
Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

A Rewriting Logic Approach to Static Checking of
Units of Measurement in C

Mark Hills, Feng Chen, and Grigore Roşu
{mhills, fengchen, grosu}@cs.uiuc.edu

Formal Systems Laboratory
Department of Computer Science

University of Illinois at Urbana-Champaign

RULE’08, 18 July 2008

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 1 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

1 Motivation

2 CPF

3 Unit Safety

4 Related Work

5 Conclusion

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 2 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Motivation
Approach
Contributions
Rewriting Logic Semantics

Outline

1 Motivation

2 CPF

3 Unit Safety

4 Related Work

5 Conclusion

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 3 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Motivation
Approach
Contributions
Rewriting Logic Semantics

Why Units of Measurement?

“NASA lost a $125 million Mars
orbiter because one engineering
team used metric units while
another used English units for a
key spacecraft operation ... For
that reason, information failed to
transfer between the Mars
Climate Orbiter spacecraft team
at Lockheed Martin in Colorado
and the mission navigation team
in California.”

(picture and text from CNN.com,
http://www.cnn.com/TECH/space/9909/30/mars.metric/)

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 4 / 36

http://www.cnn.com/TECH/space/9909/30/mars.metric/

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Motivation
Approach
Contributions
Rewriting Logic Semantics

Why Units of Measurement?

Tangible: unit safety violations have caused some well-known
malfunctions; units used in many applications

Interesting: has been the focus of much research, many
different possible approaches

Challenging: units have equational properties; software in
scientific domains can be hard to analyze (C, C++, Fortran,
etc...)

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 5 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Motivation
Approach
Contributions
Rewriting Logic Semantics

Why Units of Measurement?

Tangible: unit safety violations have caused some well-known
malfunctions; units used in many applications

Interesting: has been the focus of much research, many
different possible approaches

Challenging: units have equational properties; software in
scientific domains can be hard to analyze (C, C++, Fortran,
etc...)

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 5 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Motivation
Approach
Contributions
Rewriting Logic Semantics

Why Units of Measurement?

Tangible: unit safety violations have caused some well-known
malfunctions; units used in many applications

Interesting: has been the focus of much research, many
different possible approaches

Challenging: units have equational properties; software in
scientific domains can be hard to analyze (C, C++, Fortran,
etc...)

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 5 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Motivation
Approach
Contributions
Rewriting Logic Semantics

High Level Approach: Leverage Formal Language
Definitions

Our belief: having formal definitions of programming languages
is important

Without a formal definition, impossible to effectively reason
about programs

Research goal: increase usefulness of formal definitions, should
lead to increased adoption

Practical: leverage existing tools, language definition and
analysis techniques, expertise

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 6 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Motivation
Approach
Contributions
Rewriting Logic Semantics

Contributions

Extended earlier work on C-UNITS to provide coverage of
complex language constructs

Generalized domain-specific analysis framework, using rewriting
logic semantics, to handle many domains, including units

Provided a more modular, faster analysis capable of handling
larger programs

UNITS policy capable of extension to match other similar tools,
while currently providing more flexibility

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 7 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Motivation
Approach
Contributions
Rewriting Logic Semantics

Rewriting Logic Semantics

Presented work in part of Rewriting Logic Semantics project
(Meseguer and Roşu, TCS’07)

Project encompasses many different languages, definitional
formalisms, goals (analysis, execution, formal verification, etc.)

Presented work falls into continuation-based style described in
earlier published work

Programs represented as first-class computations that can be
stored, manipulated, executed

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 8 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

Outline

1 Motivation

2 CPF

3 Unit Safety

4 Related Work

5 Conclusion

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 9 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

The C Policy Framework

Earlier work on C language in our group very focused on
specific problem domains

Wanted to extend this work to generalize it for many domains

Also wanted to increase performance and flexibility, ensure we
can handle realistic C programs

Want to make sure it is formal, based on a (possibly domain
specific) semantics of C

Result: The C Policy Framework (CPF)

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 10 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

CPF Core

CPF provides generic functionality for C program analysis:

Annotation processing

C program parsing

C abstract syntax

Semantics for C statements

Generic semantics for some expressions

Extension hooks

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 11 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

CPF Policies

CPF Policies are domain-specific extensions to CPF:

Abstract semantics for expressions and declarations

Annotation language

Annotation language processor

Overrides of generic CPF functionality

CPF Core + CPF Policy = Domain-Specific Abstract
Semantics of C

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 12 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

CPF Policies

CPF Policies are domain-specific extensions to CPF:

Abstract semantics for expressions and declarations

Annotation language

Annotation language processor

Overrides of generic CPF functionality

CPF Core + CPF Policy = Domain-Specific Abstract
Semantics of C

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 12 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

Annotation Processing

CPF allows information to be added in annotations

Annotations provided in C comments

Annotation processor moves these into C code, utilizing custom
extension to C language (but not visible to user)

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 13 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

Example: Annotations

1 //@ pre(UNITS): unit(material->atomicWeight) = kg
2 //@ pre(UNITS): unit(material->atomicNumber) = noUnit
3 //@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1
4 double radiationLength(Element * material) {
5 double A = material->atomicWeight;
6 double Z = material->atomicNumber;
7 double L = log(184.15 / pow(Z, 1.0/3.0));
8 double Lp = log(1194.0 / pow(Z, 2.0/3.0));
9 return (4.0 * alpha * re * re) * (NA / A) *

10 (Z * Z * L + Z * Lp);
11 }

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 14 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

Parsing

Parsing performed using customized CIL

C programs with inlined annotations taken as input

CPF-specific program transformations performed

pre- and post-condition inlining
simplification
limited alias analysis

Maude code, using C abstract syntax, generated

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 15 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

CPF Processing

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 16 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

C Abstract Syntax/Generic State

Abstract syntax provided for all C constructs not removed by
CIL

Includes support for C declarations, operations to deconstruct
name and type information (used in policy semantics)

Generic definitions of CPF policies, values, configurations
provided

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 17 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

Statement Handling

Currently support all C statements not removed by CIL
(including goto)

Statements executed in environments

Some statements can return different values along different
paths
Environments capture path-sensitive information
Sets of environments used, with a statement executed once in
each env in the set
Can cause problems: need to limit size of env set to prevent
exponential explosion
Special logic to handle temporaries created by CIL

Can be disabled in policies that do not need it

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 18 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

Outline

1 Motivation

2 CPF

3 Unit Safety

4 Related Work

5 Conclusion

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 19 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

The UNITS Policy

CPF UNITS policy extends CPF to handle units of
measurement

Adds unit-specific support to C expressions and declarations:
units treated as abstract values

Adds support for unit-specific annotations

Combination CPF + UNITS = CPF[UNITS]

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 20 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

Unit Representation

op _^_ : Unit Rat -> Unit .
op __ : Unit Unit -> Unit [assoc comm] .
eq U ^ 0 = noUnit .
eq U ^ 1 = U .
eq U U = U ^ 2 .
eq U (U ^ Q) = U ^ (Q + 1) .
eq (U ^ Q) (U ^ P) = U ^ (Q + P) .
eq (U U’) ^ Q = (U ^ Q) (U’ ^ Q) .
eq (U ^ Q) ^ P = U ^ (Q * P) .
ops noUnit any fail cons : -> Unit .
ops meter m feet f : -> Unit .

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 21 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

Unit Annotations

Unit U ::= unit(E) | unit(E) ∧ Q | BU | U U

UnitExp UE ::= U | U = UE | UE and UE | UE or UE |
UE implies UE | not UE

Annotations allowed in preconditions, postconditions, assert
statements, assume statements

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 22 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

UNITS Abstract Values

op _^_ : Unit CInt -> Unit .
op u : Unit -> Value .
op ptr : Location -> Value .
op arr : Location -> Value .
op struct : Identifier SFieldSet -> Value .
op union : Identifier SFieldSet -> Value .

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 23 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

Declaration Semantics

Declarations of non-unit values reusable in other policies

Structures, unions as maps
Pointers, arrays as references to other locations, eventually
point to an abstract value

Declarations of numeric values assigned abstract unit values

“Fresh” unit values assigned as default to catch unit errors
without preventing normal computations

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 24 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

Expression Semantics

Expressions manipulate UNITS abstract values, including unit
values and pointers

Semantics ensures that attempts to combine units maintain
unit safety

Expressions working with structures build structure
representation as needed during analysis

Memory model handles allocations and casts

Note: no function calls – removed by CIL

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 25 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

Expression Semantics

[1] U * U’ = U U’

[2] U + U’ = mergeUnits(U,U’) -> checkForFail("+")

[3] U > U’ = mergeUnits(U,U’) -> checkForFail(">") ->

discard -> noUnit

[4] (lvp(L,V) = V’) = V’ -> assign(L)

[5] (lvp(L,U) += U’) = mergeUnits(U,U’) -> checkForFail("=") ->

assign(L)

[6] *(lvp(L,ptr(L’))) = llookup(L’)

[7] lvp(L,struct(X’, (sfield(X,L’) _))) . X = llookup(L’)

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 26 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

Performance

Total Time Average Per Function

Test LOC x100 x400 x4000 x100 x400 x4000

straight 25 6.39 23.00 229.80 0.06 0.06 0.06

ann 27 8.62 31.27 307.54 0.09 0.08 0.08

nosplit 69 12.71 46.08 467.89 0.13 0.12 0.12

split 69 27.40 106.55 1095.34 0.27 0.27 0.27
Times in seconds. All times averaged over three runs of each test. LOC (lines of

code) are per function, with 100, 400, or 4000 identical functions in a source file.

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 27 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

Error Detection

Test Prep Time Check Time LOC Annotations Errors FP
ex18.c 0.083 0.754 18 10 3 0
fe.c 0.113 0.796 19 9 1 0

coil.c 0.113 59.870 299 14 3 3
projectile.c 0.122 0.882 31 16 0 0

projectile-bad.c 0.121 0.866 31 16 1 0
big0.c 0.273 5.223 2705 0 0 0
big1.c 0.998 22.853 11705 0 0 0
big2.c 33.144 381.367 96611 0 0 0

Times in seconds. All times averaged over three runs of each test. Function

count includes annotated prototypes in parens. FP represents False Positives.

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 28 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

The UNITS Policy
Annotations
Unit Semantics
Evaluation
Restrictions for Safety

CPF Safety Restrictions

Address capture

Pointers

Formal parameters

Aliasing (the root of all evil)

Precondition/post-condition requirement

Fresh units

Relaxing restrictions can eliminate false positives, at the cost of
potential missed errors.

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 29 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Outline

1 Motivation

2 CPF

3 Unit Safety

4 Related Work

5 Conclusion

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 30 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Libraries

Solutions involve using unit-specific libraries to enforce safety

SIUNITS and C++ meta-programming (Brown, 2001)

MDS JPL C++ library

Others in Eiffel, Ada, probably more

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 31 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Language and Type System Extensions

MetaGen (Allen, Chase, Luchangco, Maessen, and Steele,
OOPSLA’04)

ML Dimensions/Type Inference (Kennedy, PhD Thesis)

Older work on extensions to Pascal, Ada

Newer work on Osprey (Jiang and Su, ICSE’06) also for C; fast,
less flexible, checks at level of dimensions

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 32 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Annotations

Annotation-based systems widely used: Spec# (Barnett, Leino,
and Schulte, CASSIS’04), JML (Burdy et.al. FMICS’03)

Precursor C-UNITS system (Feng and Roşu, ASE’03)
inspiration for current work, but extremely limited

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 33 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Outline

1 Motivation

2 CPF

3 Unit Safety

4 Related Work

5 Conclusion

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 34 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Summary

CPF[UNITS] extends C-UNITS with support for much larger
portion of C language, more modular unit checking, improved
parsing, easier to modify semantics

Leverages formal techniques for defining (abstract) language
semantics

Initial tests show efficiency

Annotation language, annotation burden compare well with
Osprey – tradeoff between flexibility and performance

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 35 / 36

Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Thank You

http://fsl.cs.uiuc.edu/cpf

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 36 / 36

http://fsl.cs.uiuc.edu/cpf

	Outline
	Motivation
	
	
	
	

	CPF
	
	
	

	Unit Safety
	
	
	
	
	

	Related Work
	Conclusion

