
RLSRunner: Linking Rascal with K
for Program Analysis

Mark Hills, Paul Klint, & Jurgen J. Vinju

4th International Conference on Software Language Engineering
July 4, 2011
Braga, Portugal

Thursday, June 21, 2012

Some Quick Definitions

• Rascal: A meta-programming
language for source code
analysis and transformation

• K: A semantic framework, based
on concepts from rewriting logic
(a logic of concurrency) and term
rewriting

• Maude: A language and
execution engine for rewriting
logic specifications

2

Thursday, June 21, 2012

Overview

3

Thursday, June 21, 2012

Overview

• Motivation

3

Thursday, June 21, 2012

Overview

• Motivation

• Tool components: Rascal

3

Thursday, June 21, 2012

Overview

• Motivation

• Tool components: Rascal

• Tool components: K

3

Thursday, June 21, 2012

Overview

• Motivation

• Tool components: Rascal

• Tool components: K

• Demo

3

Thursday, June 21, 2012

Overview

• Motivation

• Tool components: Rascal

• Tool components: K

• Demo

• Wrap-up

3

Thursday, June 21, 2012

Motivation: Why This Tool?

4

Thursday, June 21, 2012

Motivation: Why This Tool?

• Many K and K in Maude specifications exist -- want
reuse

4

Thursday, June 21, 2012

Motivation: Why This Tool?

• Many K and K in Maude specifications exist -- want
reuse

• Integrating with graphical environments currently ad-
hoc, bad user experience

4

Thursday, June 21, 2012

Motivation: Why This Tool?

• Many K and K in Maude specifications exist -- want
reuse

• Integrating with graphical environments currently ad-
hoc, bad user experience

• Want a general method to integrate these specifications
with Rascal-based IDEs

4

Thursday, June 21, 2012

Motivation: Why This Tool?

• Many K and K in Maude specifications exist -- want
reuse

• Integrating with graphical environments currently ad-
hoc, bad user experience

• Want a general method to integrate these specifications
with Rascal-based IDEs

• (Personal) Wanted something like this all during my PhD

4

Thursday, June 21, 2012

How Should it Work?

5

Thursday, June 21, 2012

How Should it Work?

5

Thursday, June 21, 2012

How Should it Work?

5

Thursday, June 21, 2012

How Should it Work?

5

Thursday, June 21, 2012

How Should it Work?

5

Thursday, June 21, 2012

How Should it Work?

5

Thursday, June 21, 2012

Tool Components: Rascal (ShellExec)

PID pid = createProcess(maudeLocation.path);
writeTo(pid, toRun);
res = readFrom(pid);
killProcess(pid);

6

Rascal

Thursday, June 21, 2012

Tool Components: Rascal (ResourceMarkers)

7

import Message;

public void java removeMessageMarkers(loc resourceLoc);

public void java addMessageMarkers(set[Message] markers);

data Message = error(str msg, loc at)
 | warning(str msg, loc at)
 | info(str msg, loc at);

Rascal

Rascal

Thursday, June 21, 2012

Tool Components: Rascal (RLSRunner ADT)

8

data RLSRunner = RLSRun(loc maudeFile,
 str(str,list[str]) pre,
 RLSResult(str) post);

Rascal

Thursday, June 21, 2012

Tool Components: Rascal (Maude-ifier)

9

if ((Program)`<Decl* decls> <FunDecl+ funDecls>` := p)
	 return located(p,"Pgm",

 "__(<showDecls([d|d<-decls])>,
 <showFunDecls({f|f<-funDecls})>)");

syntax Program = Default: Decl* decls FunDecl+ funDecls;

Rascal

Rascal

Thursday, June 21, 2012

Tool Components: Rascal (Returning Results)

data RLSResult = SILFAnalysisResult(bool foundErrors,
 set[Message] messages) ;

10

void exec(Tree pt, loc l) {
	 str pgm = maudeify(pt, true, policy);
	 RLSRunner rlsRunner = RLSRun(silfSpec, pre, post);
	 RLSResult res = runRLSTask(maudeExec, rlsRunner, pgm);
	 if (SILFAnalysisResult(true,msgs) := res)
	 	 addMessageMarkers(msgs);
}

Rascal

Rascal

Thursday, June 21, 2012

Tool Components: K (Rascal Source Locations)

fmod RASCAL-LOCATION is
 including STRING .
 including INT .
 sort RLocation .
 op sl : String Int Int Int Int Int Int -> RLocation .
endfm

11

K/Maude

Thursday, June 21, 2012

Tool Components: K (Location Semantics)

12

op currLoc : RLocation -> State [format (r! o)] .

op rloc : RLocation -> ComputationItem .

eq k(rloc(RL) -> K) currLoc(RL') = k(K) currLoc(RL) .

eq k(exp(locatedExp(E, RL)) -> K) currLoc(RL') =
 k(exp(E) -> rloc(RL') -> K) currLoc(RL) .

K/Maude

Thursday, June 21, 2012

Tool Components: K (Generating Results)

13

 op makeAnalysisMsg : OutputList -> String .

 eq makeAnalysisMsg(warning(level(1) msgloc(RL) msg(S) WIS), OL) =
 ("||1:::" + rloc2str(RL) + ":::" + S + "||") + makeAnalysisMsg(OL) .

K/Maude

Thursday, June 21, 2012

Demo

14

Thursday, June 21, 2012

Future Work

• Support other execution features: standard execution,
model checking, state space search

• Automatic generation of Maude-ifier and Maude
operator defs for abstract syntax

• Support C Policy Framework

15

Thursday, June 21, 2012

Wrap-Up

• RLSRunner provides a reusable library for running
Maude-based K definitions

• Per-language requirements light (outside of maude-
ifier), leverage library

• K specifications require minimal modifications

• Provides a template for integrating other console apps
with Rascal

16

Thursday, June 21, 2012

