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Initial Motivation: Units of Measurement
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“NASA lost a $125 million Mars 
orbiter because one engineering team 
used metric units while another used 
English units for a key spacecraft 
operation ... For that reason, 
information failed to transfer between 
the Mars Climate Orbiter spacecraft 
team at Lockheed Martin in Colorado 
and the mission navigation team in 
California.”

Picture and text from CNN.com, “NASA’s metric confusion caused Mars 
orbiter loss”, http://www.cnn.com/TECH/space/9909/30/mars.metric
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Why Units of Measurement?

• Tangible: unit safety violations have caused some well-
known malfunctions; units used in many applications

• Interesting: has been the focus of much research, many 
different possible approaches

• Challenging: units have equational properties (not 
standard types); software in scientific domains can be 
hard to analyze (C, C++, Fortran, etc...)
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First Rewriting Logic Semantics Approaches

• Unit checker for BC [Chen et al, RTA’03]

• Unit checker for small subset of C [Rosu and Chen, ASE’03]

• Added annotations in comments for specifying unit properties

• Whole program analysis, abstract evaluation semantics
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What’s Wrong? Early work was not scalable!

• Major rework needed to extend semantics

• New analysis == complete new semantics

• Could not share specification fragments between 
analyses

• Whole program analysis: not scalable for users

• New Goal: build a semantics-based, modular analysis 
framework
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Solution: Policy Frameworks!

• Modular static analysis framework

• Built in Maude with K-style rewriting logic semantics

• Language generic: analysis domains

• Language-specific, analysis-generic: base semantics, 
annotation-aware parser

• Analysis-specific: analysis semantics, annotation 
language
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CPF

• CPF: C Policy Framework, analysis policies for units of 
measurement and pointer analysis [Hills et. al, RULE’08]

• Worked on real C code, found unit bugs seeded in NASA test code 
(C++ converted to C)
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//@ pre(UNITS): unit(material->atomicWeight) = kg 
//@ pre(UNITS): unit(material->atomicNumber) = noUnit
//@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1
double radiationLength(Element * material) {
  double A = material->atomicWeight;
  double Z = material->atomicNumber;
  double L = log( 184.15 / pow(Z, 1.0/3.0) );
  double Lp = log( 1194.0 / pow(Z, 2.0/3.0) );
  return ( 4.0 * alpha * re * re) * ( NA / A ) * 
         ( Z * Z * L + Z * Lp );
}
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CPF: Architectural View
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SILF-PF

• SILF-PF: SILF Policy Framework, 
policies for units and types [Hills 
and Rosu, RTA’10]

• Annotations added as language 
constructs and types

• Units domain shared between C 
and SILF
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function main(void)
begin
  var x; var y; var n;
  assume(UNITS): @unit(x) = $m;
  assume(UNITS): @unit(y) = $kg;
  for n := 1 to 10
    invariant(UNITS): @unit(x) = @unit(y);
  do
    x := x * x;
    y := y * y;
  od
  write x + y;
end
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Did this Work?

• Reuse of modules achieved in both CPF and SILF-PF

• Reuse of annotation-aware frontends for both policy 
frameworks (CIL for CPF, custom for SILF-PF)

• UNITS analysis domain shared between frameworks for 
SILF and C
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Modularity works, so what’s wrong?

• Need to define “boilerplate” functionality to 
interact with existing framework

• Need to know which hooks are available for extension

• Need to know what modules can be extended

• Need to write lots of redundant cases for error 
propagation

• Need to define custom annotation languages and parsers
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Why is this a problem?

• CPF Core: 69 modules, 548 ops, 
586 equations, 2016 lines

• CPF Units: 22 modules, 56 ops, 291 equations, 805 
lines

• More than 100 “hooks” for policy-specific semantics
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What happened?

• We’ve transformed a specification challenge into a 
software engineering challenge -- more scalable in 
some ways, but not necessarily for the users

• Q: How do we make writing policies more abstract?

• Q: How do we provide support for people (other than 
me) to extend this?
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Why DSLs?

• Raise level of abstraction

• Provide reuse between language frameworks

• Provide clean separation of concerns between different 
tool aspects

• Generate complex parts of the specification
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How do policies vary?

• Annotation languages

• Abstract value domains

• Memory layouts

• Rule definitions
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Some opportunities for DSLs...

• Annotation languages

• Abstract value domains (PV-DSL) 

• Memory layouts

• Rule definitions/skeletons (PR-DSL)

• Control Flow Graph construction

• Intermediate code generation (for program analysis)
20
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DSLs for Policy Frameworks: Architecture
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Policy Framework 
Definition 
(Maude)

Extract Hooks 
(Maude)

Generate/Update 
Policy Template 

(Rascal)

Policy Value 
Definition 
(PV-DSL)

Policy Rules 
Definition 
(PR-DSL)

Policy Generator 
(Rascal)

Policy 
Definition 
(Maude)
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PV-DSL: Defining analysis domains

• Domains should be defined in declarative manner

• Need flexibility to handle complex domains like units

• Need ability to generate boring boilerplate specification

22
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Current Code: SILF Type Domain
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  ops $int $bool : -> PolicyVal .
  op $notype : -> PolicyVal . 
  op $array : BaseType -> PolicyVal .
  
  eq pv2pv($('int)) = $int .
  eq pv2pv($('bool)) = $bool .
  eq pv2pv($('array) ( T ) ) = $array(pv2pv(T)) .

  eq ta2pv($('int)) = $int .
  eq ta2pv($('bool)) = $bool .
  eq ta2pv($('array) ( T ) ) = $array(ta2pv(T)) .

  eq pretty-print($int) = "$int" .
  eq pretty-print($bool) = "$bool" .
  eq pretty-print($notype) = "$notype" .
  eq pretty-print($array(T)) = "$array(" + pretty-print(T) + ")" .
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PV-DSL: SILF Type Domain

24

Domain SILF-TYPES

base $integer also $int;
base $boolean also $bool;
base $notype;
base $array(pv:PolicyVal) display as "$array[" + pv + "]";
base $map(dom:PolicyVal, rng:PolicyVal) 

display as "$map[" + dom + "," + rng + "]";

derived $intArray = $array($int);

End Domain
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PV-DSL: Units Domain (partial)
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Domain UNITS

# Length
base $meter also $m;
# Mass
base $kilogram also $kg;

# Builders
operator _^_ : PolicyVal Rat -> PolicyVal .
operator __ : PolicyVal PolicyVal -> PolicyVal .

# Equalities
eq U:PolicyVal U = U ^ 2 .
eq (U ^ N:Rat) ^ M:Rat = U ^ (N * M) .

# Derived Units
derived $hertz also $Hz = $s ^ -1;

End Domain
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PR-DSL: Making specifications reflective

• Extension points, i.e. “hooks”, are operators with no 
defining equations

• New policies provide equations to add functionality

• How to find hooks? all ops in a module? all ops of a 
given sort or sorts?

• Rewriting logic is reflective: why not allow specifications 
to reason about where they can be extended?
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PR-DSL: Reflection in Action
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op defaultIntVal : -> Value [metadata "hook"] .
ops + - * / % : Exp Exp -> ComputationItem [metadata "hook"] .

Maude> red hookRelToRascal(computeHookRel('GENERIC-ARITH-SEMANTICS)) .
reduce in HOOK-OPS : hookRelToRascal(computeHookRel('GENERIC-ARITH-
SEMANTICS))
    .
rewrites: 201 in 0ms cpu (0ms real) (11823529 rewrites/second)
result String: "[hook(\"GENERIC-ARITH-SEMANTICS\",\"%\",[\"Exp\",\"Exp\"],
\"ComputationItem\"), hook(\"GENERIC-ARITH-SEMANTICS\",\"*\",[\"Exp\",\"Exp\"],
\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"+\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"-\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"/\",[\"Exp\",\"Exp\"],\"ComputationItem\"),
hook(\"GENERIC-ARITH-SEMANTICS\",\"u-\",[\"Exp\"],\"ComputationItem\")]"
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Maude (in Rascal-
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PR-DSL: Creating Policy Rule Skeletons
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Policy SILF-TYPES

prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) = k(K) 
if notfail(V1) and notfail(V2) .

 prule[GENERIC-ARITH-SEMANTICS, + : Exp Exp -> Exp]:
k(val(V1,V2) -> +(E1,E2) -> K) = 
k(mergefail(V1,V2) -> K) if fail(V1) or fail(V2) .

End Policy
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Extraction generates 
default equations that 

do nothing

Need to add better 
notation for error 

propagation: still working 
on this (currently done by 
writing more equations)

Limitation: don’t 
want to reparse 
Maude, so the 

body isn’t 
checked...

Thursday, June 27, 13



Wrap-Up: Further Challenges

• Reflection: How can we extend this to other
parts of the specification?

• How can we model memory in languages like C?

• How can we support developers in writing semantic 
rules (parsing/error reporting/etc)?

• How can we make all these DSLs work well across 
languages?
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• Rascal: http://www.rascal-mpl.org

• SWAT: http://www.cwi.nl/sen1

• Me: http://www.cwi.nl/~hills
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