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What is Rascal?

Rascal is a powerful domain-specific programming language that can 
scale up to handle challenging problems in the domains of:

•Software analysis

•Software transformation

•DSL Design and Implementation
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Why Rascal?
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Why Rascal? Why not ASF+SDF?

“RASCAL is not an algebraic specification formalism with 
programming language features, but rather a programming 
language with algebraic specification features”

- Rascal: From Algebraic Specification to Meta-Programming, 
Jeroen van den Bos, Mark Hills, Paul Klint, Tijs van der Storm, 
and Jurgen J. Vinju, AMMSE 2011
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Answer: The Intended Users of Rascal
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Lessons Learned: ASF, the Benefits

•“Match and Apply”: equational logic and 
term rewriting, with conditional and default 
equations

•Powerful list matching features (especially in conjunction with SDF -- matching 
over lists of concrete terms)

•Reuse and extensibility: parameterized modules, renaming on import, can add 
new constructors and equations (but problematic under configuration changes)
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Lessons Learned: SDF, the Benefits

•Syntax definitions are algebraic signatures

•Scannerless generalized parsing, handles complexity of real-life languages 
where whitespace, etc may matter

•Generalized parsing allows modularity -- unions of context free grammars are 
still context free

•With ASF, equations can perform complex transformations of source code

9

Friday, June 15, 2012



Lessons Learned: Some Challenges, Too

•Need a grammar for entities being reasoned 
about (e.g., dot files, XML configuration files, etc); 
not always trivial to create one

•Similarly, not everything is context free: requires pre-processing using other 
tools 

•Ability to combine grammars does not preclude ambiguity

•Challenging to debug: type errors manifest as parse errors, programming bugs 
as matching failures 
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Lessons Learned: Some Challenges, Too

•For standard functional-style programs, 
“apply-anywhere” rules can provide too much 
freedom, requires program to constrain application

•Information stored as graphs, sets, etc has to be encoded into a tree (set 
matching in Maude alleviates this somewhat, context transformers in K even 
more; Rascal includes set matching now too!)

•Rule-based programming not familiar to normal programmers/software 
engineers that may want to use our tools
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Rascal Goals

•Cover entire domain of meta-programming

•“No Magic” -- users should be able to understand what is going on from looking 
at the code

•Programs should look familiar to practitioners

•Unofficial “language levels” -- users should be able to start simple, build up to 
more advanced features
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Rascal fixes these...

•Need a grammar for entities being reasoned 
about, plus not everything is context free: 
URI-based I/O operations, regexp matching, typed resources

•Ambiguous grammars: ambiguity-detection and diagnostic tools help 
ameliorate (still undecidable)

•Debugging challenges: static type system with local inference, developing 
tools to help detect cases where not all patterns are given, adding a code 
debugger, etc
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...and these, too!

•Need to constraint program: programs now 
structured as functions with familiar control flow constructs; visits allow 
structure-shy traversal 

•Information must be encoded as trees: Rascal now includes lists, sets, maps, 
tuples, and relations, with comprehensions and matching

•Unfamiliar programming style: see above; mainly-functional programs, with 
elements from rewriting, but with a Java-like syntax
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Rascal Features

•Scannerless GLL parsing

•Flexible pattern matching, lexical backtracking, and matching on concrete 
syntax

•Functions with parameter-based dispatch, default functions, and higher-order 
functions

•Traversal and fixpoint computation operations

•Immutable data, rich built-in data types, user-defined types
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Example: 101Companies
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start syntax S_Companies = S_Company+ companies;

syntax S_Company
	 = @Foldable "company" S_StringLiteral name "{" S_Department* departments "}";

syntax S_Department
	 = @Foldable "department" S_StringLiteral name "{" S_DepartmentElement* elements "}";
	
keyword S_Keywords
	 = "company"
	 | "department"
	 | "manager"
	 | "employee"
	 ;

lexical Layout 
	 = [\t-\n\r\ ]
	 | Comment
	 ;

layout Layouts
	 = Layout* !>> [\t-\n \r \ ]
	 ;
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Example: 101Companies

17

data Companies 
	 = companies(list[Company] comps);

data Company 
	 = company(str name, list[Department] deps);

data Department 
	 = department(str name, list[Department] deps, list[Employee] empls);

data Employee 
	 = employee(str name, list[EmployeeProperty] props);

data Employee 
	 = manager(Employee emp);

data EmployeeProperty 
	 = intProp(str name, int intVal)
	 | strProp(str name, str strVal);
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Example: 101Companies
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Department toAST(S_Department d) {
	 if (`department <S_StringLiteral name> { <S_DepartmentElement* elements> }` := d) {
	 	 list[Department] dl = [ ];
	 	 list[Employee] el = [ ];
	 	 for (e <- elements) {
	 	 	 switch(e) {
	 	 	 	 case (S_DepartmentElement) `<S_Department ded>` : dl = dl + toAST(ded);
	 	 	 	 case (S_DepartmentElement) `<S_Manager dem>` : el = el + toAST(dem);
	 	 	 	 case (S_DepartmentElement) `<S_Employee dee>` : el = el + toAST(dee);
	 	 	 	 default : throw "Unrecognized S_DepartmentElement syntax: <e>";
	 	 	 }	
	 	 }
	 	 return department(toASTString("<name>"), dl, el)[@at=d@\loc][@nameAt=name@\loc];
	 }
	 throw "Unrecognized S_Department syntax: <d>";
}
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Example: 101Companies
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@doc{Total the salaries of all employees}
public int total(Company c) {
	 return (0 | it + salary | /employee(name, [*ep,ip:intProp("salary",salary),*ep2]) <- c);
}

@doc{Print the current salary assignments, useful for debugging}
public void printCurrent(Company c) {
	 visit (c) {
	 	 case employee(name, [*ep,ip:intProp("salary",salary),*ep2]) :
	 	 	 println("<name>: $<salary>");
	 }
}
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Example: Rascal Type System
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public Symbol \var-func(Symbol ret, list[Symbol] parameters, Symbol varArg) =
              \func(ret, parameters + \list(varArg));

public bool subtype(Symbol s, s) = true;
public default bool subtype(Symbol s, Symbol t) = false;
public bool subtype(\int(), \num()) = true;
public bool subtype(\rat(), \num()) = true;
public bool subtype(\real(), \num()) = true;
public bool subtype(\tuple(list[Symbol] l), \tuple(list[Symbol] r)) = subtype(l, r);
public bool subtype(\rel(list[Symbol] l), \rel(list[Symbol] r)) = subtype(l, r);
public bool subtype(\list(Symbol s), \list(Symbol t)) = subtype(s, t);  
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Example: Rascal V2I Transformation
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return { f | <f,e> <- r@extends, 
	 	      entity([ifPrefix,class(cn,_)]) := e, 
	 	      (/^<cnp:[^\<]+>.*$/ := cn || /^<cnp:[^\<]+>$/ := cn), cName == cnp }
	  + { f | <f,e> <- r@extends, 
	 	      entity([ifPrefix,class(cn)]) := e, 
	 	      (/^<cnp:[^\<]+>.*$/ := cn || /^<cnp:[^\<]+>$/ := cn), cName == cnp };

alias MethodInfoWDef = rel[str mname, loc mloc, Entity owner, 
                           Entity method, Entity def];

MethodInfoWDef miImp = { <mi.mname,mi.mloc,mi.owner,mi.method,def> | 
e <- implementers, 
tuple[str mname, loc mloc, Entity owner, Entity method] mi <-

getVisitorsInClassOrInterface(rascal,e), 
	 entity([_*,method(mn,_,_)]) := mi.method, mn in miBaseNames, 

def <- (miBase[mn]<2>) };

Friday, June 15, 2012



Overview

•Rascal: Introduction and Motivations

•Options for Program Analysis in Rascal

•Upgrade Analysis for PHP Programs

22

Friday, June 15, 2012



What is Rascal?

Rascal is a powerful domain-specific programming language that can 
scale up to handle challenging problems in the domains of:

•Software analysis

•Software transformation

•DSL Design and Implementation
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Options for Program Analysis in Rascal

•Reuse

•Collaboration

•From-scratch implementation (all in Rascal)
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Reuse: Linking with Rewriting Logic Semantics and K

•Syntax, development environment for language defined in Rascal

•Semantics (execution, analysis, etc) defined in K or directly in Maude

•Rascal generates K or Maude terms decorated with location information

•Rascal displays results of execution: text, graphical annotations, etc
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Linking Rascal with Rewriting Logic Semantics and K
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Representing Locations in Maude
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fmod RASCAL-LOCATION is
  including STRING .
  including INT .
  sort RLocation .
  op sl : String Int Int Int Int Int Int -> RLocation .
endfm

op currLoc : RLocation -> State [format (r! o)] .

op rloc : RLocation -> ComputationItem .

eq k(rloc(RL) -> K) currLoc(RL') = k(K) currLoc(RL) .

eq k(exp(locatedExp(E, RL)) -> K) currLoc(RL') = 
     k(exp(E) -> rloc(RL') -> K) currLoc(RL) .
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Displaying Detected Errors using Rascal
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Collaboration: Using the Eclipse JDT

•JDT Library uses Eclipse to extract facts about Java files hosted inside an 
Eclipse project

•Examples: locations of method declarations, uses of class fields, types of 
variable names

•Facts presented as relations over Java entities

•An example use: find all implementations of methods defined in a specific 
interface, as well as all non-public fields and methods accessed in the method 
bodies

29

Friday, June 15, 2012



Overview

•Rascal: Introduction and Motivations

•Options for Program Analysis in Rascal

•Upgrade Analysis for PHP Programs

30

Friday, June 15, 2012



PHP: An Overview

•Created by Rasmus Lerdorf in 1994 so he could 
maintain his own homepage

•Originally written in Perl, now in C

•Dynamic programming language with static scoping

•Constantly extended with new features: Java-like 
class model (v5), goto statements (v5.3), and now 
traits (v5.4)
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PHP Programs

•Scripts are HTML with embedded fragments of PHP

•Can also be just PHP (special case)

•Executed on the server, client-side content just HTML, JavaScript, etc
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The Mandatory Hello, World Example
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Parsing PHP Programs in PHP
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Web Example: The FSL Wiki (Mediawiki)
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Why Analyze PHP?

•Widespread usage: PHP is ranked 6th in 
current Tiobe rankings 
(http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html)
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Tiobe Rankings, March 2012
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“The TIOBE Programming Community index is an indicator of the popularity of programming 
languages. The index is updated once a month. The ratings are based on the number of 
skilled engineers world-wide, courses and third party vendors. The popular search engines 
Google, Bing, Yahoo!, Wikipedia, Amazon, YouTube and Baidu are used to calculate the 
ratings.”, from http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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Why Analyze PHP?

•Widespread usage: PHP is ranked 6th in 
current Tiobe rankings 
(http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html)

•Combination of dynamic types and odd features makes analysis important for 
program understanding, program correctness
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Variable variables: the poor man’s pointer
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<?php
class	  foo	  {
	  	  	  	  var	  $bar	  =	  'I	  am	  bar.';
}

$foo	  =	  new	  foo();
$bar	  =	  'bar';
$baz	  =	  array('foo',	  'bar',	  'baz',	  'quux');
echo	  $foo-‐>$bar	  .	  "\n";
echo	  $foo-‐>$baz[1]	  .	  "\n";
?>
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Variable variables: the poor man’s pointer
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<?php
$instance	  =	  new	  SimpleClass();

//	  This	  can	  also	  be	  done	  with	  a	  variable:
$className	  =	  'Foo';
$instance	  =	  new	  $className();	  //	  Foo()
?>
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Coercions are sometimes unexpected...
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<?php
$foo	  =	  1	  +	  "10.5";	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  $foo	  is	  float	  (11.5)
$foo	  =	  1	  +	  "-‐1.3e3";	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  $foo	  is	  float	  (-‐1299)
$foo	  =	  1	  +	  "bob-‐1.3e3";	  	  	  	  	  	  	  	  	  	  	  //	  $foo	  is	  integer	  (1)
$foo	  =	  1	  +	  "bob3";	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  $foo	  is	  integer	  (1)
$foo	  =	  1	  +	  "10	  Small	  Pigs";	  	  	  	  	  	  	  //	  $foo	  is	  integer	  (11)
$foo	  =	  4	  +	  "10.2	  Little	  Piggies";	  //	  $foo	  is	  float	  (14.2)
$foo	  =	  "10.0	  pigs	  "	  +	  1;	  	  	  	  	  	  	  	  	  	  //	  $foo	  is	  float	  (11)
$foo	  =	  "10.0	  pigs	  "	  +	  1.0;	  	  	  	  	  	  	  	  //	  $foo	  is	  float	  (11)	  	  	  	  	  
?>
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Figuring out what is included can be hard...
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<?php

function	  foo()
{
	  	  	  	  global	  $color;

	  	  	  	  include	  'vars.php';

	  	  	  	  echo	  "A	  $color	  $fruit";
}

/*	  vars.php	  is	  in	  the	  scope	  of	  foo()	  so	  	  	  	  	  *
*	  $fruit	  is	  NOT	  available	  outside	  of	  this	  	  *
*	  scope.	  	  $color	  is	  because	  we	  declared	  it	  *
*	  as	  global.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  */

foo();	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  A	  green	  apple
echo	  "A	  $color	  $fruit";	  	  	  //	  A	  green

?>
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Upgrade Analysis for PHP Programs

•With introduction of new object model, default object representation changed: 
structures to references

•Potential to break existing code which relied on old behavior

•Analysis focused on finding potential problems statically, combination of type 
inference, alias analysis, intraprocedural dataflow analysis
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Example Error Case
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Analyzing PHP: A First Attempt

•Compile PHP scripts into intermediate 
tree representation using phc

•Perform analysis over tree: generate call graph, perform type inference, perform 
alias analysis

•Must iterate these analyses: type inference can detect new types, leading to 
new methods, leading to new aliases, etc

•Using generated information, find r/w or w/w pairs
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Did this work? Sometimes...

•Small examples, works great

•But large examples are too slow!

•Biggest problem: optimization of data structures, problems with both memory 
and CPU usage

•Fixed partially, implemented in Java, but then...

•Second biggest problem: no control over iteration, big examples take forever to 
stabilize
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Analyzing PHP Rebooted

•Parse PHP with minimal 
transformations, preservation of location information

•Generate program representation using algebraic types

•Perform analysis as an abstract evaluation over the domain of interest
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Current Status: Still Early Stage

•Signature (i.e., types and constructors) 
defined

•New parser working, generating Rascal terms

•Converting some old analysis code over: most of it is going away

•Rewriting analysis in style of Rascal type checker and CPF: abstract evaluation 
over an analysis domain
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•Rascal: http://www.rascal-mpl.org

•SEN1: http://www.cwi.nl/sen1

•Me: http://www.cwi.nl/~hills
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