
Modular Language Specifications for
Program Analysis

Mark Hills

SLS 2013: Workshop on Scalable Language Specification
June 25 - 27, 2013
Cambridge, UK

http://www.rascal-mpl.org

1

Thursday, June 27, 13

http://www.rascal-mpl.org
http://www.rascal-mpl.org

Overview

• Policy Frameworks

• Challenges

• DSLs for Program Analysis

2

Thursday, June 27, 13

Overview

• Policy Frameworks

• Challenges

• DSLs for Program Analysis

3

Thursday, June 27, 13

Initial Motivation: Units of Measurement

4

“NASA lost a $125 million Mars
orbiter because one engineering team
used metric units while another used
English units for a key spacecraft
operation ... For that reason,
information failed to transfer between
the Mars Climate Orbiter spacecraft
team at Lockheed Martin in Colorado
and the mission navigation team in
California.”

Picture and text from CNN.com, “NASA’s metric confusion caused Mars
orbiter loss”, http://www.cnn.com/TECH/space/9909/30/mars.metric

Thursday, June 27, 13

http://www.cnn.com/TECH/space/9909/30/mars.metric/%7D
http://www.cnn.com/TECH/space/9909/30/mars.metric/%7D

Why Units of Measurement?

• Tangible: unit safety violations have caused some well-
known malfunctions; units used in many applications

• Interesting: has been the focus of much research, many
different possible approaches

• Challenging: units have equational properties (not
standard types); software in scientific domains can be
hard to analyze (C, C++, Fortran, etc...)

5

Thursday, June 27, 13

First Rewriting Logic Semantics Approaches

• Unit checker for BC [Chen et al, RTA’03]

• Unit checker for small subset of C [Rosu and Chen, ASE’03]

• Added annotations in comments for specifying unit properties

• Whole program analysis, abstract evaluation semantics

6

Thursday, June 27, 13

What’s Wrong? Early work was not scalable!

• Major rework needed to extend semantics

• New analysis == complete new semantics

• Could not share specification fragments between
analyses

• Whole program analysis: not scalable for users

• New Goal: build a semantics-based, modular analysis
framework

7

Thursday, June 27, 13

Solution: Policy Frameworks!

• Modular static analysis framework

• Built in Maude with K-style rewriting logic semantics

• Language generic: analysis domains

• Language-specific, analysis-generic: base semantics,
annotation-aware parser

• Analysis-specific: analysis semantics, annotation
language

8

Thursday, June 27, 13

CPF

• CPF: C Policy Framework, analysis policies for units of
measurement and pointer analysis [Hills et. al, RULE’08]

• Worked on real C code, found unit bugs seeded in NASA test code
(C++ converted to C)

9

//@ pre(UNITS): unit(material->atomicWeight) = kg
//@ pre(UNITS): unit(material->atomicNumber) = noUnit
//@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1
double radiationLength(Element * material) {
 double A = material->atomicWeight;
 double Z = material->atomicNumber;
 double L = log(184.15 / pow(Z, 1.0/3.0));
 double Lp = log(1194.0 / pow(Z, 2.0/3.0));
 return (4.0 * alpha * re * re) * (NA / A) *
 (Z * Z * L + Z * Lp);
}

Thursday, June 27, 13

CPF: Architectural View

10

Thursday, June 27, 13

SILF-PF

• SILF-PF: SILF Policy Framework,
policies for units and types [Hills
and Rosu, RTA’10]

• Annotations added as language
constructs and types

• Units domain shared between C
and SILF

11

function main(void)
begin
 var x; var y; var n;
 assume(UNITS): @unit(x) = $m;
 assume(UNITS): @unit(y) = $kg;
 for n := 1 to 10
 invariant(UNITS): @unit(x) = @unit(y);
 do
 x := x * x;
 y := y * y;
 od
 write x + y;
end

Thursday, June 27, 13

Did this Work?

• Reuse of modules achieved in both CPF and SILF-PF

• Reuse of annotation-aware frontends for both policy
frameworks (CIL for CPF, custom for SILF-PF)

• UNITS analysis domain shared between frameworks for
SILF and C

12

Thursday, June 27, 13

Did this Work?

• Reuse of modules achieved in both CPF and SILF-PF

• Reuse of annotation-aware frontends for both policy
frameworks (CIL for CPF, custom for SILF-PF)

• UNITS analysis domain shared between frameworks for
SILF and C

12

Thursday, June 27, 13

Overview

• Policy Frameworks

• Challenges

• DSLs for Program Analysis

13

Thursday, June 27, 13

Modularity works, so what’s wrong?

• Need to define “boilerplate” functionality to
interact with existing framework

• Need to know which hooks are available for extension

• Need to know what modules can be extended

• Need to write lots of redundant cases for error
propagation

• Need to define custom annotation languages and parsers

14

Thursday, June 27, 13

Why is this a problem?

• CPF Core: 69 modules, 548 ops,
586 equations, 2016 lines

• CPF Units: 22 modules, 56 ops, 291 equations, 805
lines

• More than 100 “hooks” for policy-specific semantics

15

Thursday, June 27, 13

What happened?

• We’ve transformed a specification challenge into a
software engineering challenge -- more scalable in
some ways, but not necessarily for the users

• Q: How do we make writing policies more abstract?

• Q: How do we provide support for people (other than
me) to extend this?

16

Thursday, June 27, 13

Overview

• Policy Frameworks

• Challenges

• DLSs for Program Analysis

17

Thursday, June 27, 13

Why DSLs?

• Raise level of abstraction

• Provide reuse between language frameworks

• Provide clean separation of concerns between different
tool aspects

• Generate complex parts of the specification

18

Thursday, June 27, 13

How do policies vary?

• Annotation languages

• Abstract value domains

• Memory layouts

• Rule definitions

19

//@ pre(UNITS): unit(material->atomicWeight) = kg
//@ pre(UNITS): unit(material->atomicNumber) = noUnit
//@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1
double radiationLength(Element * material) {
 double A = material->atomicWeight;
 double Z = material->atomicNumber;
 double L = log(184.15 / pow(Z, 1.0/3.0));
 double Lp = log(1194.0 / pow(Z, 2.0/3.0));
 return (4.0 * alpha * re * re) * (NA / A) *
 (Z * Z * L + Z * Lp);
}

Thursday, June 27, 13

How do policies vary?

• Annotation languages

• Abstract value domains

• Memory layouts

• Rule definitions

19

//@ pre(UNITS): unit(material->atomicWeight) = kg
//@ pre(UNITS): unit(material->atomicNumber) = noUnit
//@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1
double radiationLength(Element * material) {
 double A = material->atomicWeight;
 double Z = material->atomicNumber;
 double L = log(184.15 / pow(Z, 1.0/3.0));
 double Lp = log(1194.0 / pow(Z, 2.0/3.0));
 return (4.0 * alpha * re * re) * (NA / A) *
 (Z * Z * L + Z * Lp);
}

Thursday, June 27, 13

How do policies vary?

• Annotation languages

• Abstract value domains

• Memory layouts

• Rule definitions

19

//@ pre(UNITS): unit(material->atomicWeight) = kg
//@ pre(UNITS): unit(material->atomicNumber) = noUnit
//@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1
double radiationLength(Element * material) {
 double A = material->atomicWeight;
 double Z = material->atomicNumber;
 double L = log(184.15 / pow(Z, 1.0/3.0));
 double Lp = log(1194.0 / pow(Z, 2.0/3.0));
 return (4.0 * alpha * re * re) * (NA / A) *
 (Z * Z * L + Z * Lp);
}

Thursday, June 27, 13

How do policies vary?

• Annotation languages

• Abstract value domains

• Memory layouts

• Rule definitions

19

//@ pre(UNITS): unit(material->atomicWeight) = kg
//@ pre(UNITS): unit(material->atomicNumber) = noUnit
//@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1
double radiationLength(Element * material) {
 double A = material->atomicWeight;
 double Z = material->atomicNumber;
 double L = log(184.15 / pow(Z, 1.0/3.0));
 double Lp = log(1194.0 / pow(Z, 2.0/3.0));
 return (4.0 * alpha * re * re) * (NA / A) *
 (Z * Z * L + Z * Lp);
}

Thursday, June 27, 13

How do policies vary?

• Annotation languages

• Abstract value domains

• Memory layouts

• Rule definitions

19

//@ pre(UNITS): unit(material->atomicWeight) = kg
//@ pre(UNITS): unit(material->atomicNumber) = noUnit
//@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1
double radiationLength(Element * material) {
 double A = material->atomicWeight;
 double Z = material->atomicNumber;
 double L = log(184.15 / pow(Z, 1.0/3.0));
 double Lp = log(1194.0 / pow(Z, 2.0/3.0));
 return (4.0 * alpha * re * re) * (NA / A) *
 (Z * Z * L + Z * Lp);
}

Thursday, June 27, 13

Some opportunities for DSLs...

• Annotation languages

• Abstract value domains (PV-DSL)

• Memory layouts

• Rule definitions/skeletons (PR-DSL)

• Control Flow Graph construction

• Intermediate code generation (for program analysis)
20

Thursday, June 27, 13

DSLs for Policy Frameworks: Architecture

21

Policy Framework
Definition
(Maude)

Extract Hooks
(Maude)

Generate/Update
Policy Template

(Rascal)

Policy Value
Definition
(PV-DSL)

Policy Rules
Definition
(PR-DSL)

Policy Generator
(Rascal)

Policy
Definition
(Maude)

Thursday, June 27, 13

PV-DSL: Defining analysis domains

• Domains should be defined in declarative manner

• Need flexibility to handle complex domains like units

• Need ability to generate boring boilerplate specification

22

Thursday, June 27, 13

Current Code: SILF Type Domain

23

 ops $int $bool : -> PolicyVal .
 op $notype : -> PolicyVal .
 op $array : BaseType -> PolicyVal .

 eq pv2pv($('int)) = $int .
 eq pv2pv($('bool)) = $bool .
 eq pv2pv($('array) (T)) = $array(pv2pv(T)) .

 eq ta2pv($('int)) = $int .
 eq ta2pv($('bool)) = $bool .
 eq ta2pv($('array) (T)) = $array(ta2pv(T)) .

 eq pretty-print($int) = "$int" .
 eq pretty-print($bool) = "$bool" .
 eq pretty-print($notype) = "$notype" .
 eq pretty-print($array(T)) = "$array(" + pretty-print(T) + ")" .

Thursday, June 27, 13

PV-DSL: SILF Type Domain

24

Domain SILF-TYPES

base $integer also $int;
base $boolean also $bool;
base $notype;
base $array(pv:PolicyVal) display as "$array[" + pv + "]";
base $map(dom:PolicyVal, rng:PolicyVal)

display as "$map[" + dom + "," + rng + "]";

derived $intArray = $array($int);

End Domain

Thursday, June 27, 13

PV-DSL: SILF Type Domain

24

Domain SILF-TYPES

base $integer also $int;
base $boolean also $bool;
base $notype;
base $array(pv:PolicyVal) display as "$array[" + pv + "]";
base $map(dom:PolicyVal, rng:PolicyVal)

display as "$map[" + dom + "," + rng + "]";

derived $intArray = $array($int);

End Domain

Policy Name
Provides Filtering

Thursday, June 27, 13

PV-DSL: SILF Type Domain

24

Domain SILF-TYPES

base $integer also $int;
base $boolean also $bool;
base $notype;
base $array(pv:PolicyVal) display as "$array[" + pv + "]";
base $map(dom:PolicyVal, rng:PolicyVal)

display as "$map[" + dom + "," + rng + "]";

derived $intArray = $array($int);

End Domain

Policy Name
Provides Filtering

Annotation
Filtering Rules

Generated

Thursday, June 27, 13

PV-DSL: SILF Type Domain

24

Domain SILF-TYPES

base $integer also $int;
base $boolean also $bool;
base $notype;
base $array(pv:PolicyVal) display as "$array[" + pv + "]";
base $map(dom:PolicyVal, rng:PolicyVal)

display as "$map[" + dom + "," + rng + "]";

derived $intArray = $array($int);

End Domain

Policy Name
Provides Filtering

Default Pretty
Printing Rules

Annotation
Filtering Rules

Generated

Thursday, June 27, 13

PV-DSL: SILF Type Domain

24

Domain SILF-TYPES

base $integer also $int;
base $boolean also $bool;
base $notype;
base $array(pv:PolicyVal) display as "$array[" + pv + "]";
base $map(dom:PolicyVal, rng:PolicyVal)

display as "$map[" + dom + "," + rng + "]";

derived $intArray = $array($int);

End Domain

Policy Name
Provides Filtering

Default Pretty
Printing Rules

Custom Pretty
Printing Rule

Annotation
Filtering Rules

Generated

Thursday, June 27, 13

PV-DSL: Units Domain (partial)

25

Domain UNITS

Length
base $meter also $m;
Mass
base $kilogram also $kg;

Builders
operator _^_ : PolicyVal Rat -> PolicyVal .
operator __ : PolicyVal PolicyVal -> PolicyVal .

Equalities
eq U:PolicyVal U = U ^ 2 .
eq (U ^ N:Rat) ^ M:Rat = U ^ (N * M) .

Derived Units
derived $hertz also $Hz = $s ^ -1;

End Domain

Thursday, June 27, 13

PR-DSL: Making specifications reflective

• Extension points, i.e. “hooks”, are operators with no
defining equations

• New policies provide equations to add functionality

• How to find hooks? all ops in a module? all ops of a
given sort or sorts?

• Rewriting logic is reflective: why not allow specifications
to reason about where they can be extended?

26

Thursday, June 27, 13

PR-DSL: Reflection in Action

27

op defaultIntVal : -> Value [metadata "hook"] .
ops + - * / % : Exp Exp -> ComputationItem [metadata "hook"] .

Maude> red hookRelToRascal(computeHookRel('GENERIC-ARITH-SEMANTICS)) .
reduce in HOOK-OPS : hookRelToRascal(computeHookRel('GENERIC-ARITH-
SEMANTICS))
 .
rewrites: 201 in 0ms cpu (0ms real) (11823529 rewrites/second)
result String: "[hook(\"GENERIC-ARITH-SEMANTICS\",\"%\",[\"Exp\",\"Exp\"],
\"ComputationItem\"), hook(\"GENERIC-ARITH-SEMANTICS\",\"*\",[\"Exp\",\"Exp\"],
\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"+\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"-\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"/\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"u-\",[\"Exp\"],\"ComputationItem\")]"

Thursday, June 27, 13

PR-DSL: Reflection in Action

27

op defaultIntVal : -> Value [metadata "hook"] .
ops + - * / % : Exp Exp -> ComputationItem [metadata "hook"] .

Maude> red hookRelToRascal(computeHookRel('GENERIC-ARITH-SEMANTICS)) .
reduce in HOOK-OPS : hookRelToRascal(computeHookRel('GENERIC-ARITH-
SEMANTICS))
 .
rewrites: 201 in 0ms cpu (0ms real) (11823529 rewrites/second)
result String: "[hook(\"GENERIC-ARITH-SEMANTICS\",\"%\",[\"Exp\",\"Exp\"],
\"ComputationItem\"), hook(\"GENERIC-ARITH-SEMANTICS\",\"*\",[\"Exp\",\"Exp\"],
\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"+\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"-\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"/\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"u-\",[\"Exp\"],\"ComputationItem\")]"

Sample Hook
Definitions in

Maude

Thursday, June 27, 13

PR-DSL: Reflection in Action

27

op defaultIntVal : -> Value [metadata "hook"] .
ops + - * / % : Exp Exp -> ComputationItem [metadata "hook"] .

Maude> red hookRelToRascal(computeHookRel('GENERIC-ARITH-SEMANTICS)) .
reduce in HOOK-OPS : hookRelToRascal(computeHookRel('GENERIC-ARITH-
SEMANTICS))
 .
rewrites: 201 in 0ms cpu (0ms real) (11823529 rewrites/second)
result String: "[hook(\"GENERIC-ARITH-SEMANTICS\",\"%\",[\"Exp\",\"Exp\"],
\"ComputationItem\"), hook(\"GENERIC-ARITH-SEMANTICS\",\"*\",[\"Exp\",\"Exp\"],
\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"+\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"-\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"/\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"u-\",[\"Exp\"],\"ComputationItem\")]"

Sample Hook
Definitions in

Maude

Extraction from
Maude (in Rascal-

friendly format)

Thursday, June 27, 13

PR-DSL: Creating Policy Rule Skeletons

28

Policy SILF-TYPES

prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) = k(K)
if notfail(V1) and notfail(V2) .

 prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) =
k(mergefail(V1,V2) -> K) if fail(V1) or fail(V2) .

End Policy

Thursday, June 27, 13

PR-DSL: Creating Policy Rule Skeletons

28

Policy SILF-TYPES

prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) = k(K)
if notfail(V1) and notfail(V2) .

 prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) =
k(mergefail(V1,V2) -> K) if fail(V1) or fail(V2) .

End Policy

Extraction generates
default equations that

do nothing

Thursday, June 27, 13

PR-DSL: Creating Policy Rule Skeletons

28

Policy SILF-TYPES

prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) = k(K)
if notfail(V1) and notfail(V2) .

 prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) =
k(mergefail(V1,V2) -> K) if fail(V1) or fail(V2) .

End Policy

Extraction generates
default equations that

do nothing

Need to add better
notation for error

propagation: still working
on this (currently done by
writing more equations)

Thursday, June 27, 13

PR-DSL: Creating Policy Rule Skeletons

28

Policy SILF-TYPES

prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) = k(K)
if notfail(V1) and notfail(V2) .

 prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) =
k(mergefail(V1,V2) -> K) if fail(V1) or fail(V2) .

End Policy

Extraction generates
default equations that

do nothing

Need to add better
notation for error

propagation: still working
on this (currently done by
writing more equations)

Limitation: don’t
want to reparse
Maude, so the

body isn’t
checked...

Thursday, June 27, 13

Wrap-Up: Further Challenges

• Reflection: How can we extend this to other
parts of the specification?

• How can we model memory in languages like C?

• How can we support developers in writing semantic
rules (parsing/error reporting/etc)?

• How can we make all these DSLs work well across
languages?

29

Thursday, June 27, 13

• Rascal: http://www.rascal-mpl.org

• SWAT: http://www.cwi.nl/sen1

• Me: http://www.cwi.nl/~hills

30

Thursday, June 27, 13

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.cwi.nl/sen1
http://www.cwi.nl/sen1
http://www.cwi.nl/~hills
http://www.cwi.nl/~hills

