
Supporting Analysis of SQL Queries in PHP AiR

Mark Hills (Appalachian State University, NC, USA)

PEM Presentation

Centrum Wiskunde & Informatica

June 14, 2023

NOTE: Based on material from SANER 2017, SCAM 2017, and SERPL 2019

Based on work with David Anderson, MS student at ECU

1

PHP Analysis in Rascal (PHP AiR)

• PHP AiR: a framework for PHP source code analysis

• Domains:

• Program analysis (static/dynamic)

• Software metrics

• Empirical software engineering

2

Motivation

• We want to transform uses of older database APIs into 
equivalent uses of newer, safer APIs

• We want to aid developers in understanding how queries are built
in their (maybe unfamiliar to them!) programs

• (For us and other researchers/tool builders) We want to better
understand how PHP, database APIs, and query languages are
used in existing code to help us build better tools for program
analysis, comprehension, and transformation

3

Context: PHP and MySQL

• MySQL API uses query functions (originally mysql_query, that is the
one we focus on here) to execute queries

• Queries given as strings, formed using string building operations

• Queries often have a mixture of static and dynamic pieces

4

$query = mysql_query("
SELECT title
FROM semesters
WHERE semesterid = $_POST[semester]
");

Note: Real but horrible query, this has a major security vulnerability…

Query construction patterns (earlier work)

• NOTE: From SANER 2017

• How are queries typically built in PHP scripts?

• What parts of a query tend to be dynamic?

• What features are used to build these dynamic query parts?

• Note: This work focused on identifying patterns, not building
models of queries.

5

Results of SANER’17 paper

• Queries appear to be built in predictable patterns

• Dynamic parts are mainly in the “right” places, making a
transformation to prepared statements possible

• We need a more extensive analysis with more systems and more
precise and sound analysis algorithms

• We need better models of the queries themselves (current work) for
more precise pattern identification

• We need to build the transformation!

6

Research questions

• R1: How can we model how queries are built?

• R2: Using these models, how can we generate the queries or query
templates (with placeholders for dynamic bits) that could actually
be executed?

• R3: What parts of the query language (here, SQL) are used in these
queries? Which of these parts are static, and which are dynamic?

• R4 (suggested by reviewers): Can we use models to find potential
security vulnerabilities in PHP code? We haven’t looked at this yet,
but it sounds promising, especially with interprocedural support…

7

Analyzing and parsing queries: methodology

• All analysis code is written using Rascal

• https://github.com/PLSE-Lab/mysql-query-construction-analysis

• PHP is parsed using a PHP parser written in PHP, parser yields
Rascal terms

• MySQL queries are parsed using a fork of the parser found in
phpMyAdmin, a web frontend for administering MySQL

• A quick note: this is all part of the PHP AiR project

8

https://github.com/PLSE-Lab/mysql-query-construction-analysis

Analyzing and parsing queries: “The Big Picture”

9

PHP System

PHP System
ASTs (Rascal)

PHP Parser
(PHP)

Model Builder
(Rascal)

Query Location

Query Model
(Rascal)

Query Yields
Generator
(Rascal)

Query Yields
(Rascal)

Modified MySQL
Query Parser (PHP)

Parsed MySQL
Queries (Rascal)

R1: Building models

10

See the SCAM 2017 paper for all the details, here comes a summary…

R1: Building models

• Models are (possibly cyclic) graphs of query fragments (with a bit of
bookkeeping info, like the location of the call)

• A query fragment is a static or dynamic piece of the query

• Intraprocedural, backwards slice throws away code that does not
impact query

• CFG and def/use info link names in fragments to defs of those
names

• Reachability conditions used to decorate graph edges

11

R2: Extract yields

• Yields are lists of “pieces”:

• Static pieces for query text

• Dynamic pieces for arbitrary expressions

• Name pieces for names (useful to track separately)

• Generated by traversing the graph, currently cuts off when cycles
detected

• Can use edge labels to filter infeasible yields, improving to work in
more situations (loops are problematic)

12

R3: Parsing partial queries

• First, yields are converted to strings: static pieces 
yield strings directly, dynamic and name pieces are turned 
into query holes (e.g., ?1, ?2, generally ?n)

• Second, string is parsed by our modified MySQL parser, yielding
PHP objects representing MySQL AST (limitation: we assume holes
are expressions and do not cross clause boundaries, supporting
this is ongoing work, a dedicated parser would be quite helpful
here since we depend on the MySQL parser but don’t control this
at all!)

• Third, AST pretty-printed to a Rascal term representing AST,
similarly to current PHP parser

13

And now for some controversy

• We want to extend this to be interprocedural, 
but: for a really dynamic language, where even the decision of what
code to include is deferred until runtime, is this even useful? How
close can we get to the actual system? (see, e.g., work on
JavaScript call graph construction for how challenging this can be!)

• Do we even need to support the entire language for this to be
useful for developers? Will keeping this simple work? How precise
does this need to be?

14

Future Directions: Expand the Corpus!

• Earlier corpus was somewhat ad-hoc, based  
on past work, mix of current and no longer 
maintained systems

• New corpus based on 1000 most starred repos on GitHub as of
April 2018 (based on GHTorrent and BigQuery), identified 78 of
these systems that use MySQL or MySQLi libraries

• One question: how representative are these of the systems people
actually write themselves? are these good exemplars, or overly
general frameworks and libraries?

15

Future Directions: More APIs!

• Current work has focused on MySQL API

• Already (mostly) expanded to include MySQLi API

• Challenge — type inference for dynamic languages…

• Planning to add support for PDO, potentially other DB-specific
APIs

• May look at ORMs such as Doctrine with custom query languages

16

PHP Analysis in Rascal: Updates

• Lots of changes so far in 2023!

• We now support PHP 8

• We no longer use annotations!

• PHP AiR is now available as a Maven plugin, so you don’t need to work
directly in the project or use it as a project dependency

• Examples are being moved out to keep the core smaller and easier to
maintain

• Support for working with Git repos is being added because of the amount of
code we are now processing (e.g., about 700 million for a recent paper under
review)

17

• Rascal: https://www.rascal-mpl.org/

• Me: https://cs.appstate.edu/hillsma

18

Thank you!
Any Questions?

Discussion

https://www.rascal-mpl.org/
https://cs.appstate.edu/hillsma

