Streamlining Policy Creation in Policy Frameworks

Mark Hills

21st International Workshop on Algebraic Development Techniques
June 8, 2012
Salamanca, Spain

http://www.rascal-mpl.org

e

)

Friday, June 15, 2012

http://www.rascal-mpl.org
http://www.rascal-mpl.org

Overview

¢ Policy Frameworks
e Challenges

e Adding Support for Extensibility

Friday, June 15, 2012

Overview

¢ Policy Frameworks

Friday, June 15, 2012

Initial Motivation

e Units of measurement are
Important!

e |Initial work: built units checkers for
BC and for a small subset of C

1.Feng Chen, Grigore Rosu, and Ram Prasad
Venkatesan. Rule-Based Analysis of
Dimensional Safety. In Proceedings of
RTA’0S.

2.Grigore Rosu and Feng Chen. Certifying
Measurement Unit Safety Policy. In
Proceedings of ASE’0S.

Friday, June 15, 2012

Why That Wasn't Enough

e Farly work was not modular
e Could not easily extend semantics (e.g., cover more of C)
e Could not add new analyses

e Could not share specification fragments between
analyses

e Goal: build a semantics-based, modular analysis
framework

Friday, June 15, 2012

—

. . &
Solution: Policy Frameworks! \

Q

e Modular static analysis framework
e Built in Maude with K-style rewriting logic semantics
¢ | anguage generic: analysis domains

¢ | anguage-specific, analysis-generic: base semantics,
annotation-aware parser

® Analysis-specific: analysis semantics, annotation
language

Friday, June 15, 2012

CPF and SILF-PF

e CPF: C Policy Framework, analysis policies for units of measurement and
pointer analysis

e \Worked on real C code, found unit bugs seeded in NASA test code (C++
converted to C)

e SILF-PF: SILF Policy Framework, policies for units and types

¢ Units domain shared between C and SILF

3. Mark Hills, Feng Chen, and Grigore Rosu. A Rewriting Logic Approach to Static Checking of
Units of Measurement in C. In Proceedings of RULE’0S8.

4. Mark Hills and Grigore Rosu. A Rewriting Logic Semantics Approach To Modular Program
Analysis. In Proceedings of RTA’10.

Friday, June 15, 2012

Overview

e Challenges

Friday, June 15, 2012

Modularity Works, so What’s Wrong?

e Transformed specification challenge into software
engineering challenge!

* Need to define “boilerplate” functionality to interact with existing
framework

e Need to know which hooks are available for extension
e Need to know what modules can be extended
* Need to write lots of redundant cases for error propagation

* Need to define custom annotation languages and parsers

Friday, June 15, 2012

Overview

e Adding Support for Extensibility

Friday, June 15, 2012

Define Functionality to Interact with Framework

* Analysis domains based on definition of Policy Values

* Multiple policies can be active at once, need to
generate annotation filters

* Need to define pretty-printing for error message
generation

Friday, June 15, 2012

Current Code: Defining Types in SILF

ops $int $bool : -> BaseType .
op $notype : -> PolicyVal .
op $array : BaseType -> PolicyVal .

eq pv2pv($(‘int)) = Fint .
eq pv2pv($(‘'bool) = $bool .
eq pv2pv($(‘array) (T)) = Sarray(pv2pv(T)) .

eq ta2pv($(‘int)) = Fint .
eq ta2pv($('bool)) = $bool .
eq ta2pv($(‘array) (T)) = $array(ta2pv(T)) .

eq pretty-print($int) = "$int" .

eq pretty-print($bool) = "$bool" .

eq pretty-print($notype) = "$notype" .

eq pretty-print($array(T)) = "Sarray(" + pretty-print(T) +)" .

Friday, June 15, 2012

Proposed Code:

Policy TYPES

PolicyVal $int;
PolicyVal $bool;
PolicyVal $noType:

End Policy

Defining

Policy Name
rovides Filtering

~

J

Policies in a Policy DSL

e

——

PolicyVal $array(PolicyVal as pv

0

Annotation

Filtering Rules

Generated

~

) display as "$array[<$pv>]"; L

_

Default Pretty
Printing Rules

~

J

Custom Pretty
Printing Rule

~

J

13

Friday, June 15, 2012

Which Hooks Can Be Extended”?

e Extension points, i.e. “hooks”, are operators with no
defining equations

e New policies provide equations to add functionality

e How to find hooks? all ops in a module? all ops of a
given sort or sorts”?

Friday, June 15, 2012

, , 4)
Proposed Solution: Maude Reflection Saisie Hesk

Definitions

/
op defaultintVal : -> Value [metadata "hook"] . /

ops + - */ % : Exp Exp -> Computationltem [metadata "hook"] .

Maude> red hookRelToRascal(computeHookRel('GENERIC-ARITH-SEMANTICS)) .
reduce in HOOK-OPS : hookRelToRascal(computeHookRel(' GENERIC-ARITH-
SEMANTICS))

rewrites: 201 in Oms cpu (Oms real) (11823529 rewrites/second)
result String: "[hook(\"GENERIC-ARITH-SEMANTICS\" \"%\",\"Exp\",\"Exp\"],

\"Computationltem\"), hook(\"GENERIC-ARITH-SEMANTICS\" \"*\",\"Exp\",\"Exp\"],
\"Computationltem\"),

NOOK(\"GENERIC-ARITH-SEMANTICS\" \"+\", \"Exp\", \"Exp\"],\"Computationltem\"),
NoOk(\"GENERIC-ARITH-SEMANTICS\" \"-\", \"Exp\",\"Exp\"],\"Computationltem\"),
NOOK(\"GENERIC-ARITH-SEMANTICS\" \"A",\"Exp\" \"Exp\"],\"Computationltem\"),
NOOK(\"GENERIC-ARITH-SEMANTICS\" \"u-\",\"EXp\ T utationltem\")]"

Extraction
from Maude | |

Friday, June 15, 2012

Proposed Solution: A Policy Rule Definition DSL

| 4)
Policy SILF-TYPES Extraction generates
default equations that
porule|[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> EXpl: do nothing

k(val(V1,V2) -> +(E1,E2) -> K) = k(K) j
if notfail(V1) and notfail(V2) .

prule|GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) =
k(mergefail(V1,V2) -> K) if fail(V1) or fail(V2) . \
~

End Policy Need to add better
~ notation for error
propagation: still working

Limitation: don’t
want to reparse on this (currently done by
Maude, so the writing more equations)
body isn’t _ Y
checked...

\ J

Friday, June 15, 2012

Which Modules Can Be Extended?

e For now, just relying on modularity features of Maude,
plus documentation

e Generally one feature or feature “group” (e.g., arithmetic
expressions) per module

® S0, leaving this as is (but, still a future challenge -- how
can we make module reuse easier?)

Open For Debate!

Friday, June 15, 2012

One More: Annotation Languages

¢ | anguage parser must be annotation language generic

e Current solution: pass annotation language fragments as strings to a
parser for the policy

* In progress: convert parsing to using Rascal, GLL can combine
grammars, provide for filtering rules

e Currently works for SILF, not yet in C

* In progress: link to Maude annotation language definitions (including
shared definitions)

e |deal: generate parser and Maude definition from same code

Friday, June 15, 2012

- WARNING

Wrap-Up: Further Challenges @

e Should extraction support be extended to CHALLENGES
other operators? ~ AHEAD

¢ Declarations need more support, especially in
languages like C

e Don’t want to rebuild Maude parser in Rascal! But how
to best support analysis builders?

Friday, June 15, 2012

B8 MorkHills 5 (karmo: 341 badges: @ 6 #10) signout help

ﬁ ALL UNANSWERED FOLLOWED

102 questions Sort by » activity ¥

Search tip: add tags and a query to focus your search

Operator Overloading

operator overloading support

How to solve this MissingFormatArgumentException?

java exception

e Rascal: http://www.rascal-mpl.org

e SEN1: http://www.cwi.nl/sent

e Me: http://www.cwi.nl/~hills

votes

votes

answers

19

Views

Mar 07 Hossein

answer

11

views

Mar 07 Atze

ASK YOUR QUESTION

Also see the RascalTutor.

Contributors

gﬁﬁ!
o M3
« M

W.‘l)'« r. .‘ 'JAL‘ 1‘0

Boolt: <><>
N7 - m' 4471';‘&(

20

Friday, June 15, 2012

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.cwi.nl/sen1
http://www.cwi.nl/sen1
http://www.cwi.nl/~hills
http://www.cwi.nl/~hills

