
Rascal: Meta-Programming for Program Analysis

Mark Hills, Paul Klint, & Jurgen J. Vinju

9th International Workshop on Rewriting Logic and its Applications
March 25, 2012
Tallinn, Estonia

http://www.rascal-mpl.org

Friday, June 15, 2012

http://www.rascal-mpl.org
http://www.rascal-mpl.org

Overview

•Rascal: Introduction and Motivations

•Options for Program Analysis in Rascal

•Upgrade Analysis for PHP Programs

2

Friday, June 15, 2012

Overview

•Rascal: Introduction and Motivations

•Options for Program Analysis in Rascal

•Upgrade Analysis for PHP Programs

3

Friday, June 15, 2012

What is Rascal?

Rascal is a powerful domain-specific programming language that can
scale up to handle challenging problems in the domains of:

•Software analysis

•Software transformation

•DSL Design and Implementation

4

Friday, June 15, 2012

Why Rascal?

5

Friday, June 15, 2012

Why Rascal? Why not ASF+SDF?

“RASCAL is not an algebraic specification formalism with
programming language features, but rather a programming
language with algebraic specification features”

- Rascal: From Algebraic Specification to Meta-Programming,
Jeroen van den Bos, Mark Hills, Paul Klint, Tijs van der Storm,
and Jurgen J. Vinju, AMMSE 2011

6

Friday, June 15, 2012

Answer: The Intended Users of Rascal

7

vs

Friday, June 15, 2012

Lessons Learned: ASF, the Benefits

•“Match and Apply”: equational logic and
term rewriting, with conditional and default
equations

•Powerful list matching features (especially in conjunction with SDF -- matching
over lists of concrete terms)

•Reuse and extensibility: parameterized modules, renaming on import, can add
new constructors and equations (but problematic under configuration changes)

8

Friday, June 15, 2012

Lessons Learned: SDF, the Benefits

•Syntax definitions are algebraic signatures

•Scannerless generalized parsing, handles complexity of real-life languages
where whitespace, etc may matter

•Generalized parsing allows modularity -- unions of context free grammars are
still context free

•With ASF, equations can perform complex transformations of source code

9

Friday, June 15, 2012

Lessons Learned: Some Challenges, Too

•Need a grammar for entities being reasoned
about (e.g., dot files, XML configuration files, etc);
not always trivial to create one

•Similarly, not everything is context free: requires pre-processing using other
tools

•Ability to combine grammars does not preclude ambiguity

•Challenging to debug: type errors manifest as parse errors, programming bugs
as matching failures

10

Friday, June 15, 2012

Lessons Learned: Some Challenges, Too

•For standard functional-style programs,
“apply-anywhere” rules can provide too much
freedom, requires program to constrain application

•Information stored as graphs, sets, etc has to be encoded into a tree (set
matching in Maude alleviates this somewhat, context transformers in K even
more; Rascal includes set matching now too!)

•Rule-based programming not familiar to normal programmers/software
engineers that may want to use our tools

11

Friday, June 15, 2012

Rascal Goals

•Cover entire domain of meta-programming

•“No Magic” -- users should be able to understand what is going on from looking
at the code

•Programs should look familiar to practitioners

•Unofficial “language levels” -- users should be able to start simple, build up to
more advanced features

12

Friday, June 15, 2012

Rascal fixes these...

•Need a grammar for entities being reasoned
about, plus not everything is context free:
URI-based I/O operations, regexp matching, typed resources

•Ambiguous grammars: ambiguity-detection and diagnostic tools help
ameliorate (still undecidable)

•Debugging challenges: static type system with local inference, developing
tools to help detect cases where not all patterns are given, adding a code
debugger, etc

13

Friday, June 15, 2012

...and these, too!

•Need to constraint program: programs now
structured as functions with familiar control flow constructs; visits allow
structure-shy traversal

•Information must be encoded as trees: Rascal now includes lists, sets, maps,
tuples, and relations, with comprehensions and matching

•Unfamiliar programming style: see above; mainly-functional programs, with
elements from rewriting, but with a Java-like syntax

14

Friday, June 15, 2012

Rascal Features

•Scannerless GLL parsing

•Flexible pattern matching, lexical backtracking, and matching on concrete
syntax

•Functions with parameter-based dispatch, default functions, and higher-order
functions

•Traversal and fixpoint computation operations

•Immutable data, rich built-in data types, user-defined types

15

Friday, June 15, 2012

Example: 101Companies

16

start syntax S_Companies = S_Company+ companies;

syntax S_Company
	 = @Foldable "company" S_StringLiteral name "{" S_Department* departments "}";

syntax S_Department
	 = @Foldable "department" S_StringLiteral name "{" S_DepartmentElement* elements "}";
	
keyword S_Keywords
	 = "company"
	 | "department"
	 | "manager"
	 | "employee"
	 ;

lexical Layout
	 = [\t-\n\r\]
	 | Comment
	 ;

layout Layouts
	 = Layout* !>> [\t-\n \r \]
	 ;

Friday, June 15, 2012

Example: 101Companies

17

data Companies
	 = companies(list[Company] comps);

data Company
	 = company(str name, list[Department] deps);

data Department
	 = department(str name, list[Department] deps, list[Employee] empls);

data Employee
	 = employee(str name, list[EmployeeProperty] props);

data Employee
	 = manager(Employee emp);

data EmployeeProperty
	 = intProp(str name, int intVal)
	 | strProp(str name, str strVal);

Friday, June 15, 2012

Example: 101Companies

18

Department toAST(S_Department d) {
	 if (`department <S_StringLiteral name> { <S_DepartmentElement* elements> }` := d) {
	 	 list[Department] dl = [];
	 	 list[Employee] el = [];
	 	 for (e <- elements) {
	 	 	 switch(e) {
	 	 	 	 case (S_DepartmentElement) `<S_Department ded>` : dl = dl + toAST(ded);
	 	 	 	 case (S_DepartmentElement) `<S_Manager dem>` : el = el + toAST(dem);
	 	 	 	 case (S_DepartmentElement) `<S_Employee dee>` : el = el + toAST(dee);
	 	 	 	 default : throw "Unrecognized S_DepartmentElement syntax: <e>";
	 	 	 }	
	 	 }
	 	 return department(toASTString("<name>"), dl, el)[@at=d@\loc][@nameAt=name@\loc];
	 }
	 throw "Unrecognized S_Department syntax: <d>";
}

Friday, June 15, 2012

Example: 101Companies

19

@doc{Total the salaries of all employees}
public int total(Company c) {
	 return (0 | it + salary | /employee(name, [*ep,ip:intProp("salary",salary),*ep2]) <- c);
}

@doc{Print the current salary assignments, useful for debugging}
public void printCurrent(Company c) {
	 visit (c) {
	 	 case employee(name, [*ep,ip:intProp("salary",salary),*ep2]) :
	 	 	 println("<name>: $<salary>");
	 }
}

Friday, June 15, 2012

Example: Rascal Type System

20

public Symbol \var-func(Symbol ret, list[Symbol] parameters, Symbol varArg) =
 \func(ret, parameters + \list(varArg));

public bool subtype(Symbol s, s) = true;
public default bool subtype(Symbol s, Symbol t) = false;
public bool subtype(\int(), \num()) = true;
public bool subtype(\rat(), \num()) = true;
public bool subtype(\real(), \num()) = true;
public bool subtype(\tuple(list[Symbol] l), \tuple(list[Symbol] r)) = subtype(l, r);
public bool subtype(\rel(list[Symbol] l), \rel(list[Symbol] r)) = subtype(l, r);
public bool subtype(\list(Symbol s), \list(Symbol t)) = subtype(s, t);

Friday, June 15, 2012

Example: Rascal V2I Transformation

21

return { f | <f,e> <- r@extends,
	 	 entity([ifPrefix,class(cn,_)]) := e,
	 	 (/^<cnp:[^\<]+>.*$/ := cn || /^<cnp:[^\<]+>$/ := cn), cName == cnp }
	 + { f | <f,e> <- r@extends,
	 	 entity([ifPrefix,class(cn)]) := e,
	 	 (/^<cnp:[^\<]+>.*$/ := cn || /^<cnp:[^\<]+>$/ := cn), cName == cnp };

alias MethodInfoWDef = rel[str mname, loc mloc, Entity owner,
 Entity method, Entity def];

MethodInfoWDef miImp = { <mi.mname,mi.mloc,mi.owner,mi.method,def> |
e <- implementers,
tuple[str mname, loc mloc, Entity owner, Entity method] mi <-

getVisitorsInClassOrInterface(rascal,e),
	 entity([_*,method(mn,_,_)]) := mi.method, mn in miBaseNames,

def <- (miBase[mn]<2>) };

Friday, June 15, 2012

Overview

•Rascal: Introduction and Motivations

•Options for Program Analysis in Rascal

•Upgrade Analysis for PHP Programs

22

Friday, June 15, 2012

What is Rascal?

Rascal is a powerful domain-specific programming language that can
scale up to handle challenging problems in the domains of:

•Software analysis

•Software transformation

•DSL Design and Implementation

23

Friday, June 15, 2012

Options for Program Analysis in Rascal

•Reuse

•Collaboration

•From-scratch implementation (all in Rascal)

24

Friday, June 15, 2012

Reuse: Linking with Rewriting Logic Semantics and K

•Syntax, development environment for language defined in Rascal

•Semantics (execution, analysis, etc) defined in K or directly in Maude

•Rascal generates K or Maude terms decorated with location information

•Rascal displays results of execution: text, graphical annotations, etc

25

Friday, June 15, 2012

Linking Rascal with Rewriting Logic Semantics and K

26

K/MaudeRascal

Parser
Generator

Language
Grammar

Source
Program

Maude-
Formatted
Analysis
Task(s)

Analysis
Semantics

Unparsed
Analysis
Results

Result
Processor

Analysis
Results

Analysis Task
Generator

Generated
Parser Parse Tree

Maude-ifier

Friday, June 15, 2012

Representing Locations in Maude

27

fmod RASCAL-LOCATION is
 including STRING .
 including INT .
 sort RLocation .
 op sl : String Int Int Int Int Int Int -> RLocation .
endfm

op currLoc : RLocation -> State [format (r! o)] .

op rloc : RLocation -> ComputationItem .

eq k(rloc(RL) -> K) currLoc(RL') = k(K) currLoc(RL) .

eq k(exp(locatedExp(E, RL)) -> K) currLoc(RL') =
 k(exp(E) -> rloc(RL') -> K) currLoc(RL) .

Friday, June 15, 2012

Displaying Detected Errors using Rascal

28

Friday, June 15, 2012

Collaboration: Using the Eclipse JDT

•JDT Library uses Eclipse to extract facts about Java files hosted inside an
Eclipse project

•Examples: locations of method declarations, uses of class fields, types of
variable names

•Facts presented as relations over Java entities

•An example use: find all implementations of methods defined in a specific
interface, as well as all non-public fields and methods accessed in the method
bodies

29

Friday, June 15, 2012

Overview

•Rascal: Introduction and Motivations

•Options for Program Analysis in Rascal

•Upgrade Analysis for PHP Programs

30

Friday, June 15, 2012

PHP: An Overview

•Created by Rasmus Lerdorf in 1994 so he could
maintain his own homepage

•Originally written in Perl, now in C

•Dynamic programming language with static scoping

•Constantly extended with new features: Java-like
class model (v5), goto statements (v5.3), and now
traits (v5.4)

31

Friday, June 15, 2012

PHP Programs

•Scripts are HTML with embedded fragments of PHP

•Can also be just PHP (special case)

•Executed on the server, client-side content just HTML, JavaScript, etc

32

Friday, June 15, 2012

The Mandatory Hello, World Example

33

Friday, June 15, 2012

Parsing PHP Programs in PHP

34

Friday, June 15, 2012

Web Example: The FSL Wiki (Mediawiki)

35

Friday, June 15, 2012

Why Analyze PHP?

•Widespread usage: PHP is ranked 6th in
current Tiobe rankings
(http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html)

36

Friday, June 15, 2012

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Tiobe Rankings, March 2012

37

“The TIOBE Programming Community index is an indicator of the popularity of programming
languages. The index is updated once a month. The ratings are based on the number of
skilled engineers world-wide, courses and third party vendors. The popular search engines
Google, Bing, Yahoo!, Wikipedia, Amazon, YouTube and Baidu are used to calculate the
ratings.”, from http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Friday, June 15, 2012

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Why Analyze PHP?

•Widespread usage: PHP is ranked 6th in
current Tiobe rankings
(http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html)

•Combination of dynamic types and odd features makes analysis important for
program understanding, program correctness

38

Friday, June 15, 2012

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Variable variables: the poor man’s pointer

39

<?php
class	 foo	 {
	 	 	 	 var	 $bar	 =	 'I	 am	 bar.';
}

$foo	 =	 new	 foo();
$bar	 =	 'bar';
$baz	 =	 array('foo',	 'bar',	 'baz',	 'quux');
echo	 $foo-‐>$bar	 .	 "\n";
echo	 $foo-‐>$baz[1]	 .	 "\n";
?>

Friday, June 15, 2012

Variable variables: the poor man’s pointer

40

<?php
$instance	 =	 new	 SimpleClass();

//	 This	 can	 also	 be	 done	 with	 a	 variable:
$className	 =	 'Foo';
$instance	 =	 new	 $className();	 //	 Foo()
?>

Friday, June 15, 2012

Coercions are sometimes unexpected...

41

<?php
$foo	 =	 1	 +	 "10.5";	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 $foo	 is	 float	 (11.5)
$foo	 =	 1	 +	 "-‐1.3e3";	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 $foo	 is	 float	 (-‐1299)
$foo	 =	 1	 +	 "bob-‐1.3e3";	 	 	 	 	 	 	 	 	 	 	 //	 $foo	 is	 integer	 (1)
$foo	 =	 1	 +	 "bob3";	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 $foo	 is	 integer	 (1)
$foo	 =	 1	 +	 "10	 Small	 Pigs";	 	 	 	 	 	 	 //	 $foo	 is	 integer	 (11)
$foo	 =	 4	 +	 "10.2	 Little	 Piggies";	 //	 $foo	 is	 float	 (14.2)
$foo	 =	 "10.0	 pigs	 "	 +	 1;	 	 	 	 	 	 	 	 	 	 //	 $foo	 is	 float	 (11)
$foo	 =	 "10.0	 pigs	 "	 +	 1.0;	 	 	 	 	 	 	 	 //	 $foo	 is	 float	 (11)	 	 	 	 	
?>

Friday, June 15, 2012

Figuring out what is included can be hard...

42

<?php

function	 foo()
{
	 	 	 	 global	 $color;

	 	 	 	 include	 'vars.php';

	 	 	 	 echo	 "A	 $color	 $fruit";
}

/*	 vars.php	 is	 in	 the	 scope	 of	 foo()	 so	 	 	 	 	 *
*	 $fruit	 is	 NOT	 available	 outside	 of	 this	 	 *
*	 scope.	 	 $color	 is	 because	 we	 declared	 it	 *
*	 as	 global.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 */

foo();	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 A	 green	 apple
echo	 "A	 $color	 $fruit";	 	 	 //	 A	 green

?>

Friday, June 15, 2012

Upgrade Analysis for PHP Programs

•With introduction of new object model, default object representation changed:
structures to references

•Potential to break existing code which relied on old behavior

•Analysis focused on finding potential problems statically, combination of type
inference, alias analysis, intraprocedural dataflow analysis

43

Friday, June 15, 2012

Example Error Case

44

Friday, June 15, 2012

Analyzing PHP: A First Attempt

•Compile PHP scripts into intermediate
tree representation using phc

•Perform analysis over tree: generate call graph, perform type inference, perform
alias analysis

•Must iterate these analyses: type inference can detect new types, leading to
new methods, leading to new aliases, etc

•Using generated information, find r/w or w/w pairs

45

Friday, June 15, 2012

Did this work? Sometimes...

•Small examples, works great

•But large examples are too slow!

•Biggest problem: optimization of data structures, problems with both memory
and CPU usage

•Fixed partially, implemented in Java, but then...

•Second biggest problem: no control over iteration, big examples take forever to
stabilize

46

Friday, June 15, 2012

Analyzing PHP Rebooted

•Parse PHP with minimal
transformations, preservation of location information

•Generate program representation using algebraic types

•Perform analysis as an abstract evaluation over the domain of interest

47

Friday, June 15, 2012

Current Status: Still Early Stage

•Signature (i.e., types and constructors)
defined

•New parser working, generating Rascal terms

•Converting some old analysis code over: most of it is going away

•Rewriting analysis in style of Rascal type checker and CPF: abstract evaluation
over an analysis domain

48

Friday, June 15, 2012

•Rascal: http://www.rascal-mpl.org

•SEN1: http://www.cwi.nl/sen1

•Me: http://www.cwi.nl/~hills

49

Friday, June 15, 2012

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.cwi.nl/sen1
http://www.cwi.nl/sen1
http://www.cwi.nl/~hills
http://www.cwi.nl/~hills

