
Program Analysis and Verification with
Rewriting Logic and Rascal

Mark Hills (Appalachian State University, NC, USA)

Invited Talk at Kristu Jayanti College (Autonomous)

February 22, 2024

NOTE: Based on material from WRLA 2012, ISSTA 2013, SANER 2017, SCAM
2017, SERPL 2019, and SCAM 2023

The big picture

• Program Analysis and Verification

• Rewriting Logic and Rascal

• PHP AiR for PHP Program Analysis

• Go AiR for Go Program Analysis and Verification

• Other Work on Program Analysis and Rascal

• Q&A

2

Program Analysis and Verification

What is static analysis?

In computer science, static program analysis (or static
analysis) is the analysis of computer programs performed
without executing them, in contrast with dynamic program
analysis, which is performed on programs during their
execution. … In most cases the analysis is performed on
some version of a program's source code, and, in other
cases, on some form of its object code.

4https://en.wikipedia.org/wiki/Static_program_analysis

https://en.wikipedia.org/wiki/Static_program_analysis

What is static analysis?

In computer science, static program analysis (or static
analysis) is the analysis of computer programs performed
without executing them, in contrast with dynamic program
analysis, which is performed on programs during their
execution. … In most cases the analysis is performed on
some version of a program's source code, and, in other
cases, on some form of its object code.

5https://en.wikipedia.org/wiki/Static_program_analysis

https://en.wikipedia.org/wiki/Static_program_analysis

Why static analysis?

• You can analyze all possible program behaviors, not just
those you encounter while running the program

• Running a program may be expensive

• Triggering some conditions to test the resulting behavior
could be problematic or even dangerous (e.g., code that
run when a collision is detected)

• Many scenarios (e.g., refactoring, IDE support, code
understanding) are inherently static

6

What is program verification?

[F]ormal verification is the act of proving or disproving the
correctness of a system with respect to a certain formal
specification or property, using formal methods of
mathematics

7https://en.wikipedia.org/wiki/Formal_verification

https://en.wikipedia.org/wiki/Formal_verification

Why program verification?

• Needed for high-assurance systems (e.g., systems used in
safety-critical hardware devices like medical devices)

• Techniques can show that programs meet desired
requirements, such as reachability or avoidance of certain
program states (e.g., deadlocks or starvation in concurrent
programs)

• Static analysis is often used for program verification

• Related: same techniques can be used to better
understand program behaviors, such as possible
concurrent behaviors

8

Rewriting Logic and Rascal

What is rewriting logic?

• Rewriting logic is an extension of equational logic with
support for concurrency

• Language semantics provides formal definitions of
language features

• Rewriting logic semantics joins these two: formal language
definitions using rewriting logic

• Definitions are executable with rewriting logic engines, like
Maude, and can be reasoned about with existing tools

10

What is Rascal?

• Rascal is a powerful domain-
specific programming language
that can scale up to handle
challenging problems in the
domains of:

• Software analysis

• Software transformation

• DSL Design and Implementation

11https://www.rascal-mpl.org/

https://www.rascal-mpl.org/

What are the design goals for Rascal?

• Cover entire domain of meta-programming

• “No Magic” -- users should be able to understand what is going on
from looking at the code

• Programs should look familiar to practitioners

• Unofficial “language levels” -- users should be able to start simple,
build up to more advanced features

12

Rascal features

• Scannerless GLL parsing

• Flexible pattern matching, lexical backtracking, and matching on
concrete syntax

• Functions with parameter-based dispatch, default functions, and
higher-order functions

• Traversal and fixpoint computation operations

• Immutable data, rich built-in data types, user-defined types

13

Options for Program Analysis in Rascal

• Reuse

• Collaboration

• From-scratch implementation (all in Rascal)

14

Reuse: Linking with Rewriting Logic Semantics

• Syntax, development environment for language defined in Rascal

• Semantics (execution, analysis, etc) defined in Rewriting Logic
Semantics in Maude or in K using the K Framework

• Rascal generates Maude terms decorated with location information

• Rascal displays results of execution: text, graphical annotations,
etc

15

Linking Rascal with Rewriting Logic Semantics and K

16

K/MaudeRascal

Parser
Generator

Language
Grammar

Source
Program

Maude-
Formatted
Analysis
Task(s)

Analysis
Semantics

Unparsed
Analysis
Results

Result
Processor

Analysis
Results

Analysis Task
Generator

Generated
Parser Parse Tree

Maude-ifier

Collaboration: Using the Eclipse JDT

• JDT Library uses Eclipse to extract facts about Java files hosted
inside an Eclipse project

• Examples: locations of method declarations, uses of class fields,
types of variable names

• Facts presented as relations over Java entities

• An example use: find all implementations of methods defined in a
specific interface, as well as all non-public fields and methods
accessed in the method bodies

• Note: Other tools could be used to interface with other languages
17

From-scratch: PHP AiR and Go AiR

• We do use external parsers for these languages, which makes it
easier to stay in sync as languages evolve

• All analysis code currently written in Rascal

• Go AiR is moving towards collaboration, with a rewriting logic
semantics of Go under development…

18

PHP AiR

PHP Analysis in Rascal (PHP AiR)

• PHP AiR: a framework for PHP source code analysis

• Domains:

• Static program analysis

• Empirical software engineering

• Software metrics

20

Why look at PHP applications?

•Popular with programmers: highly ranked on TIOBE
Programming Community Index, on of the most popular
languages on GitHub

•Used by over 75% of all websites whose server-side
language can be determined, including in WordPress and
sites like Wikipedia

•Big projects (MediaWiki 1.19.1 > 846k lines of PHP), wide
range of programming skills, very limited tool support

•Hostile environments: most PHP code runs on the web,
security is critical

21

PHP AiR design points

• Support for multiple PHP parsers

• Limited integration with Eclipse (can use the Eclipse 
PHP parser, can use LTK for transforming PHP files, but note
that this needs to be brought up to date at this moment in
time)

• Perform tasks by writing Rascal code (not focused on push-
button solutions, goes with Rascal “no magic” principle)

• Must work with real PHP code (WordPress, MediaWiki, etc),
not just toy samples

• Open source!
22

PHP AiR architecture

23

Example: PHP feature usage

• Perspective: Creators of program analysis tools

• What does a typical PHP program look like?

• What features of PHP do people really use?

• How often are dynamic features, which are hard for static analysis
to handle, used in real programs?

• When dynamic features appear, are they really dynamic? Or are
they used in static ways?

24
“An Empirical Study of PHP Feature Usage: A Static Analysis Perspective”, Hills, Klint, and Vinju, ISSTA 2013.

Example: Resolving PHP includes

• Resolving PHP includes is messy (process is shown below)

• How many can we resolve at a per-file level? Per-program?

25
“Static, Lightweight Includes Resolution for PHP”, Hills, Klint, and Vinju, ASE 2014.

Example: Resolving PHP Variable Features

• Variable features in PHP defer selection of an identifier until runtime

• Patterns in the code can help us to identify the identifiers that will
be used at runtime, if we can detect them

26
“Variable Feature Usage Patterns in PHP”, Hills, ASE 2015.

// MediaWiki, /includes/Sanitizer.php, lines 424-428
$vars = array('htmlpairsStatic', 'htmlsingle',
 'htmlsingleonly', 'htmlnest',
 'tabletags', 'htmllist', 'listtags',
 'htmlsingleallowed', 'htmlelementsStatic');
foreach ($vars as $var) {
 $$var = array_flip($$var);
}

Example: Understanding WordPress Plugins

• How do developers use WordPress plugin features?

• How can we help developers to find the right extension points?

• How can we help developers to find high-quality examples of
handlers for these extension points?

27
“Navigating the WordPress Plugin Landscape”, Hills, ICPC 2016.

// WordPress 4.2.4, wp-includes/meta.php, line 480
apply_filters("get_{$meta_type}_metadata", null, $object_id, $meta_key, $single)

// Responsive Nagivation plugin, metabox/helpers/cmb_Meta_Box_Ajax.php, line 112
add_filter('get_post_metadata', array('cmb_Meta_Box_ajax', 'hijack_oembed_cache_get'), 10, 3)

Example: Query Construction Patterns

• How are queries typically built in PHP scripts?

• What parts of a query tend to be dynamic?

• What features are used to build these dynamic query parts?

28
“Query Construction Patterns in PHP”, Anderson and Hills, SANER 2017 (ERA Track).

Context: PHP and MySQL

• MySQL API uses query functions (originally mysql_query, that is the
one we focus on here) to execute queries

• Queries given as strings, formed using string building operations

• Queries often have a mixture of static and dynamic pieces

29

$query = mysql_query("
SELECT title
FROM semesters
WHERE semesterid = $_POST[semester]
");

Note: Real but horrible query, this has a major security vulnerability…

Results of SANER’17 paper

• Queries appear to be built in predictable patterns

• Dynamic parts are mainly in the “right” places, making a
transformation to prepared statements possible

• We need a more extensive analysis with more systems and more
precise and sound analysis algorithms

• We need better models of the queries themselves (current work) for
more precise pattern identification

• We need to build the transformation!

30

Query Models

• R1: How can we model how queries are built?

• R2: Using these models, how can we generate the queries or query
templates (with placeholders for dynamic bits) that could actually
be executed?

• R3: What parts of the query language (here, SQL) are used in these
queries? Which of these parts are static, and which are dynamic?

• R4 (suggested by reviewers): Can we use models to find potential
security vulnerabilities in PHP code? We haven’t looked at this yet,
but it sounds promising, especially with interprocedural support…

31
“Supporting Analysis of SQL Queries in PHP AiR”, Anderson and Hills, SCAM 2017 (Engineering Track).

Analyzing and parsing queries: methodology

• All analysis code is written using Rascal

• https://github.com/PLSE-Lab/mysql-query-construction-analysis

• PHP is parsed using a PHP parser written in PHP, parser yields
Rascal terms

• MySQL queries are parsed using a fork of the parser found in
phpMyAdmin, a web frontend for administering MySQL

32
“Supporting Analysis of SQL Queries in PHP AiR”, Anderson and Hills, SCAM 2017 (Engineering Track).

https://github.com/PLSE-Lab/mysql-query-construction-analysis

Analyzing and parsing queries: “The Big Picture”

33

PHP System

PHP System
ASTs (Rascal)

PHP Parser
(PHP)

Model Builder
(Rascal)

Query Location

Query Model
(Rascal)

Query Yields
Generator
(Rascal)

Query Yields
(Rascal)

Modified MySQL
Query Parser (PHP)

Parsed MySQL
Queries (Rascal)

“Supporting Analysis of SQL Queries in PHP AiR”, Anderson and Hills, SCAM 2017 (Engineering Track).

R1: Building models

34

See the SCAM 2017 paper for all the details, here comes a summary…

“Supporting Analysis of SQL Queries in PHP AiR”, Anderson and Hills, SCAM 2017 (Engineering Track).

R1: Building models

• Models are (possibly cyclic) graphs of query fragments (with a bit of
bookkeeping info, like the location of the call)

• A query fragment is a static or dynamic piece of the query

• Intraprocedural, backwards slice throws away code that does not
impact query

• CFG and def/use info link names in fragments to defs of those
names

• Reachability conditions used to decorate graph edges

35
“Supporting Analysis of SQL Queries in PHP AiR”, Anderson and Hills, SCAM 2017 (Engineering Track).

R2: Extract yields

• Yields are lists of “pieces”:

• Static pieces for query text

• Dynamic pieces for arbitrary expressions

• Name pieces for names (useful to track separately)

• Generated by traversing the graph, currently cuts off when cycles
detected

• Can use edge labels to filter infeasible yields, improving to work in
more situations (loops are problematic)

36
“Supporting Analysis of SQL Queries in PHP AiR”, Anderson and Hills, SCAM 2017 (Engineering Track).

R3: Parsing partial queries

• First, yields are converted to strings: static pieces 
yield strings directly, dynamic and name pieces are turned 
into query holes (e.g., ?1, ?2, generally ?n)

• Second, string is parsed by our modified MySQL parser, yielding
PHP objects representing MySQL AST (limitation: we assume holes
are expressions and do not cross clause boundaries, supporting
this is ongoing work, a dedicated parser would be quite helpful
here since we depend on the MySQL parser but don’t control this
at all!)

• Third, AST pretty-printed to a Rascal term representing AST,
similarly to current PHP parser

37
“Supporting Analysis of SQL Queries in PHP AiR”, Anderson and Hills, SCAM 2017 (Engineering Track).

Go AiR

Why look at Go?

• Go is a widely used language with an interesting channel-based
concurrency model plus traditional concurrency features

• Origin of this work was a student MS thesis

• Earlier work had studied how channel-based concurrency was
used in Go programs (see “An Empirical Study of Message
Passing Concurrency in Go Projects” by Dilley and Lange from
SANER 2019)

• Student’s Focus: How do people use traditional concurrency
features, like mutex and condition variables? Do they?

39
“Enabling Go Program Analysis in Rascal”, Swearngan and Hills, SCAM 2023 (Engineering Track).

First Idea: Just write this in Go!

• Go includes several libraries for working with Go programs, so it’s
fairly easy to get started

• The go/ast library defines all the interfaces (e.g., Expr) and
structures (e.g., SelectorExpr) for Abstract Syntax Tree nodes

• The go/parser library lets you parse Go code and get back an
AST

• The go/token library defines all the lexical tokens in the
language

• So, just create a Visitor, walk the AST, and collect the info — done!
40

“Enabling Go Program Analysis in Rascal”, Swearngan and Hills, SCAM 2023 (Engineering Track).

The problem: Matching AST nodes

41
“Enabling Go Program Analysis in Rascal”, Swearngan and Hills, SCAM 2023 (Engineering Track).

NOTE: We are looking for something like: var wg sync.WaitGroup

func matchWaitGroupDecl(x *ast.GenDecl, v *Visitor, n ast.Node) {
for i := 0; i < len(x.Specs); i++ {

if spec, ok := x.Specs[i].(*ast.ValueSpec); ok == true {
if spec.Type != nil {

if t, ok := spec.Type.(*ast.SelectorExpr); ok == true {
if tsel, ok := t.X.(*ast.Ident); ok == true {

if tsel.Name == "sync" && t.Sel.Name == "WaitGroup" {
for j := 0; j < len(spec.Names); j++ {

id := spec.Names[j]
v.addDef(createDecl(id.Name, WaitGroup))
v.state.addWaitGroupDecl()

}
}

}
}

} } } } // all on one line so this fits on a slide!

The problem: Matching AST nodes

• Note: the code on the prior slide is not bad, it is just very verbose!

• spec, ok := x.Specs[I].(*ast.ValueSpec) is a type
assertion: we want to make sure that spec (which is just defined
as being of interface type Spec) is of a certain concrete type (a
ValueSpec) — this is essentially a downcast

• We then check to see if ok == true, which means that the
type assertion passed and spec can now be treated as a value
of that type (which it must be if this worked) — if we just do the
assertion without the ok check, this will panic (i.e., crash) if the
assertion fails

42
“Enabling Go Program Analysis in Rascal”, Swearngan and Hills, SCAM 2023 (Engineering Track).

Is there a better way?

• Rascal is designed for these kinds of applications!

• The following is the Rascal version of what was inside the for loop
in the example Go code:

• Pattern matching gives us a natural way to work with AST terms,
built-in relation types and comprehensions help us with fact
extraction and analysis

43

if (valueSpec(names,someExpr(selectorExpr(ident("sync"),"WaitGroup")),_) := d) {
featureDecls = featureDecls

+ { < d.at, featureDecl(d.at, n, waitGroupDecl())> | n <- names };
}

}

“Enabling Go Program Analysis in Rascal”, Swearngan and Hills, SCAM 2023 (Engineering Track).

Go AiR

• Go AiR (Analysis in Rascal) is a prototype analysis framework for
Go

44

Go System

Go System
ASTs (Rascal)

Go Parser/AST
Printer (Go)

Go AiR
(Rascal)

Interactive Querying/
Empirical Analysis

(Rascal)

Program Analysis
(Rascal)

Result
Reports
(LaTeX,
dot, etc)

Serialized Go
ASTs

Go File

“Enabling Go Program Analysis in Rascal”, Swearngan and Hills, SCAM 2023 (Engineering Track).

What can we currently do?

• We can extract ASTs from Go source code (using a Go program to do
this) and read them into Rascal, either for individual files or entire
systems (tested across a large number of popular systems)

• We can serialize/deserialize these systems, along with additional
extracted data

• We can explore Go code using Rascal’s pattern matching features

• We can work with multiple releases of a system, based on Git version
history

• We are moving earlier fact extraction code, written in Go, over to Rascal

45
“Enabling Go Program Analysis in Rascal”, Swearngan and Hills, SCAM 2023 (Engineering Track).

What would we like to do?

• We want to redo our earlier work on traditional concurrency
features and compare this to earlier work on message passing

• We want to integrate this with a rewriting logic semantics of Go,
focused on concurrency, for concurrency analysis and verification
(this is currently under construction)

• We want to extract models of concurrent behavior to help
developers understand the possible behaviors of their code

46
“Enabling Go Program Analysis in Rascal”, Swearngan and Hills, SCAM 2023 (Engineering Track).

Other Frameworks

Other Rascal program analysis frameworks

• Clair (C): https://github.com/usethesource/clair

• Python AiR (Python): https://github.com/cwi-swat/python-air

• JS-AiR (JavaScript): https://github.com/cwi-swat/js-air

• Ada AiR (Ada): https://github.com/cwi-swat/ada-air

• Other ongoing work includes frameworks for Lua (often used for
game design and embeddable interpreters) and COBOL

48

https://github.com/usethesource/clair
https://github.com/cwi-swat/python-air
https://github.com/cwi-swat/js-air
https://github.com/cwi-swat/ada-air

Past and Current Collaborators (incomplete!)

• David Anderson (ECU)

• T. Baris Aktemur (Özyeğin
University, Turkey)

• Marcelo d’Amorim (UFPE,
Brazil)

• Jeroen van den Bos (CWI,
NFO)

• Feng Chen (UIUC)

• Ben Givens (Hanover)

• Maurits Henneke (ippz)

• Paul Klint (CWI)

• Dimitris Kyritsis (UvA)

• Lindsey Lanier (ECU)

• Patrick Meredith (UIUC)

• Chris Mulder (UvA, Hyves)

• Grigore Rosu (UIUC)

• Ioana Rucareanu (UvA)

• Traian Serbanuta (UAIC,
Romania)

• Tijs van der Storm (CWI)

• Apil Tamang (ECU)

• Frank Tip (Northeastern)

• Alex Vilkomir (ECU)

• Jurgen Vinju (CWI)

• PLSE Lab GitHub: https://github.com/PLSE-Lab

• Rascal: https://www.rascal-mpl.org/

• Me: https://cs.appstate.edu/hillsma/

50

Thank you!
Any Questions?

Discussion

https://github.com/PLSE-Lab
https://www.rascal-mpl.org/
https://cs.appstate.edu/hillsma/

