
PHP AiR: Analyzing PHP Systems with Rascal

http://www.rascal-mpl.org

Mark Hills and Paul Klint

!
CSMR/WCRE Software Evolution Week 2014

February 5, 2014

Antwerp, Belgium


http://www.rascal-mpl.org


Why look at PHP applications?

• Popular with programmers: #6 on TIOBE Programming Community 
Index, behind C, Java, Objective-C, C++, and C#, and 6th most 
popular language on GitHub


• Used by 78.8% of all websites whose server-side language can be 
determined, used in sites such as Facebook, Hyves, Wikipedia


• Big projects (MediaWiki 1.19.1 > 846k lines of PHP), wide range of 
programming skills, very limited tool support


• Hostile environments: most PHP code runs on the web

�2



What are we trying to do?

• Big picture: develop a framework for PHP analysis


• Specifics:


• Empirical software engineering


• Software metrics


• Program analysis (static/dynamic)


• Developer tool support

�3



Rascal to the Rescue!

• “Rascal is a domain specific language for source code analysis and 
manipulation a.k.a. meta-programming.” (http://www.rascal-
mpl.org/)


• Language focus: program analysis, program transformation, 
domain-specific language creation


• Current projects across large numbers of domains, both within and 
outside academia


• Open source, over 30 committers worldwide

�4

http://www.rascal-mpl.org/Rascal/RascalDomain
http://www.rascal-mpl.org/


Why Rascal?

• Built-in language support for matching & transforming code


• Rich data types: relations, maps, lists, sets, tuples, parse trees, 
higher-order functions


• Console supports interactive exploration


• Extensible with Java and Eclipse


• Empirical research support: code querying, statistical analysis, 
interaction with external data (e.g., code repositories, external 
databases), visualization

�5



Design Decisions

• Parsing: roll our own, or use existing parsers?


• Where should we optimize?


• Inside PHP AiR?


• Inside Rascal?


• Both?


• How do we cleanly access external data sources that hold analysis 
data we care about?

�6



Result: PHP AiR (Analysis in Rascal)

�7

PHP System

PHP System 
ASTs (Rascal)

PHP Parser 
(PHP)

PHP AiR
(Rascal)

Interactive Querying/
Empirical Analysis 

(Rascal)

Program Analysis 
(Rascal)

Result 
Reports 
(LaTeX, 
dot, etc)



One Example: Empirical Study of PHP Feature Usage

• Perspective: Creators of program analysis tools


• What does a typical PHP program look like?


• What features of PHP do people really use?


• How often are dynamic features, which are hard for static analysis 
to handle, used in real programs? 


• When dynamic features appear, are they really dynamic? Or are 
they used in static ways?

�8
“An Empirical Study of PHP Feature Usage: A Static Analysis Perspective”, Hills, Klint, and Vinju, To Appear at ISSTA 2013.



Lessons Learned

• Rascal data types and declarative  
programming lead to smaller, more  
expressive code


• Having source locations as a built-in datatype provides a powerful 
abstraction for referencing code


• Tool flexibility is important: an all or nothing approach to Rascal 
would slow us down (e.g., parsing)


• Scripting analyses eases reproducibility


• Performance is a persistent issue, and needs more work
�9



Related Work (PHP Frameworks)

• PHP-sat & PHP-tools


• PHP CodeSniffer (standards conformance)


• PHP Copy/Paste Detector (only exact copies)


• PHPDepend, PHPLoc (metrics)


• PHPMD (metrics, simple bugs)


• php, HipHop (analysis & compilation)

�10



Demo: PHP AiR

�11



• Rascal: http://www.rascal-mpl.org


• SWAT: http://www.cwi.nl/sen1


• Me: http://www.cwi.nl/~hills


�12

Thank you! 
Any Questions?

Discussion

http://www.rascal-mpl.org
http://www.cwi.nl/sen1
http://www.cwi.nl/~hills

