
RLSRunner and KRunner: Linking Rascal with K
for Program Analysis and Execution

Mark Hills, Paul Klint, & Jurgen J. Vinju

2nd International Workshop on the K Framework and its Applications
August 9, 2011
Cheile Gradistei, Romania

Thursday, June 21, 2012

Overview

2

Thursday, June 21, 2012

Overview

•Motivation

2

Thursday, June 21, 2012

Overview

•Motivation

•Tool components: Rascal

2

Thursday, June 21, 2012

Overview

•Motivation

•Tool components: Rascal

•Tool components: K

2

Thursday, June 21, 2012

Overview

•Motivation

•Tool components: Rascal

•Tool components: K

•Demo

2

Thursday, June 21, 2012

Overview

•Motivation

•Tool components: Rascal

•Tool components: K

•Demo

•Wrap-up

2

Thursday, June 21, 2012

Motivation: Why This Tool?

3

Thursday, June 21, 2012

Motivation: Why This Tool?

•Many K and K in Maude specifications exist -- want reuse

3

Thursday, June 21, 2012

Motivation: Why This Tool?

•Many K and K in Maude specifications exist -- want reuse

• Integrating with graphical environments currently ad-hoc,
bad user experience

3

Thursday, June 21, 2012

Motivation: Why This Tool?

•Many K and K in Maude specifications exist -- want reuse

• Integrating with graphical environments currently ad-hoc,
bad user experience

•Want a general method to integrate these specifications
with Rascal-based IDEs

3

Thursday, June 21, 2012

Motivation: Why This Tool?

•Many K and K in Maude specifications exist -- want reuse

• Integrating with graphical environments currently ad-hoc,
bad user experience

•Want a general method to integrate these specifications
with Rascal-based IDEs

• (Personal) Wanted something like this all during my PhD

3

Thursday, June 21, 2012

How Should it Work (RLSRunner)?

4

Thursday, June 21, 2012

How Should it Work (RLSRunner)?

4

Thursday, June 21, 2012

How Should it Work (RLSRunner)?

4

Thursday, June 21, 2012

How Should it Work (RLSRunner)?

4

Thursday, June 21, 2012

How Should it Work (RLSRunner)?

4

Thursday, June 21, 2012

How Should it Work (RLSRunner)?

4

Thursday, June 21, 2012

How Should it Work (KRunner)?

5

Thursday, June 21, 2012

An Introduction to Rascal

•Rascal: A meta-programming language for source code
analysis and transformation

•Based on concepts learned from ASF+SDF, but with a
more traditional programming language feel

•Features: parsing, structured control flow, rich data types
(algebraic data types, lists, sets, tuples, maps, relations,
etc), pattern matching, enumerations, higher order
functions, etc

6

Thursday, June 21, 2012

Defining Grammars in Rascal

7

Thursday, June 21, 2012

Tool Components: Rascal (ShellExec)

PID pid = createProcess(maudeLocation.path);
writeTo(pid, toRun);
res = readFrom(pid);
killProcess(pid);

8

Rascal

Thursday, June 21, 2012

Tool Components: Rascal (ResourceMarkers)

9

import Message;

public void java removeMessageMarkers(loc resourceLoc);

public void java addMessageMarkers(set[Message] markers);

data Message = error(str msg, loc at)
 | warning(str msg, loc at)
 | info(str msg, loc at);

Rascal

Rascal

Thursday, June 21, 2012

Tool Components: Rascal (RLSRunner ADT)

10

data RLSRunner = RLSRun(loc maudeFile,
 str(str,list[str]) pre,
 RLSResult(str) post);

Rascal

Thursday, June 21, 2012

Tool Components: Rascal (Maude-ifier)

11

if ((Program)`<Decl* decls> <FunDecl+ funDecls>` := p)
	 return located(p,"Pgm",

 "__(<showDecls([d|d<-decls])>,
 <showFunDecls({f|f<-funDecls})>)");

syntax Program = Default: Decl* decls FunDecl+ funDecls;

Rascal

Rascal

Thursday, June 21, 2012

Tool Components: Rascal (Returning Results)

data RLSResult = SILFAnalysisResult(bool foundErrors,
 set[Message] messages) ;

12

void exec(Tree pt, loc l) {
	 str pgm = maudeify(pt, true, policy);
	 RLSRunner rlsRunner = RLSRun(silfSpec, pre, post);
	 RLSResult res = runRLSTask(maudeExec, rlsRunner, pgm);
	 if (SILFAnalysisResult(true,msgs) := res)
	 	 addMessageMarkers(msgs);
}

Rascal

Rascal

Thursday, June 21, 2012

Tool Components: Rascal (Generate Program Files)

13

public str generateProgramModule(Tree pgm, str topSort, str pgmName,
 str pgmMod, str syntaxMod) {

	 set[str] identifiers = { "<id>" | /Id id <- pgm } - "main";
	 str identifierListing =
 "syntax Id ::= <intercalate(" | ", [i|i<-identifiers]) > ";
	 str pgmDeclaration = "syntax <topSort> ::= <pgmName>";
	 return "kmod <pgmMod> is including <syntaxMod>
	 	 '<identifierListing>
	 	 '<pgmDeclaration>
	 	 '
	 	 'macro <pgmName> =
	 	 ' <pgm>
	 	 '
	 	 'endkm
	 	 '";
}

Rascal

Thursday, June 21, 2012

Tool Components: K (Rascal Source Locations)

fmod RASCAL-LOCATION is
 including STRING .
 including INT .
 sort RLocation .
 op sl : String Int Int Int Int Int Int -> RLocation .
endfm

14

K/Maude

Thursday, June 21, 2012

Tool Components: K (Location Semantics)

15

op currLoc : RLocation -> State [format (r! o)] .

op rloc : RLocation -> ComputationItem .

eq k(rloc(RL) -> K) currLoc(RL') = k(K) currLoc(RL) .

eq k(exp(locatedExp(E, RL)) -> K) currLoc(RL') =
 k(exp(E) -> rloc(RL') -> K) currLoc(RL) .

K/Maude

Thursday, June 21, 2012

Tool Components: K (Generating Results)

16

 op makeAnalysisMsg : OutputList -> String .

 eq makeAnalysisMsg(warning(level(1) msgloc(RL) msg(S) WIS), OL) =
 ("||1:::" + rloc2str(RL) + ":::" + S + "||") + makeAnalysisMsg(OL) .

K/Maude

Thursday, June 21, 2012

