m .
East Carolina

UNIVERSITY

Variable Feature Usage Patterns in PHP

Mark Hills

30th IEEE/ACM International Conference on Automated Software Engineering
November 9-13, 2015
Lincoln, Nebraska, USA

% http://www.rascal-mpl.org

http://www.rascal-mpl.org

Background & Motivation

WHERE [T-ALL BEGAN
Al |

An Empirical Study of PHP Feature Usage (ISSTA 2013)

An Empirical Study of PHP Feature Usage

A Static Analysis Perspective

Mark Hills*, Paul Klint*2, and Jurgen Vinju*?
1Gentrum Wiskunde & Informatica, Amsterdam, The Netherlands
2INRIA Lille Nord Europe, Lille, France

ABSTRACT languages, as of January 2013 ranking 6th on the TIOBE
programming community index [5], used by 78.8 percent of
all websites whose server-side language can be determined [4],
and ranking as the 6th most popular language on GitHub [3].
PHP is dynamically typed, with a single-inheritance class

PHP is one of the most popular languages for server-side
application development. The language is highly dynamic,
providing programmers with a large amount of flexibility.
However, these dynamic features also have a cost, making it

* Research questions:
- How do people actually use PHP?

- What assumptions can we make about code and still have precise
static analysis algorithms in practice?

\

£
4

. X
One focus area: variable features \‘@%

» Core idea: identifier given as expression, computed at runtime
- One common use: prevent code duplication

* Also, allows identifier names to be part of configuration for plugins
and extensions

if (is_array(${sx})) {
${$x} = implode($join[$x], array filter(${$x}));

}

£

: >
Where can variable features appear? \%9/

« VVariables « Class constants

 Function calls - Static method calls (target
class, method name)

* Method calls
- Static property lookups (target

- Object instantiations class, property name)

* Property lookups

How often do they occur in real programs?

 Not an uncommon feature

* S0, cannot just make imprecise
assumptions; at least one use In
many files, although uses tend to be
clustered (hence the Gini scores)

- Makes many analyses less precise:
write through a variable feature could
write to many different named entities
(variables, properties, etc), call of
variable feature could call many
named functions or methods

All

Files Uses Gini
02 490 0.60
42 157 0.46
25 131 0.70
50 502 0.73
47 155 0.52
241 940 0.57
30 69 0.42
428 1,043 0.46
143 255 0.31
631 2,501 0.54
52 175 0.49
23 48 0.38
51 148 0.48
37 112 0.52
120 607 0.68
32 108 0.44
18 51 0.47
04 268 0.56
77 246 0.43
213 548 0.49

Not being replaced by newer features (SANER 2015)

- | 1072
. | |
c —=— Variables 4 —8— Variables -
0.4 —<— Function Calls —»— Function Calls
= —e— Method Calls —o— Method Calls
. . = 2
é’ —=— Object Creation § 3 —— Object Creation
® e— Property Uses O —e— Property Uses
% 0.2 g
= 2
Version Version
Fig. 1. Variable Features in WordPress, Scaled by SLOC. Fig. 2. Variable Features in MediaWiki, Scaled by SLOC.

« Some variable features are becoming less common (variable
variables), some are going up (variable properties)

* No overall trend towards declining use, very system dependent

One insight: they often occur in patterns

Sfields = array('views', 'edits', 'pages', ‘articles’,
'users', 'l1mages');
foreach (Sfields as $field) {
1f (1isset(S$deltas[S$Sfield]) && S$Sdeltas[Sfield]) {
Supdate->S$field = S$deltas[S$Sfield];
}
}

foreach (array('columns’', 'indexes') as $x) {

if (is_array(s${$x})) {
${S$x} = implode($join[$x], array filter(${$x}));
}

}

One insight: they often occur in patterns

Table 6: Derivability of Variable-Variable Names. - Mentioned in ISSTA’13

System Variable-Variable Uses

Total Names Derivable Derivable %

o » % %0 - But onlyinvestigated
Drupal 1 1 100.0

Gl . ; oo manually, based on
Joomla 2 0 0.0 Tal I

Joomla 2 0 90 examining variable |
MediaWiki i 5 1.5 variable occurrences in
osCommerce 89 0 0.0 the corpus, though that
PEAR 1 1 100.0 .

phpBB 82 62 75.6 this could be automated
phpMyAdmin 112 86 76.8

SilverStripe 3 1 33.3

Smarty 40 38 95.0

SquirrelMail 24 10 41.7

WordPress 37 28 75.7

ZendFramework 7 5 71.4

Across all systems, 61.35% of the uses have derivable
names. In those systems that use PHP5, 76.8% of the
uses have derivable names.

Research questions | |

* Do recognizable patterns of variable feature usage actually occur in
real systems?

* If so, can we devise a lightweight analysis, guided by these
patterns, to resolve occurrences of variable features in PHP
scripts?

- Can we estimate how many occurrences of these features cannot
be resolved statically?

10

xperiment: Tools & Methods

Setting Up the

= L TN
~.3.t. t_

http://cache.boston.com/universal/site _graphics/blogs/bigpicture/lhc_ 08 01/lhc11.jpg

11

http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

Building an open-source PHP corpus

* Well-known systems and frameworks:
WordPress, Joomla, Magento, MediaWiki,
Moodle, Symfony, Zend

- Multiple domains: app frameworks, CMS, blogging, wikis,
eCommerce, webmail, and others

» Selected based on Ohloh rankings, based on popularity and desire
for domain diversity

« 20 open-source PHP systems, 3.73 million lines of PHP code,
31,624 files

12

Methodology

« Corpus parsed with an open-source PHP parser
* Variable features identified using pattern matching

- Pattern identification and analysis scripted individually for each
pattern using PHP AIR framework

- Patterns “ordered” (with more specific tried first), we don’t attempt
to resolve already-resolved occurrences

 All computation scripted, resulting figures and tables generated

» http://www.rascal-mpl.org/

13

http://www.rascal-mpl.org/

d Resolving Usage Patterns

INg an

1N

Def

14

Variable Feature Usage Patterns

* Focus on common patterns of usage for variable features

* Loop patterns: identifier computed based on foreach key/value
or for index (14 patterns total)

» Assignment patterns: identifier computed based on local
assignments into variable (4 patterns total)

* Flow patterns: identifier provided by, or resolvable by, non-
looping control flow comparisons (5 patterns total)

* Not all uses follow a pattern we have defined

15

Loop patterns: a first example

// MediaWiki, /includes/Sanitizer.php, lines 424-428
Svars = array('htmlpairsStatic', 'htmlsingle’,
'htmlsingleonly', 'htmlnest'’,
'tabletags', 'htmllist', 'listtags',
'htmlsingleallowed', 'htmlelementsStatic');
foreach (Svars as Svar) {
sSvar = array flip(S$$var);

}

Loop Pattern 2: Foreach iterates over array of string literals assigned to
array variable, value variable used directly to provide identifier

16

Loop patterns: a second example

// WordPress, /wp-includes/ID3/getid3.php, lines 345-358
foreach (array('id3v2'=>'id3v2', ...)
as Stag name => S$tag key) {

Stag class = 'getid3 '.$tag name;
Stag = new $tag class($this);

Loop Pattern 7: Foreach iterates directly over array of string literals,
iIntermediate uses key variable to compute new string, intermediate then
used to provide identifier

17

Loop patterns: a third example

// SquirrelMail,/src/options highlight.php,lines 339-341
for ($i=0; $i < 14; S$i++) {

S{"selected".$i} = '';
}

Loop Pattern 13: For iterates over numeric range, string literal and loop
iINndex variable used as part of expression directly in occurrence to compute
identifier

18

Assignment patterns: an example

// WordPress, /wp-includes/class-wp-customize-setting.php,
// lines 334-361 (parts elided for space, see paper)
switch(Sthis->type) {
case 'theme mod’
Sfunction = 'get theme mod';
break;
default :

return ...

}

// Handle non-array value
1f (empty($this->id data['keys' 1))
return $function($this->id data['base’],S$this->default);

Assignment Pattern 1: String literals assigned into variable, variable used
directly to provide identifier

19

Flow patterns: an example

// WordPress, /wp-includes/capabilities.php,
// lines 1054-1332
switch (Scap) {

case 'delete post':
case 'delete page':

Scaps[] = Spost_type->cap->35cap;

Flow Pattern 3: Switch/case switches on variable with literal cases, variable
used directly to find identifier

20

How did we come up with these patterns”

* Look at uses in real code in the corpus to get ideas

 Extrapolate based on existing patterns (e.g., “we’ve seen this
pattern with the foreach value, maybe it occurs with the foreach
key as well”)

- Refine and/or discard based on attempts to use

21

Are these patterns effective?

* Loop patterns: 2485 of 8554 occurrences, 422 resolved, variable
variables often resolved, can resolve some variable properties

- Assignment patterns: 5386 of 8554 occurrences, 396 resolved,
patterns may be over-broad; resolution does better with method
and function calls, but many unresolved

* Flow patterns: 2945 of 8554, 218 resolved; resolution quite good in
limited cases (variable variables and properties in some systems)

 Overall: 13.3% resolved, including 40.8% of variable variables and
29.5% of variable methods, loop patterns most helpful

- Many occurrences match patterns, but resolution rate is fairly low

22

Can we improve these results?

» Some uses are truly dynamic, how can we tell if that is the case?

- Key idea: maybe usage patterns can help here too — are there
patterns that indicate that a use is truly dynamic?

23

Anti-patterns

* Note: not programming anti-patterns, don’t indicate bad feature
use

* Instead, indicate cases where we probably cannot resolve, feature
IS supposed to be dynamic

- |dentifier computation based on input parameter

- Identifier computation based on function or method result (note: this
may include functions we can simulate...)

- Identifier computation based on one or more global variables

24

Measuring anti-patterns

* Anti-patterns computed similarly to patterns, but no ordering is
given

* For each, two types of measurements

- How many variable feature occurrences match an anti-pattern?

- How many of these could we resolve anyway?

- Good anti-patterns should have a low number for the second, if we
can resolve it then the anti-pattern has very low predictive power

25

Anti-pattern results

* Anti-patterns seem to have good predictive power
* Roughly 9% of matches are resolved, 91% not resolved

« 8554 variable feature occurrences total, 1137 resolved, 7717
unresolved

- Anti-patterns find 5889 of these (roughly 72%)

- Room for improvement, but a good start, indicates that many
unresolved occurrences probably cannot be resolved

26

Threats to validity

* Results could be very system specific
(mitigation: varied corpus)

* There may be additional patterns that
we have not discovered (but at some
point, may be so uncommon we don’t
want to include it)

* A stronger analysis could resolve more
variable features (but would lose
useful information about the patterns)

27

Research questions, revisited |)

* Do recognizable patterns of variable feature usage actually occur in
real systems? YES, many uses fall into the defined patterns

* If so, can we devise a lightweight analysis, guided by these
patterns, to resolve occurrences of variable features in PHP
scripts? YES, at least for the patterns we have investigated here,
although resolution success is dependent on both the pattern and
the feature type

- Can we estimate how many occurrences of these features cannot
be resolved statically? YES, we believe anti-patterns help us to
identify cases that cannot be resolved statically (are truly dynamic),
even with a stronger analysis

28

Summary

» We’ve presented a number of patterns of usage for
variable features in PHP and seen that many occurrences
actually fall into these patterns

- We’ve seen that, in some cases, we can exploit these patterns to
statically determine more precise sets of actual identifiers

* We have strong indications that many unresolved occurrences may
actually be dynamic

29

Discussion

Thank you!
Any Questions”?

» Rascal: http://www.rascal-mpl.org

* Me: http://www.cs.ecu.edu/hillsma
an

East Carolina

IIIIIIIIII

30

http://www.rascal-mpl.org
http://www.cs.ecu.edu/hillsma

