
Supporting PHP Dynamic Analysis in PHP AiR

http://www.rascal-mpl.org

Mark Hills

13th International Workshop on Dynamic Analysis (WODA 2015)

October 26, 2015

Pittsburgh, Pennsylvania, USA

1

http://www.rascal-mpl.org

PHP AiR: PHP Analysis in Rascal

• PHP AiR: a framework for PHP source code analysis

• Domains:

• Program analysis (static/dynamic)

• Software metrics

• Empirical software engineering

2

PHP AiR: PHP Analysis in Rascal

• PHP AiR: a framework for PHP source code analysis

• Domains:

• Program analysis (static/dynamic)

• Software metrics

• Empirical software engineering

3

PHP AiR: PHP Analysis in Rascal

• PHP AiR: a framework for PHP source code analysis

• Domains:

• Program analysis (static/dynamic)

• Software metrics

• Empirical software engineering

4

A quick note on Rascal

• “Rascal is a domain specific language for source code analysis and
manipulation a.k.a. meta-programming.” (http://www.rascal-
mpl.org/)

• Language focus: program analysis, program transformation,
domain-specific language creation

• Current projects across large numbers of domains, both outside
and within academia (including this one!)

• Open source, committers worldwide

5

http://www.rascal-mpl.org/Rascal/RascalDomain
http://www.rascal-mpl.org/

Original motivation: dynamic invocations

• Reflective capability in PHP for invoking functions and methods

• Runtime target given as PHP callable, not as regular identifier

• Function name

• Object instance and method name

• Class name and method name

• Closures (in newer versions, not common yet)

• Parameters passed as var-args or as array

6

Dynamic invocations: two quick examples

7

// From MediaWiki 1.19.1
if ($this->mPage->getID() != $this->mRev->getPage())
{
 $fun = array(get_class($this->mPage),'newFromID');
 $this->mPage =
 call_user_func($fun, $this->mRev->getPage());
}

// From WordPress 3.4
$args = wp_list_widget_controls_dynamic_sidebar(
 array(0 => $args,
 1 => $widget['params'][0]));
call_user_func_array('wp_widget_control', $args);

What are they used for? Why study them?

• Often used for plugin systems and user extensions

• Presence makes it hard to analyze the program

• How do we build a call graph?

• How do we compute types? aliases? taint?

• Indirection also slows execution (observational, no figures yet)

• Not uncommon, so cannot just ignore: 94 in WordPress 3.4, 149 in
MediaWiki 1.19.1 (see our ISSTA 2013 paper for details)

8

Possible solution: code specialization

• Idea based on work by Furr, An, and Foster: Profile-Guided Static
Typing for Dynamic Scripting Languages (OOPSLA 2009)

• Trace executions of system, execute using test scripts

• Replace dynamic features with static variants and “catch-all”

• Original work used Ruby, Mulder applied technique to PHP and
WordPress (see thesis Reducing Dynamic Feature Usage in PHP
Code)

• Results installation-specific, based on specific plugins used

9

Why not just use the existing solution?

• Earlier work had a complex tool chain, hard to set up and reuse

• Very scenario-specific, targeted specifically at dynamic invocations,
we need a generic tracing framework

• No support for figuring out where strings come from, useful for
analysis and empirical studies

10

Supporting dynamic analysis in PHP AiR

• Now: Support function trace analysis directly in PHP AiR

• Flexible parsing and filtering capabilities

• Directly in Rascal, easy to extend, share, replicate

• Future: support execution of tests from within Rascal

• Initial support for driving xdebug exists, needs further work

• Early stage: Instrument interpreter to track origins of strings

11

Function trace analysis in action: PHP defines

• First, generate trace/traces (currently outside of PHP AiR)

• Parsing, stage 1: Read in line from trace file, determine the record
type, apply initial filtering

• Parsing, stage 2: parse function parameters, apply additional
filtering

• Major bottleneck is speed of parser

• Further challenge: location information in not precise, line-based

12

String origins

• Based on origin tracking (van Deursen, Klint, and Tip) and string
origins (Inostroza, van der Storm, and Erdweg)

• Goal: figure out where strings come from, track transformations of
strings through program execution

• Origins tracked using source locations of literals, info on external
inputs, transformation functions; origin types based on how string
is created

• Still very early in implementation

13

String origins: challenges

• PHPs main goal in life: generate strings

• String-handling code is often optimized, we need to undo this

• Looking into HHVM, changes may be less disruptive, Quercus may
be an implementation dead-end (supports PHP 5.4, nothing newer)

• Also looking into K, instrument existing PHP semantics (e.g., An
Executable Formal Semantics of PHP by Filaretti & Maffeis, ECOOP
2014), simplicity of interpreter may allow us to be more precise

14

Summary

• Dynamic analysis for PHP is needed to properly 
analyze and study dynamic language features

• We are extending PHP AiR to enable flexible dynamic analysis for
PHP

• Trace parsing and filtering works well, adapting to handle
undocumented xdebug outputs

• String origins work is still ongoing, reevaluating choice of platform,
looking for interested students

15

• Rascal: http://www.rascal-mpl.org

• Me: http://www.cs.ecu.edu/hillsma

16

Thank you!
Any Questions?

Discussion

http://www.rascal-mpl.org
http://www.cs.ecu.edu/hillsma

