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Motivation: Why This Tool?

•Many K and K in Maude specifications exist -- want reuse

• Integrating with graphical environments currently ad-hoc, 
bad user experience

•Want a general method to integrate these specifications 
with Rascal-based IDEs

• (Personal) Wanted something like this all during my PhD
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How Should it Work (KRunner)?
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An Introduction to Rascal

•Rascal: A meta-programming language for source code 
analysis and transformation

•Based on concepts learned from ASF+SDF, but with a 
more traditional programming language feel

•Features: parsing, structured control flow, rich data types 
(algebraic data types, lists, sets, tuples, maps, relations, 
etc), pattern matching, enumerations, higher order 
functions, etc 
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Defining Grammars in Rascal
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Tool Components: Rascal (ShellExec)

PID pid = createProcess(maudeLocation.path);
writeTo(pid, toRun);
res = readFrom(pid);
killProcess(pid);
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Tool Components: Rascal (ResourceMarkers)
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import Message;

public void java removeMessageMarkers(loc resourceLoc);

public void java addMessageMarkers(set[Message] markers);

data Message = error(str msg, loc at)
             | warning(str msg, loc at)
             | info(str msg, loc at);

Rascal
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Tool Components: Rascal (RLSRunner ADT)
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data RLSRunner = RLSRun(loc maudeFile, 
                        str(str,list[str]) pre,
                        RLSResult(str) post);

Rascal
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Tool Components: Rascal (Maude-ifier)
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if ((Program)`<Decl* decls> <FunDecl+ funDecls>` := p)
	 return located(p,"Pgm",

  "__(<showDecls([d|d<-decls])>,
      <showFunDecls({f|f<-funDecls})>)");

syntax Program = Default: Decl* decls FunDecl+ funDecls;

Rascal
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Tool Components: Rascal (Returning Results)

data RLSResult = SILFAnalysisResult(bool foundErrors, 
                                    set[Message] messages) ;
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void exec(Tree pt, loc l) {
	 str pgm = maudeify(pt, true, policy);
	 RLSRunner rlsRunner = RLSRun(silfSpec, pre, post);
	 RLSResult res = runRLSTask(maudeExec, rlsRunner, pgm);
	 if (SILFAnalysisResult(true,msgs) := res)
	 	 addMessageMarkers(msgs);
}

Rascal
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Tool Components: Rascal (Generate Program Files)
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public str generateProgramModule(Tree pgm, str topSort, str pgmName,
   str pgmMod, str syntaxMod) {

	 set[str] identifiers = { "<id>" | /Id id <- pgm } - "main";
	 str identifierListing = 
       "syntax Id ::= <intercalate(" | ", [i|i<-identifiers]) > ";
	 str pgmDeclaration = "syntax <topSort> ::= <pgmName>";
	 return "kmod <pgmMod> is including <syntaxMod>
	 	    '<identifierListing>
	 	    '<pgmDeclaration>
	 	    '
	 	    'macro <pgmName> =
	 	    '  <pgm>
	 	    '
	 	    'endkm
	 	    '";
}

Rascal
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Tool Components: K (Rascal Source Locations)

fmod RASCAL-LOCATION is
  including STRING .
  including INT .
  sort RLocation .
  op sl : String Int Int Int Int Int Int -> RLocation .
endfm
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Tool Components: K (Location Semantics)
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op currLoc : RLocation -> State [format (r! o)] .

op rloc : RLocation -> ComputationItem .

eq k(rloc(RL) -> K) currLoc(RL') = k(K) currLoc(RL) .

eq k(exp(locatedExp(E, RL)) -> K) currLoc(RL') = 
     k(exp(E) -> rloc(RL') -> K) currLoc(RL) .
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Tool Components: K (Generating Results)
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  op makeAnalysisMsg : OutputList -> String .
 
  eq makeAnalysisMsg(warning(level(1) msgloc(RL) msg(S) WIS), OL) =
       ("||1:::" + rloc2str(RL) + ":::" + S + "||") + makeAnalysisMsg(OL) .

K/Maude
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