationltem\"), hook(\"GENERIC-ARITH-SEMANTICS\" \"*\",\"Exp\",\"Exp\"],
\"Computationltem\"),

NOOK(\"GENERIC-ARITH-SEMANTICS\" \"+\", \"Exp\", \"Exp\"],\"Computationltem\"),
NoOk(\"GENERIC-ARITH-SEMANTICS\" \"-\", \"Exp\",\"Exp\"],\"Computationltem\"),
NOOK(\"GENERIC-ARITH-SEMANTICS\" \"A",\"Exp\" \"Exp\"],\"Computationltem\"),
NOOK(\"GENERIC-ARITH-SEMANTICS\" \"u-\",\"EXp\ T utationltem\")]"

Extraction
from Maude | |
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Proposed Solution: A Policy Rule Definition DSL

| 4 )
Policy SILF-TYPES Extraction generates
default equations that
porule|[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> EXpl: do nothing

k(val(V1,V2) -> +(E1,E2) -> K) = k(K) j
if notfail(V1) and notfail(V2) .

prule|GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) =
k(mergefail(V1,V2) -> K) if fail(V1) or fail(V2) . \
~

End Policy Need to add better
~ notation for error
propagation: still working

Limitation: don’t
want to reparse on this (currently done by
Maude, so the writing more equations)
body isn’t \_ Y
checked...

\ J
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Which Modules Can Be Extended?

e For now, just relying on modularity features of Maude,
plus documentation

e Generally one feature or feature “group” (e.g., arithmetic
expressions) per module

® S0, leaving this as is (but, still a future challenge -- how
can we make module reuse easier?)

Open For Debate!
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One More: Annotation Languages

¢ | anguage parser must be annotation language generic

e Current solution: pass annotation language fragments as strings to a
parser for the policy

* In progress: convert parsing to using Rascal, GLL can combine
grammars, provide for filtering rules

e Currently works for SILF, not yet in C

* In progress: link to Maude annotation language definitions (including
shared definitions)

e |deal: generate parser and Maude definition from same code
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- WARNING

Wrap-Up: Further Challenges @

e Should extraction support be extended to CHALLENGES
other operators? ~ AHEAD

¢ Declarations need more support, especially in
languages like C

e Don’t want to rebuild Maude parser in Rascal! But how
to best support analysis builders?
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