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Why Units of Measurement?

“NASA lost a $125 million Mars
orbiter because one engineering
team used metric units while
another used English units for a
key spacecraft operation ... For
that reason, information failed to
transfer between the Mars
Climate Orbiter spacecraft team
at Lockheed Martin in Colorado
and the mission navigation team
in California.”

(picture and text from CNN.com,
http://www.cnn.com/TECH/space/9909/30/mars.metric/)
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Why Units of Measurement?

Tangible: unit safety violations have caused some well-known
malfunctions; units used in many applications

Interesting: has been the focus of much research, many
different possible approaches

Challenging: units have equational properties; software in
scientific domains can be hard to analyze (C, C++, Fortran,
etc...)
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High Level Approach: Leverage Formal Language
Definitions

Our belief: having formal definitions of programming languages
is important

Without a formal definition, impossible to effectively reason
about programs

Research goal: increase usefulness of formal definitions, should
lead to increased adoption

Practical: leverage existing tools, language definition and
analysis techniques, expertise
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Contributions

Extended earlier work on C-UNITS to provide coverage of
complex language constructs

Generalized domain-specific analysis framework, using rewriting
logic semantics, to handle many domains, including units

Provided a more modular, faster analysis capable of handling
larger programs

UNITS policy capable of extension to match other similar tools,
while currently providing more flexibility

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 7 / 36



Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Motivation
Approach
Contributions
Rewriting Logic Semantics

Rewriting Logic Semantics

Presented work in part of Rewriting Logic Semantics project
(Meseguer and Roşu, TCS’07)

Project encompasses many different languages, definitional
formalisms, goals (analysis, execution, formal verification, etc.)

Presented work falls into continuation-based style described in
earlier published work

Programs represented as first-class computations that can be
stored, manipulated, executed
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The C Policy Framework

Earlier work on C language in our group very focused on
specific problem domains

Wanted to extend this work to generalize it for many domains

Also wanted to increase performance and flexibility, ensure we
can handle realistic C programs

Want to make sure it is formal, based on a (possibly domain
specific) semantics of C

Result: The C Policy Framework (CPF)
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CPF Core

CPF provides generic functionality for C program analysis:

Annotation processing

C program parsing

C abstract syntax

Semantics for C statements

Generic semantics for some expressions

Extension hooks
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CPF Policies

CPF Policies are domain-specific extensions to CPF:

Abstract semantics for expressions and declarations

Annotation language

Annotation language processor

Overrides of generic CPF functionality

CPF Core + CPF Policy = Domain-Specific Abstract
Semantics of C
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Annotation Processing

CPF allows information to be added in annotations

Annotations provided in C comments

Annotation processor moves these into C code, utilizing custom
extension to C language (but not visible to user)
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Example: Annotations

1 //@ pre(UNITS): unit(material->atomicWeight) = kg
2 //@ pre(UNITS): unit(material->atomicNumber) = noUnit
3 //@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1
4 double radiationLength(Element * material) {
5 double A = material->atomicWeight;
6 double Z = material->atomicNumber;
7 double L = log( 184.15 / pow(Z, 1.0/3.0) );
8 double Lp = log( 1194.0 / pow(Z, 2.0/3.0) );
9 return ( 4.0 * alpha * re * re) * ( NA / A ) *

10 ( Z * Z * L + Z * Lp );
11 }

Hills, Chen, and Roşu RULE’08: Rewriting Logic/Static Checking/Units 14 / 36



Outline
Motivation

CPF
Unit Safety

Related Work
Conclusion

Overview
Pre-processing
Core Semantics

Parsing

Parsing performed using customized CIL

C programs with inlined annotations taken as input

CPF-specific program transformations performed

pre- and post-condition inlining
simplification
limited alias analysis

Maude code, using C abstract syntax, generated
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CPF Processing
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C Abstract Syntax/Generic State

Abstract syntax provided for all C constructs not removed by
CIL

Includes support for C declarations, operations to deconstruct
name and type information (used in policy semantics)

Generic definitions of CPF policies, values, configurations
provided
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Statement Handling

Currently support all C statements not removed by CIL
(including goto)

Statements executed in environments

Some statements can return different values along different
paths
Environments capture path-sensitive information
Sets of environments used, with a statement executed once in
each env in the set
Can cause problems: need to limit size of env set to prevent
exponential explosion
Special logic to handle temporaries created by CIL

Can be disabled in policies that do not need it
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The UNITS Policy

CPF UNITS policy extends CPF to handle units of
measurement

Adds unit-specific support to C expressions and declarations:
units treated as abstract values

Adds support for unit-specific annotations

Combination CPF + UNITS = CPF[UNITS]
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Unit Representation

op _^_ : Unit Rat -> Unit .
op __ : Unit Unit -> Unit [assoc comm] .
eq U ^ 0 = noUnit .
eq U ^ 1 = U .
eq U U = U ^ 2 .
eq U (U ^ Q) = U ^ (Q + 1) .
eq (U ^ Q) (U ^ P) = U ^ (Q + P) .
eq (U U’) ^ Q = (U ^ Q) (U’ ^ Q) .
eq (U ^ Q) ^ P = U ^ (Q * P) .
ops noUnit any fail cons : -> Unit .
ops meter m feet f : -> Unit .
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Unit Annotations

Unit U ::= unit(E) | unit(E) ∧ Q | BU | U U

UnitExp UE ::= U | U = UE | UE and UE | UE or UE |
UE implies UE | not UE

Annotations allowed in preconditions, postconditions, assert
statements, assume statements
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UNITS Abstract Values

op _^_ : Unit CInt -> Unit .
op u : Unit -> Value .
op ptr : Location -> Value .
op arr : Location -> Value .
op struct : Identifier SFieldSet -> Value .
op union : Identifier SFieldSet -> Value .
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Declaration Semantics

Declarations of non-unit values reusable in other policies

Structures, unions as maps
Pointers, arrays as references to other locations, eventually
point to an abstract value

Declarations of numeric values assigned abstract unit values

“Fresh” unit values assigned as default to catch unit errors
without preventing normal computations
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Expression Semantics

Expressions manipulate UNITS abstract values, including unit
values and pointers

Semantics ensures that attempts to combine units maintain
unit safety

Expressions working with structures build structure
representation as needed during analysis

Memory model handles allocations and casts

Note: no function calls – removed by CIL
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Expression Semantics

[1] U * U’ = U U’

[2] U + U’ = mergeUnits(U,U’) -> checkForFail("+")

[3] U > U’ = mergeUnits(U,U’) -> checkForFail(">") ->

discard -> noUnit

[4] (lvp(L,V) = V’) = V’ -> assign(L)

[5] (lvp(L,U) += U’) = mergeUnits(U,U’) -> checkForFail("=") ->

assign(L)

[6] *(lvp(L,ptr(L’))) = llookup(L’)

[7] lvp(L,struct(X’, (sfield(X,L’) _))) . X = llookup(L’)
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Performance

Total Time Average Per Function

Test LOC x100 x400 x4000 x100 x400 x4000

straight 25 6.39 23.00 229.80 0.06 0.06 0.06

ann 27 8.62 31.27 307.54 0.09 0.08 0.08

nosplit 69 12.71 46.08 467.89 0.13 0.12 0.12

split 69 27.40 106.55 1095.34 0.27 0.27 0.27
Times in seconds. All times averaged over three runs of each test. LOC (lines of

code) are per function, with 100, 400, or 4000 identical functions in a source file.
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Error Detection

Test Prep Time Check Time LOC Annotations Errors FP
ex18.c 0.083 0.754 18 10 3 0
fe.c 0.113 0.796 19 9 1 0

coil.c 0.113 59.870 299 14 3 3
projectile.c 0.122 0.882 31 16 0 0

projectile-bad.c 0.121 0.866 31 16 1 0
big0.c 0.273 5.223 2705 0 0 0
big1.c 0.998 22.853 11705 0 0 0
big2.c 33.144 381.367 96611 0 0 0

Times in seconds. All times averaged over three runs of each test. Function

count includes annotated prototypes in parens. FP represents False Positives.
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CPF Safety Restrictions

Address capture

Pointers

Formal parameters

Aliasing (the root of all evil)

Precondition/post-condition requirement

Fresh units

Relaxing restrictions can eliminate false positives, at the cost of
potential missed errors.
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Libraries

Solutions involve using unit-specific libraries to enforce safety

SIUNITS and C++ meta-programming (Brown, 2001)

MDS JPL C++ library

Others in Eiffel, Ada, probably more
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Language and Type System Extensions

MetaGen (Allen, Chase, Luchangco, Maessen, and Steele,
OOPSLA’04)

ML Dimensions/Type Inference (Kennedy, PhD Thesis)

Older work on extensions to Pascal, Ada

Newer work on Osprey (Jiang and Su, ICSE’06) also for C; fast,
less flexible, checks at level of dimensions
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Annotations

Annotation-based systems widely used: Spec# (Barnett, Leino,
and Schulte, CASSIS’04), JML (Burdy et.al. FMICS’03)

Precursor C-UNITS system (Feng and Roşu, ASE’03)
inspiration for current work, but extremely limited
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Summary

CPF[UNITS] extends C-UNITS with support for much larger
portion of C language, more modular unit checking, improved
parsing, easier to modify semantics

Leverages formal techniques for defining (abstract) language
semantics

Initial tests show efficiency

Annotation language, annotation burden compare well with
Osprey – tradeoff between flexibility and performance
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Thank You

http://fsl.cs.uiuc.edu/cpf
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