
Navigating the WordPress Plugin Landscape

http://www.rascal-mpl.org

Mark Hills

24th IEEE International Conference on Program Comprehension

May 16-17, 2016

Austin, Texas, USA

1

http://www.rascal-mpl.org

Background: WordPress

• Extremely popular blogging/CMS platform

• 23.3% of top 10 million websites run WordPress

• 50% of all CMS sites run WordPress

• WordPress runs roughly 25% of all websites

• Written in PHP, has supported plugins since version 1.2

2
Note: figures from early February 2016

Background: plugins

• Plugin: component written in PHP, bundled with needed resources
(HTML, CSS, JavaScript, PHP libraries, images, etc)

• Plugins use the WordPress Plugin API

• hooks, filters, and actions (our focus!), see here for a list: http://
adambrown.info/p/wp_hooks/

• others: shortcodes, custom meta-data, configuration options

• 54,512 plugins in official repository as of late September 2015, not
all maintained

3
Note: icon from Jetpack plugin page, https://wordpress.org/plugins/jetpack/

http://adambrown.info/p/wp_hooks/

Background: hooks, filters and actions

• Hooks are named events, triggered by API calls

• Actions are used to respond to system events (e.g., logging in)

• Filters are used to respond to input/output operations (e.g.,
displaying part of a page, loading/saving database records)

• Plugins register a handler for the hook, called by WordPress when
the related event occurs

• Note: Plugins can create their own hooks, we focus on those
defined by WordPress here

4

Research questions

• Q1: How has the hook mechanism grown, and how do developers
use it in their plugins?

• Q2: How can we help developers to find the hooks they need to
use in their own plugins?

• Q3: How can we link specific hooks to implemented handlers in
popular plugins to provide easier access to sample code?

5

Our corpus

• Started with all plugins in official repository

• Filtered based on supported WordPress version (at least 4.0, latest
in corpus 4.3.1, current 4.5.2) and last update date (in 2015)

• Stats on remaining plugins:

• 12,860 plugins

• 176,294 PHP files

• 27,580,638 lines of PHP code

6

Methodology

• Corpus parsed with an open-source PHP parser

• All analysis scripted using Rascal and the PHP AiR framework

• Plugin filtering performed using regular expression matching over
HTML pages for each plugin; script allows full checkout of
matching corpus for replicating results

• All code available at https://github.com/ecu-sle-lab/wp-plugin-
analysis

7

• http://www.rascal-mpl.org/

https://github.com/ecu-sle-lab/wp-plugin-analysis
http://www.rascal-mpl.org/

Q1: Plugin hook (filter and action) usage

• Q1.1: How has the number of hooks for filters and actions grown
over time?

• Q1.2: How many hooks does a typical plugin provide handlers for?

• Q1.3: Which hooks are the most popular? Which are the least
popular?

8

Q1.1: Results

• How has the number of hooks for filters and actions grown over
time? 
 
Filters are more popular than actions; both have grown over time,
but this growth appears to be slowing (see Figure 6 in paper);
WordPress 4.3.1 has 1,182 hooks for filters and 595 for actions

9

Q1.2: Results

• How many hooks does a typical plugin provide handlers for?  
 
Most use very few: 1,210 use only 1, half use at most 6, only 6 use
50, very few use more

10

Q1.3: Results

• Which hooks are the most popular? Which are the least popular?  
 
453 hooks never implemented, 224 used by only 1 plugin, 765 by
10 or fewer; most used are very common, admin_menu used by
7,377 plugins (allows plugins to extend the admin menu in
WordPress)

11

Q2 & Q3: Finding hooks, linking to handlers

• Core idea: use text search to find hooks of interest, then identify
matching pairs of hook call/registration functions, then link handler
callables in registrations to actual implementations

• Challenge: there are thousands of plugins, need a way to do this
where we don’t need to install each one for analysis

• Solution: extract summaries of each plugin, each version of
WordPress, perform linking using summaries

12

Step 1: Text search for hooks

13

/**
 * Fires after the user has successfully logged in.
 *
 * @since 1.5.0
 *
 * @param string $user_login Username.
 * @param WP_User $user WP_User object of the logged-in user.
 */
do_action('wp_login', $user->user_login, $user);

Hook Call
Extractor

PHP System
ASTs

Hook CallsDocument Comment
Processor

Indexed
Documents in

Lucene

Indexed Hook
Map in Rascal type hook name

text tags

Step 2: Linking extension points to plugins

• Linking relation built between each plugin and most recent version
of WordPress plugin supports

• Needs to support potential matches, since hook names may be
computed instead of given as string literals

14

 // WordPress 4.2.4
 apply_filters("get_{$meta_type}_metadata", null,
 $object_id, $meta_key, $single)

 // Responsive Nagivation plugin
 add_filter('get_post_metadata',
 array('cmb_Meta_Box_ajax', 'hijack_oembed_cache_get'),
 10, 3)

Step 2: Linking extension points to plugins

• Linking relation built between each plugin and most recent version
of WordPress plugin supports

• Needs to support potential matches, since hook names may be
computed instead of given as string literals

• Hook names in WP generate regular expressions, hook names in
plugins generate strings to match against

• Linking given as regex matching, patterns and strings with more
static portions weighted most heavily

15

Step 3: Linking registrations to implementations

• Linking relation built from each handler registration to handler,
based on callable

• Rules given in paper

• Essentially a variant of a call graph construction algorithm

• Falls back to using name models for ranked matches against
function or method names where needed

16

Putting it all together

• Initial search winnows the list of possible hooks, based on the
user’s search terms.

• This allows us to link from the selected hooks to registrations of
handlers…

• …and then from registrations of handlers to the handlers
themselves.

• These are then ranked in order of popularity (based on numbers
maintained by WordPress) of the containing plugin.

17

Threats to validity

18

• Name computation has to deal with  
dynamic (computed) names, means 
we could be under- or over-counting  
the total number of hooks; most 
popular hooks use static or very 
specific dynamic names, so very  
little effect on resulting numbers

• Analysis attempts to be useful, but not sound or complete, could
make false links or miss actual links; low quality links dropped to
avoid false links, most matches very specific, empirical numbers
indicate this is fairly accurate

• Changes to the corpus could yield different results

Summary

• We’ve presented a combination of text search and 
static analysis to find relevant hooks and link these  
hooks to actual handler implementations

• We’ve presented empirical results about how hooks are used in
actual plugins, how the number of hooks has changed over time

• These empirical results indicate that the analysis is useful, even if it
is not sound or complete

19

Future Work

• What is left to do?

• Tool support

• Developer studies

• Expansions of empirical study

• Enhancement of text search into more general code search

20

• Rascal: http://www.rascal-mpl.org

• Me: http://www.cs.ecu.edu/hillsma

21

Thank you!
Any Questions?

Discussion

http://www.rascal-mpl.org
http://www.cs.ecu.edu/hillsma

