
Evolution of Dynamic Feature Usage in PHP

http://www.rascal-mpl.org

Mark Hills

22nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER 2015), ERA Track

March 2-4, 2015

Montreal, Canada

1

http://www.rascal-mpl.org

PHP Analysis in Rascal (PHP AiR)

• PHP AiR: a framework for PHP source code analysis

• Domains:

• Program analysis (static/dynamic)

• Software metrics

• Empirical software engineering

2

PHP Analysis in Rascal (PHP AiR)

• PHP AiR: a framework for PHP source code analysis

• Domains:

• Program analysis (static/dynamic)

• Software metrics

• Empirical software engineering

3

PHP Analysis in Rascal (PHP AiR)

• PHP AiR: a framework for PHP source code analysis

• Domains:

• Program analysis (static/dynamic)

• Software metrics

• Empirical software engineering

4

What do we want? Soundness, precision…

• Example: static taint analysis

• Sound: we don’t want false negatives

• We want to find all possible uses of “tainted” values in security-
conscious code

• Precise: we don’t want false positives

• We don’t want to report errors that are not real errors, i.e., that cannot
cause problems at runtime

5

So, what’s the problem?

• Soundness and precision often conflict!

• We need to make engineering trade-offs to build  
realistic tools, make tools “soundy” and more precise

• We need to do this carefully, based on evidence:

• Which features do we have to support?

• Do we have to support dynamic features in their full generality?

• Can we find patterns that we can exploit to help?

6

Here: determine usage patterns over time

• How has the profile of dynamic feature usage  
changed over the release history of PHP systems?

• Why has this changed? Why do we see features appear and/or
disappear?

• Can we extract information (e.g., usage patterns) from this to help
us build better program analysis tools?

7

Setting Up the Experiment: Tools & Methods

8
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

Building an open-source PHP corpus

• Original corpus: 19 open-source PHP systems,  
3.37 million lines of PHP code, 19,816 files

• Select two systems: WordPress and MediaWiki

• Why these two?

• Widely used, long release histories (2003 to now)

• Study encompasses 93 releases of WordPress, 189 releases of
MediaWiki, roughly 90 million SLOC

9

Methodology

• Scripted extract of releases from GitHub, all code parsed with an
open-source PHP parser

• Dynamic features identified using pattern matching

• Raw numbers extracted to CSV files, trends computed with Rascal

• More in-depth explorations performed manually or using custom-
written analysis routines

• All computation scripted, resulting figures and tables generated

10

• http://www.rascal-mpl.org/

http://www.rascal-mpl.org/

Which dynamic features?

• Variable Constructs

• Overloading

• eval

11

Which dynamic features?

• Variable Constructs

• Lets you use variables instead of identifiers

• Usable for variables, properties, class names, method and
function names, etc.

12

$fields = array('views', 'edits', 'pages', 'articles', 'users', 'images');
foreach ($fields as $field) {

if (isset($deltas[$field]) && $deltas[$field]) {
$update->$field = $deltas[$field];

}
}

Which dynamic features?

• Overloading

• Handles access to undefined or non-visible properties and
methods

13

function __call($fname, $args) {
$realFunction = array('Linker', $fname);
if (is_callable($realFunction)) {

wfDeprecated(get_class($this) . '::' . $fname, '1.21');
return call_user_func_array($realFunction, $args);

} else {
$className = get_class($this);
throw new MWException(“…”);

}
}

Which dynamic features?

• eval

• evaluates arbitrary PHP code

14

while (($line = Maintenance::readconsole()) !== false) {
// elided...
try {

$val = eval($line . ";");
} catch (Exception $e) {

echo "Caught exception " . …
continue;

}
// elided...

}

Threats to validity

• Results could be very specific to either 
WordPress or MediaWiki

15

Threats to validity

• Results could be very specific to either 
WordPress or MediaWiki

• Mitigation: expanding to include other 
systems, plus results seem reasonable 
based on earlier work

16

Interpreting the Results

17

Zooming in: Variable Features

• Variable properties are becoming more common (why? speculation:
PHP is now OO, more code is moving to use OO features)

• Variable variables common in some systems, decreasing in others

• Differences in usage between different applications = no overall
trend for many of these features

• There may be patterns we can exploit here for better precision…

18

A pattern example…

19

$fields = array('views', 'edits', 'pages', 'articles', 'users', 'images');
foreach ($fields as $field) {

if (isset($deltas[$field]) && $deltas[$field]) {
$update->$field = $deltas[$field];

}
}

Zooming in: Overloading

• Fairly stable in MediaWiki, with a spike at the end caused by a
decrease in SLOC

• Increasing use in WordPress

• Still rare, but becoming more important

• Need type inference to really know impact: how often are these
actually used? (we’re working on this now…)

20

Zooming in: eval and create_function

• Never popular, trend moving generally down

• Many uses replaced with callbacks (still dynamic, but less dynamic)

• Remaining uses in MediaWiki for admin, testing

• Libraries are important here too: PCLZip in WordPress was the
source of most of the eval uses there…

21

Summary

22

What have we learned? What’s left?

• Variable features need to be modeled, variable  
properties are becoming more common, patterns may help

• Overloads are still rare, but we need ways to detect where they are
used

• Eval and create_function are, thankfully, quite rare

• Future: need to expand the feature set and corpus

• Non-covered variants, other dynamic features

• Cover more systems, further expand corpus
23

• Rascal: http://www.rascal-mpl.org

• Me: http://www.cs.ecu.edu/hillsma

24

Thank you!
Any Questions?

Discussion

http://www.rascal-mpl.org
http://www.cs.ecu.edu/hillsma

