
Streamlining Policy Creation in Policy Frameworks

Mark Hills

21st International Workshop on Algebraic Development Techniques
June 8, 2012
Salamanca, Spain

http://www.rascal-mpl.org

1

Friday, June 15, 2012

http://www.rascal-mpl.org
http://www.rascal-mpl.org

Overview

•Policy Frameworks

•Challenges

•Adding Support for Extensibility

2

Friday, June 15, 2012

Overview

•Policy Frameworks

•Challenges

•Adding Support for Extensibility

3

Friday, June 15, 2012

Initial Motivation

• Units of measurement are
important!

• Initial work: built units checkers for
BC and for a small subset of C

1.Feng Chen, Grigore Rosu, and Ram Prasad
Venkatesan. Rule-Based Analysis of
Dimensional Safety. In Proceedings of
RTA’03.

2.Grigore Rosu and Feng Chen. Certifying
Measurement Unit Safety Policy. In
Proceedings of ASE’03.

4

Friday, June 15, 2012

Why That Wasn’t Enough

•Early work was not modular

•Could not easily extend semantics (e.g., cover more of C)

•Could not add new analyses

•Could not share specification fragments between
analyses

•Goal: build a semantics-based, modular analysis
framework

5

Friday, June 15, 2012

Solution: Policy Frameworks!

•Modular static analysis framework

•Built in Maude with K-style rewriting logic semantics

•Language generic: analysis domains

•Language-specific, analysis-generic: base semantics,
annotation-aware parser

•Analysis-specific: analysis semantics, annotation
language

6

Friday, June 15, 2012

CPF and SILF-PF

• CPF: C Policy Framework, analysis policies for units of measurement and
pointer analysis

• Worked on real C code, found unit bugs seeded in NASA test code (C++
converted to C)

• SILF-PF: SILF Policy Framework, policies for units and types

• Units domain shared between C and SILF

3. Mark Hills, Feng Chen, and Grigore Rosu. A Rewriting Logic Approach to Static Checking of
Units of Measurement in C. In Proceedings of RULE’08.

4. Mark Hills and Grigore Rosu. A Rewriting Logic Semantics Approach To Modular Program
Analysis. In Proceedings of RTA’10.

7

Friday, June 15, 2012

Overview

•Policy Frameworks

•Challenges

•Adding Support for Extensibility

8

Friday, June 15, 2012

Modularity Works, so What’s Wrong?

• Transformed specification challenge into software
engineering challenge!

• Need to define “boilerplate” functionality to interact with existing
framework

• Need to know which hooks are available for extension

• Need to know what modules can be extended

• Need to write lots of redundant cases for error propagation

• Need to define custom annotation languages and parsers

9

Friday, June 15, 2012

Overview

•Policy Frameworks

•Challenges

•Adding Support for Extensibility

10

Friday, June 15, 2012

Define Functionality to Interact with Framework

•Analysis domains based on definition of Policy Values

•Multiple policies can be active at once, need to
generate annotation filters

•Need to define pretty-printing for error message
generation

11

Friday, June 15, 2012

Current Code: Defining Types in SILF

12

 ops $int $bool : -> BaseType .
 op $notype : -> PolicyVal .
 op $array : BaseType -> PolicyVal .

 eq pv2pv($('int)) = $int .
 eq pv2pv($('bool)) = $bool .
 eq pv2pv($('array) (T)) = $array(pv2pv(T)) .

 eq ta2pv($('int)) = $int .
 eq ta2pv($('bool)) = $bool .
 eq ta2pv($('array) (T)) = $array(ta2pv(T)) .

 eq pretty-print($int) = "$int" .
 eq pretty-print($bool) = "$bool" .
 eq pretty-print($notype) = "$notype" .
 eq pretty-print($array(T)) = "$array(" + pretty-print(T) + ")" .

Friday, June 15, 2012

Proposed Code: Defining Policies in a Policy DSL

13

Policy TYPES

PolicyVal $int;
PolicyVal $bool;
PolicyVal $noType;
PolicyVal $array(PolicyVal as pv) display as "$array[<$pv>]";

End Policy

Policy Name
Provides Filtering

Default Pretty
Printing Rules

Custom Pretty
Printing Rule

Annotation
Filtering Rules

Generated

Friday, June 15, 2012

Which Hooks Can Be Extended?

•Extension points, i.e. “hooks”, are operators with no
defining equations

•New policies provide equations to add functionality

•How to find hooks? all ops in a module? all ops of a
given sort or sorts?

14

Friday, June 15, 2012

Proposed Solution: Maude Reflection

15

op defaultIntVal : -> Value [metadata "hook"] .
ops + - * / % : Exp Exp -> ComputationItem [metadata "hook"] .

Maude> red hookRelToRascal(computeHookRel('GENERIC-ARITH-SEMANTICS)) .
reduce in HOOK-OPS : hookRelToRascal(computeHookRel('GENERIC-ARITH-
SEMANTICS))
 .
rewrites: 201 in 0ms cpu (0ms real) (11823529 rewrites/second)
result String: "[hook(\"GENERIC-ARITH-SEMANTICS\",\"%\",[\"Exp\",\"Exp\"],
\"ComputationItem\"), hook(\"GENERIC-ARITH-SEMANTICS\",\"*\",[\"Exp\",\"Exp\"],
\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"+\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"-\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"/\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"u-\",[\"Exp\"],\"ComputationItem\")]"

Sample Hook
Definitions

Extraction
from Maude

Friday, June 15, 2012

Proposed Solution: A Policy Rule Definition DSL

16

Policy SILF-TYPES

prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) = k(K)
if notfail(V1) and notfail(V2) .

 prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) =
k(mergefail(V1,V2) -> K) if fail(V1) or fail(V2) .

End Policy

Extraction generates
default equations that

do nothing

Need to add better
notation for error

propagation: still working
on this (currently done by
writing more equations)

Limitation: don’t
want to reparse
Maude, so the

body isn’t
checked...

Friday, June 15, 2012

Which Modules Can Be Extended?

•For now, just relying on modularity features of Maude,
plus documentation

•Generally one feature or feature “group” (e.g., arithmetic
expressions) per module

•So, leaving this as is (but, still a future challenge -- how
can we make module reuse easier?)

Open For Debate!

17

Friday, June 15, 2012

One More: Annotation Languages

• Language parser must be annotation language generic

• Current solution: pass annotation language fragments as strings to a
parser for the policy

• In progress: convert parsing to using Rascal, GLL can combine
grammars, provide for filtering rules

• Currently works for SILF, not yet in C

• In progress: link to Maude annotation language definitions (including
shared definitions)

• Ideal: generate parser and Maude definition from same code

18

Friday, June 15, 2012

Wrap-Up: Further Challenges

•Should extraction support be extended to
other operators?

•Declarations need more support, especially in
languages like C

•Don’t want to rebuild Maude parser in Rascal! But how
to best support analysis builders?

19

Friday, June 15, 2012

• Rascal: http://www.rascal-mpl.org

• SEN1: http://www.cwi.nl/sen1

• Me: http://www.cwi.nl/~hills

20

Friday, June 15, 2012

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.cwi.nl/sen1
http://www.cwi.nl/sen1
http://www.cwi.nl/~hills
http://www.cwi.nl/~hills

