
Introducing DevOps Techniques in a Software 
Construction Class

Mark Hills (@hillsma on Twitter, http://www.cs.ecu.edu/hillsma/)
Associate Professor, Department of Computer Science
East Carolina University (Greenville, NC, USA)

32nd IEEE International Conference on Software Engineering Education & 
Training (CSEE&T 2020)
November 11, 2020
Munich, Germany (Virtually!)

1

http://www.cs.ecu.edu/hillsma/


Context: MS in Software Engineering at ECU

• Graduate program offered at ECU for more than 10 years

• Students can attend either on-campus or online

• Mixture of students: some just earned at BS in CS, some have 
professional experience, some have a BS in another area and are 
switching careers

2



Context: Software Construction

• Originally part of software development track

• Focus is on scaling up development skills for larger software 
systems

• Important concepts: abstraction, code 
comprehension/understanding, professional practice

• Lots of non-cloud skills: IDEs, version control, build automation, unit 
testing, test mocks, code coverage, lightweight static analysis

• Originally, no focus on cloud

3



First attempt: Reuse online material!

• Wanted to start to work on cloud concepts, especially related to 
software development and DevOps – important material for their 
careers

• First attempt: use existing vendor docs (“getting started” materials, 
online readings)

• Activities not graded beyond participation, goal is to get students to 
try things

• This…didn’t go so well…

4



First attempt: Problems

• Sometimes, technologies change faster than docs (minor issue)

• Many docs written for professionals with richer backgrounds (major 
issue)

• Students could not differentiate fundamentals from examples (major 
issue)

• Students would get lost, not know how to get back on track (major 
issue)

5



Second attempt: start from scratch

• 4 Activities: Continuous Integration, Docker, Kubernetes, 
Continuous Delivery

• Mixture of instructor-provided material, videos (LinkedIn Learning), 
vendor docs

• Ready-made “starters” for each step

• Participation credit, not formally graded (low stress)

6



Activity overview: moving parts

7



Activity 1: Continuous integration

• Overall goal: students enable
CI, see it in action 

• Students fork repo, enable 
Travis-CI integration, trigger a 
failing build, fix code, push 
changes to GitHub, and see 
passing code

8



Activity 2: Docker

• Overall goal: students learn 
the basics of Docker, including 
build automation to create 
images

• Students create a Dockerfile, test 
the image, automate building an 
image and testing container, 
push results to DockerHub and 
GitHub

9



Activity 3: Kubernetes

• Overall goal: students learn 
how to deploy a Docker image 
to a Kubernetes cluster

• Students set up project on 
Google Cloud Platform, push 
image to Container Registry, 
create Kubernetes cluster, 
deploy image, make available

10



Activity 4: Continuous Delivery

• Overall goal: students put 
prior steps together to deploy 
changes to their cluster

• Students mirror repo to a Cloud 
Source Repository, enable Cloud 
Build, set up build triggers, check 
build to ensure Kubernetes 
updates, automate build

11



Activity Summary

• By the end, changes to 
repository trigger test and 
creation of new Docker image 

• Kubernetes automatically
updated using newest

changes committed to
GitHub

• Students can change API
output and quickly see deployed 
changes

12



Lessons Learned

• Command line skills are important, but often missing

• Vendor documentation is important, but often missing context 
students need

• Smaller assignments are easier to follow

• Be ready to work with your students, it’s important they learn this 
material, but they will get stuck on parts of it

• Be patient with yourself, it’s hard to keep up with all this stuff!

13



Student Impressions, Future Work

• Student reaction was generally quite positive

• Students generally had few problems with the first two assignments, 
but were more likely to struggle with the final two

• One part of future work: extend these to improve them, make them 
easier to share

• Another part: evaluate these more rigorously, this is a promising 
experience report

14



Web: http://www.cs.ecu.edu/hillsma

15

Thank you!
Any Questions?

Discussion

http://www.cs.ecu.edu/hillsma

	Introducing DevOps Techniques in a Software Construction Class
	Context: MS in Software Engineering at ECU
	Context: Software Construction
	First attempt: Reuse online material!
	First attempt: Problems
	Second attempt: start from scratch
	Activity overview: moving parts
	Activity 1: Continuous integration
	Activity 2: Docker
	Activity 3: Kubernetes
	Activity 4: Continuous Delivery
	Activity Summary
	Lessons Learned
	Student Impressions, Future Work
	Discussion

