
Variable Feature Usage Patterns in PHP

http://www.rascal-mpl.org

Mark Hills

30th IEEE/ACM International Conference on Automated Software Engineering

November 9-13, 2015

Lincoln, Nebraska, USA

1

http://www.rascal-mpl.org

Background & Motivation

2

An Empirical Study of PHP Feature Usage (ISSTA 2013)

• Research questions:

• How do people actually use PHP?

• What assumptions can we make about code and still have precise
static analysis algorithms in practice?

3

One focus area: variable features

• Core idea: identifier given as expression, computed at runtime

• One common use: prevent code duplication

• Also, allows identifier names to be part of configuration for plugins
and extensions

4

 if (is_array(${$x})) {
 ${$x} = implode($join[$x], array_filter(${$x}));
 }

Where can variable features appear?

• Variables

• Function calls

• Method calls

• Object instantiations

• Property lookups

• Class constants

• Static method calls (target
class, method name)

• Static property lookups (target
class, property name)

5

How often do they occur in real programs?

• Not an uncommon feature

• So, cannot just make imprecise
assumptions; at least one use in
many files, although uses tend to be
clustered (hence the Gini scores)

• Makes many analyses less precise:
write through a variable feature could
write to many different named entities
(variables, properties, etc), call of
variable feature could call many
named functions or methods

6

Not being replaced by newer features (SANER 2015)

7

• Some variable features are becoming less common (variable
variables), some are going up (variable properties)

• No overall trend towards declining use, very system dependent

One insight: they often occur in patterns

8

$fields = array('views', 'edits', 'pages', ‘articles',
 'users', 'images');
foreach ($fields as $field) {

if (isset($deltas[$field]) && $deltas[$field]) {
$update->$field = $deltas[$field];

}
}

foreach (array('columns', 'indexes') as $x) {
 if (is_array(${$x})) {
 ${$x} = implode($join[$x], array_filter(${$x}));
 }
}

One insight: they often occur in patterns

9

• Mentioned in ISSTA’13

• But, only investigated
manually, based on
examining variable
variable occurrences in
the corpus, though that
this could be automated

Research questions

• Do recognizable patterns of variable feature usage actually occur in
real systems?

• If so, can we devise a lightweight analysis, guided by these
patterns, to resolve occurrences of variable features in PHP
scripts?

• Can we estimate how many occurrences of these features cannot
be resolved statically?

10

Setting Up the Experiment: Tools & Methods

11
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

Building an open-source PHP corpus

• Well-known systems and frameworks:  
WordPress, Joomla, Magento, MediaWiki,  
Moodle, Symfony, Zend

• Multiple domains: app frameworks, CMS, blogging, wikis,
eCommerce, webmail, and others

• Selected based on Ohloh rankings, based on popularity and desire
for domain diversity

• 20 open-source PHP systems, 3.73 million lines of PHP code,
31,624 files

12

Methodology

• Corpus parsed with an open-source PHP parser

• Variable features identified using pattern matching

• Pattern identification and analysis scripted individually for each
pattern using PHP AiR framework

• Patterns “ordered” (with more specific tried first), we don’t attempt
to resolve already-resolved occurrences

• All computation scripted, resulting figures and tables generated

13

• http://www.rascal-mpl.org/

http://www.rascal-mpl.org/

Defining and Resolving Usage Patterns

14

Variable Feature Usage Patterns

• Focus on common patterns of usage for variable features

• Loop patterns: identifier computed based on foreach key/value
or for index (14 patterns total)

• Assignment patterns: identifier computed based on local
assignments into variable (4 patterns total)

• Flow patterns: identifier provided by, or resolvable by, non-
looping control flow comparisons (5 patterns total)

• Not all uses follow a pattern we have defined

15

Loop patterns: a first example

16

Loop Pattern 2: Foreach iterates over array of string literals assigned to
array variable, value variable used directly to provide identifier

// MediaWiki, /includes/Sanitizer.php, lines 424-428
$vars = array('htmlpairsStatic', 'htmlsingle',
 'htmlsingleonly', 'htmlnest',
 'tabletags', 'htmllist', 'listtags',
 'htmlsingleallowed', 'htmlelementsStatic');
foreach ($vars as $var) {
 $$var = array_flip($$var);
}

Loop patterns: a second example

17

Loop Pattern 7: Foreach iterates directly over array of string literals,
intermediate uses key variable to compute new string, intermediate then
used to provide identifier

// WordPress, /wp-includes/ID3/getid3.php, lines 345-358
foreach (array('id3v2'=>'id3v2', ...)

as $tag_name => $tag_key) {
...
$tag_class = 'getid3_'.$tag_name;
$tag = new $tag_class($this);
...

}

Loop patterns: a third example

18

// SquirrelMail,/src/options_highlight.php,lines 339-341
for ($i=0; $i < 14; $i++) {
 ${"selected".$i} = '';
}

Loop Pattern 13: For iterates over numeric range, string literal and loop
index variable used as part of expression directly in occurrence to compute
identifier

Assignment patterns: an example

19

// WordPress,/wp-includes/class-wp-customize-setting.php,
// lines 334-361 (parts elided for space, see paper)
switch($this->type) {
 case 'theme_mod' :
 $function = 'get_theme_mod';
 break;
 default :
 ...
 return ...
}
// Handle non-array value
if (empty($this->id_data['keys']))
 return $function($this->id_data['base'],$this->default);

Assignment Pattern 1: String literals assigned into variable, variable used
directly to provide identifier

Flow patterns: an example

20

// WordPress, /wp-includes/capabilities.php,
// lines 1054-1332
switch ($cap) {

...
case 'delete_post':
case 'delete_page':

...
$caps[] = $post_type->cap->$cap;
...

}
...

}

Flow Pattern 3: Switch/case switches on variable with literal cases, variable
used directly to find identifier

How did we come up with these patterns?

• Look at uses in real code in the corpus to get ideas

• Extrapolate based on existing patterns (e.g., “we’ve seen this
pattern with the foreach value, maybe it occurs with the foreach
key as well”)

• Refine and/or discard based on attempts to use

21

Are these patterns effective?

• Loop patterns: 2485 of 8554 occurrences, 422 resolved, variable
variables often resolved, can resolve some variable properties

• Assignment patterns: 5386 of 8554 occurrences, 396 resolved,
patterns may be over-broad; resolution does better with method
and function calls, but many unresolved

• Flow patterns: 2945 of 8554, 218 resolved; resolution quite good in
limited cases (variable variables and properties in some systems)

• Overall: 13.3% resolved, including 40.8% of variable variables and
29.5% of variable methods, loop patterns most helpful

• Many occurrences match patterns, but resolution rate is fairly low 22

Can we improve these results?

• Some uses are truly dynamic, how can we tell if that is the case?

• Key idea: maybe usage patterns can help here too — are there
patterns that indicate that a use is truly dynamic?

23

Anti-patterns

• Note: not programming anti-patterns, don’t indicate bad feature
use

• Instead, indicate cases where we probably cannot resolve, feature
is supposed to be dynamic

• Identifier computation based on input parameter

• Identifier computation based on function or method result (note: this
may include functions we can simulate…)

• Identifier computation based on one or more global variables

24

Measuring anti-patterns

• Anti-patterns computed similarly to patterns, but no ordering is
given

• For each, two types of measurements

• How many variable feature occurrences match an anti-pattern?

• How many of these could we resolve anyway?

• Good anti-patterns should have a low number for the second, if we
can resolve it then the anti-pattern has very low predictive power

25

Anti-pattern results

• Anti-patterns seem to have good predictive power

• Roughly 9% of matches are resolved, 91% not resolved

• 8554 variable feature occurrences total, 1137 resolved, 7717
unresolved

• Anti-patterns find 5889 of these (roughly 72%)

• Room for improvement, but a good start, indicates that many
unresolved occurrences probably cannot be resolved

26

Threats to validity

27

• Results could be very system specific  
(mitigation: varied corpus)

• There may be additional patterns that 
we have not discovered (but at some 
point, may be so uncommon we don’t  
want to include it)

• A stronger analysis could resolve more 
variable features (but would lose  
useful information about the patterns)

Research questions, revisited

• Do recognizable patterns of variable feature usage actually occur in
real systems? YES, many uses fall into the defined patterns

• If so, can we devise a lightweight analysis, guided by these
patterns, to resolve occurrences of variable features in PHP
scripts? YES, at least for the patterns we have investigated here,
although resolution success is dependent on both the pattern and
the feature type

• Can we estimate how many occurrences of these features cannot
be resolved statically? YES, we believe anti-patterns help us to
identify cases that cannot be resolved statically (are truly dynamic),
even with a stronger analysis

28

Summary

• We’ve presented a number of patterns of usage for  
variable features in PHP and seen that many occurrences  
actually fall into these patterns

• We’ve seen that, in some cases, we can exploit these patterns to
statically determine more precise sets of actual identifiers

• We have strong indications that many unresolved occurrences may
actually be dynamic

29

• Rascal: http://www.rascal-mpl.org

• Me: http://www.cs.ecu.edu/hillsma

30

Thank you!
Any Questions?

Discussion

http://www.rascal-mpl.org
http://www.cs.ecu.edu/hillsma

