
Scripting a Refactoring with Rascal and Eclipse

Mark Hills, Paul Klint, & Jurgen J. Vinju

Fifth Workshop on Refactoring Tools 2012
June 1, 2012
Rapperswil, Switzerland

http://www.rascal-mpl.org

Friday, June 15, 2012

http://www.rascal-mpl.org
http://www.rascal-mpl.org


Overview

• A Brief Introduction to Rascal

• The Visitor to Interpreter Refactoring

• Extending to Other Languages and Refactorings

• Related Work

2

Friday, June 15, 2012



Overview

• A Brief Introduction to Rascal

• The Visitor to Interpreter Refactoring

• Extending to Other Languages and Refactorings

• Related Work

3

Friday, June 15, 2012



What is Rascal?

Rascal is a powerful domain-specific programming language that can 
scale up to handle challenging problems in the domains of:

• Software analysis

• Software transformation

• DSL Design and Implementation

4

Friday, June 15, 2012



Rascal Goals

• Cover entire domain of meta-programming

• “No Magic” -- users should be able to understand what is going on from 
looking at the code

• Programs should look familiar to practitioners

• Unofficial “language levels” -- users should be able to start simple, build up to 
more advanced features

5

Friday, June 15, 2012



Rascal Features

• Scannerless GLL parsing

• Flexible pattern matching, lexical backtracking, and matching on concrete 
syntax

• Functions with parameter-based dispatch, default functions, and higher-order 
functions

• Traversal and fixpoint computation operations

• Immutable data, rich built-in data types, user-defined types

• Rich collection of libraries

6

Friday, June 15, 2012



Overview

• A Brief Introduction to Rascal

• The Visitor to Interpreter Refactoring

• Extending to Other Languages and Refactorings

• Related Work

7

Friday, June 15, 2012



Visitor to Interpreter: Motivation

• Developed as part of an experiment in software maintenance

• Question: maintenance cost of visitor versus interpreter

• Goal: two systems, with only this variable

• Solution: build a refactoring!

8

Friday, June 15, 2012



V2I, From 30,000 Feet

1.Extract facts needed for transformation

2.Do preparatory transformations

9

Legend

Extract Analyze Synthesize

Extract Facts
Preparatory 

Transformations

Transform 
Methods

Generate 
Interpreter 
Classes

Clean New 
Code

Remove Old 
Methods

Rascal 
Source Code

V2I Analysis

Visitor Code Entities

Visitor 
Classes

Visitor 
Methods

Fields Used 
in Visitors

Methods Used 
in Visitors

Transformed 
Interpreter Code

Transformed 
Visitor Code

Data

Transformation Process

Analysis Process

Analysis Info Flow

Source Code Flow

Visitor 
Interfaces

3.Generate interpreter code

4.Clean up

Friday, June 15, 2012



Before and After

10

	 public Result<IValue> visitExpressionFieldUpdate(FieldUpdate x) {
	 	 Result<IValue> expr = x.getExpression().accept(this);
	 	 Result<IValue> repl = x.getReplacement().accept(this);
	 	 String name = Names.name(x.getKey());
	 	 return expr.fieldUpdate(name, repl, getCurrentEnvt().getStore());
	 }

	 public Result<IValue> interpret(Evaluator __eval) {
	 	 Result<IValue> expr = this.getExpression().interpret(__eval);
	 	 Result<IValue> repl = this.getReplacement().interpret(__eval);
	 	 String name = org.rascalmpl.interpreter.utils.Names.name(this
	 	 	 	 .getKey());
	 	 return expr.fieldUpdate(name, repl, __eval.getCurrentEnvt()
	 	 	 	 .getStore());
	 }

Friday, June 15, 2012



Extract Facts Needed for Transformation

• Extract JDT Facts

• Calculate extends and inherits for visitor interface

• Find all visit method implementations

• Find all non-public field and method dependencies
11

Legend

Extract Analyze Synthesize

Extract Facts
Preparatory 

Transformations

Transform 
Methods

Generate 
Interpreter 
Classes

Clean New 
Code

Remove Old 
Methods

Rascal 
Source Code

V2I Analysis

Visitor Code Entities

Visitor 
Classes

Visitor 
Methods

Fields Used 
in Visitors

Methods Used 
in Visitors

Transformed 
Interpreter Code

Transformed 
Visitor Code

Data

Transformation Process

Analysis Process

Analysis Info Flow

Source Code Flow

Visitor 
Interfaces

Friday, June 15, 2012



Do Preparatory Transformations

• Run code cleanup on implementers

• Make non-public dependencies public

• Fully qualify type names

12

Legend

Extract Analyze Synthesize

Extract Facts
Preparatory 

Transformations

Transform 
Methods

Generate 
Interpreter 
Classes

Clean New 
Code

Remove Old 
Methods

Rascal 
Source Code

V2I Analysis

Visitor Code Entities

Visitor 
Classes

Visitor 
Methods

Fields Used 
in Visitors

Methods Used 
in Visitors

Transformed 
Interpreter Code

Transformed 
Visitor Code

Data

Transformation Process

Analysis Process

Analysis Info Flow

Source Code Flow

Visitor 
Interfaces

Friday, June 15, 2012



Generate Interpreter Code

• Transform visit methods to interpret methods using string matching/
replacement

• Generate new interpreter class hierarchy for new interpret methods

13

Legend

Extract Analyze Synthesize

Extract Facts
Preparatory 

Transformations

Transform 
Methods

Generate 
Interpreter 
Classes

Clean New 
Code

Remove Old 
Methods

Rascal 
Source Code

V2I Analysis

Visitor Code Entities

Visitor 
Classes

Visitor 
Methods

Fields Used 
in Visitors

Methods Used 
in Visitors

Transformed 
Interpreter Code

Transformed 
Visitor Code

Data

Transformation Process

Analysis Process

Analysis Info Flow

Source Code Flow

Visitor 
Interfaces

Friday, June 15, 2012



Why Not Move Method and Push Down?

• Still need to do much preparatory work

• Less control (e.g., public fields versus getters and setters, no copy method)

• Still need to transform method bodies

• Can produce broken code

14

Friday, June 15, 2012



Clean Up

• Perform clean up on generated code, including adding imports

• Remove old visit methods

15

Legend

Extract Analyze Synthesize

Extract Facts
Preparatory 

Transformations

Transform 
Methods

Generate 
Interpreter 
Classes

Clean New 
Code

Remove Old 
Methods

Rascal 
Source Code

V2I Analysis

Visitor Code Entities

Visitor 
Classes

Visitor 
Methods

Fields Used 
in Visitors

Methods Used 
in Visitors

Transformed 
Interpreter Code

Transformed 
Visitor Code

Data

Transformation Process

Analysis Process

Analysis Info Flow

Source Code Flow

Visitor 
Interfaces

Friday, June 15, 2012



Overview

• A Brief Introduction to Rascal

• The Visitor to Interpreter Refactoring

• Extending to Other Languages and Refactorings

• Related Work

16

Friday, June 15, 2012



Will This Work Elsewhere?

• Makes heavy use of JDT, Eclipse refactoring API

• Technique isn’t Java specific, should work for other language given similar 
infrastructure

• Technique isn’t Eclipse specific, Rascal just happens to work best with 
Eclipse

• Using a different IDE would require bridging software (e.g., something to talk 
to Emacs, NetBeans, etc)

• Overall: easier to change language, harder to change IDE

17

Friday, June 15, 2012



Overview

• A Brief Introduction to Rascal

• The Visitor to Interpreter Refactoring

• Extending to Other Languages and Refactorings

• Related Work

18

Friday, June 15, 2012



Related Work

• Rascal: Infer Generic Type Arguments with FJ, TyMoRe (Anastasia)

• JastAdd-based refactorings

• Languages for refactorings: Refacola, JunGL, DSL in Wrangler

19

Friday, June 15, 2012



For More Information on Rascal: http://tutor.rascal-mpl.org

20

Friday, June 15, 2012

http://tutor.rascal-mpl.org
http://tutor.rascal-mpl.org


21

• Rascal: http://www.rascal-mpl.org

• SEN1: http://www.cwi.nl/sen1

• Me: http://www.cwi.nl/~hills

Friday, June 15, 2012

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.cwi.nl/sen1
http://www.cwi.nl/sen1
http://www.cwi.nl/~hills
http://www.cwi.nl/~hills


Related Work: Refactoring with Meta-Programming Languages

• M. Schäfer, T. Ekman, and O. de Moor. Sound and Extensible Renaming for 
Java (OOPSLA’08)

• M. Schäfer, M. Verbaere, T. Ekman, and O. de Moor. Stepping Stones over the 
Refactoring Rubicon (ECOOP’09)

• M. Schäfer and O. de Moor. Specifying and Implementing Refactorings 
(OOPSLA’10)

22

Friday, June 15, 2012



Related Work: Refactoring using Rascal

• P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A Domain Specific 
Language for Source Code Analysis and Manipulation (SCAM’09)

• TyMoRe: Type based Modular Refactorings, i.e., refactorings using type 
constraints, with a specific focus on reuse

23

Friday, June 15, 2012



Related Work: Scripting Refactorings/Refactoring DSLs

• Refacola: F. Steimann, C. Kollee, and J. von Pilgrim. A Refactoring Constraint 
Language and Its Application to Eiffel (ECOOP’11)

• JunGL: M. Verbaere, R. Ettinger, and O. de Moor. JunGL: A Scripting 
Language for Refactoring (ICSE’06)

• Wrangler: H. Li and S. J. Thompson. A Domain-Specific Language for 
Scripting Refactorings in Erlang (FASE’12)

24

Friday, June 15, 2012


