
An Empirical Study of PHP Feature Usage:
A Static Analysis Perspective

http://www.rascal-mpl.org

Mark Hills, Paul Klint, and Jurgen J. Vinju
CWI, Software Analysis and Transformation (SWAT)

ISSTA 2013
Lugano, Switzerland
July 16-18, 2013

Thursday, July 18, 13

http://www.rascal-mpl.org
http://www.rascal-mpl.org

PHP

Thursday, July 18, 13

PHP Analysis in Rascal (PHP AiR)

• Big picture: develop a framework for PHP source code analysis

• Domains:

• Program analysis (static/dynamic)

• Software metrics

• Empirical software engineering

• Developer tool support

3

Thursday, July 18, 13

Why look at PHP applications?

Thursday, July 18, 13

Why look at PHP applications?

Thursday, July 18, 13

Why look at PHP applications?

Thursday, July 18, 13

Why look at PHP applications?

Thursday, July 18, 13

PHP applications are everywhere!

5

Thursday, July 18, 13

Open Source Commits by Language (Ohloh.net)

6

http://www.ohloh.net/languages/compare?measure=commits&percent=true

Thursday, July 18, 13

http://www.ohloh.net/languages/compare?measure=commits&percent=true
http://www.ohloh.net/languages/compare?measure=commits&percent=true

Challenges in Tool Development

Thursday, July 18, 13

Example: Building a type inferencer

8

Thursday, July 18, 13

Example: Building a type inferencer

• Lots of different statements and expressions, are
they all used? What do we need to implement first
to get up and going?

8

Thursday, July 18, 13

Example: Building a type inferencer

• Lots of different statements and expressions, are
they all used? What do we need to implement first
to get up and going?

• What if the code has evals? This could add new types.

8

Thursday, July 18, 13

Example: Building a type inferencer

• Lots of different statements and expressions, are
they all used? What do we need to implement first
to get up and going?

• What if the code has evals? This could add new types.

• What if the code has invocation functions? Can we tell what
functions are called?

8

Thursday, July 18, 13

Example: Building a type inferencer

• Lots of different statements and expressions, are
they all used? What do we need to implement first
to get up and going?

• What if the code has evals? This could add new types.

• What if the code has invocation functions? Can we tell what
functions are called?

• What if the code contains variable variables? Can we tell which
variables they refer to?

8

Thursday, July 18, 13

Example: Building a type inferencer

• Lots of different statements and expressions, are
they all used? What do we need to implement first
to get up and going?

• What if the code has evals? This could add new types.

• What if the code has invocation functions? Can we tell what
functions are called?

• What if the code contains variable variables? Can we tell which
variables they refer to?

• What if...
8

Thursday, July 18, 13

Looking more generally

• PHP is big, which language features should we
focus on first?

• PHP is dynamic, how much impact do these features have on real
programs?

• What kinds of assumptions (e.g., no evals, no writes through
variable variables) can we safely make about code and still have
good precision?

• How can we build prototypes that work with real PHP code?

9

Thursday, July 18, 13

Empirical studies have a long
history...

Thursday, July 18, 13

Solution: Study PHP feature usage empirically

• What does a typical PHP program (level of focus: individual pages)
look like?

• What features of PHP do people really use?

• How often are dynamic features, which are hard for static analysis
to handle, used in real programs?

• When dynamic features appear, are they really dynamic? Or are
they used in static ways?

11

Thursday, July 18, 13

Which dynamic features?

• Dynamic includes

• Variable Constructs

• Overloading

• eval

• Variadic Functions

• Dynamic Invocation

12

Thursday, July 18, 13

Setting Up the Experiment: Tools & Methods

13
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

Thursday, July 18, 13

http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

Building an open-source PHP corpus

• Well-known systems and frameworks:
WordPress, Joomla, MediaWiki, Moodle,
Symfony, Zend

• Multiple domains: app frameworks, CMS, blogging, wikis,
eCommerce, webmail, and others

• Selected based on Ohloh rankings, based on popularity and desire
for domain diversity

• Totals: 19 open-source PHP systems, 3.37 million lines of PHP
code, 19,816 files

14

Thursday, July 18, 13

Methodology

• Corpus parsed with an open-source PHP parser

• Feature usage extracted directly from ASTs

• Dynamic features identified using pattern matching

• More in-depth explorations performed manually or using custom-
written analysis routines

• All computation scripted, resulting figures and tables generated

15

• http://www.rascal-mpl.org/

Thursday, July 18, 13

http://www.rascal-mpl.org/
http://www.rascal-mpl.org/

Threats to validity

• Results could be very corpus-specific

• Large, well-known open-source PHP
systems may not be representative of
typical PHP code

• Dynamic includes could skew results

16

Thursday, July 18, 13

Interpreting the Results

17

Thursday, July 18, 13

Zooming in

• Feature usage and coverage

• Dynamic includes

• Variable variables

• eval

18

Thursday, July 18, 13

Feature usage and coverage

• Goal: analysis prototypes should cover actual programs

• Solution: compute which sets of features cover the most files

• 109 features total

• 7 never used (including goto), mainly newer features

• casts, predicates, unary operations used rarely

• 74 features cover 80% of all files, over 90% for some systems
(CakePHP: 95.3%, Zend: 93.2%)

19

Thursday, July 18, 13

Dynamic includes

• In PHP, may not know code that will run until runtime

• Q1: How often are dynamic includes used?

• Q2: How often can we resolve them to a specific file up front?

20

require_once(
 dirname(
 __FILE__	
)	
 .	
 '/Maintenance.php'	
);

$maintananceDir	
 =	
 dirname(
 dirname(
 dirname(
 dirname(

	
 	
 	
 	
 	
 	
 	
 	
 dirname(
 __FILE__	
)	
)	
)	
)	
)	
 .	
 '/maintenance';
require(
 “$maintananceDir/Maintenance.php”	
);

Thursday, July 18, 13

Usage of dynamic includes

• 19,816 files in corpus: 3,184 contain dynamic includes (16.1%)

• 25,637 includes in corpus: 7,962 are dynamic (31.1%)

• Some systems worse than others: CakePHP (120 of 124 includes
are dynamic), CodeIgniter (69 of 69), Drupal (171 of 172), Moodle
(4291 of 7744)

• Some only use in limited way: Zend only 350 of 12,829 are
dynamic, PEAR only 11 of 211

21

Thursday, July 18, 13

Resolution of dynamic includes

• After resolution, 864 files contain dynamic includes (27.1% of files
with dynamic includes still contain them, 4.4% of total files)

• After resolution, 1,439 dynamic includes remain (18.2% of original)

• Based on current resolution analysis, dynamic includes usually not
brought in through other includes

• Results on major systems: Drupal (130 of 171 resolved), Joomla
(200 of 352 resolved), MediaWiki (425 of 493), Moodle (3350 of
4291), WordPress (332 of 360), Zend (285 of 350)

• Not always so good: 4 of 48 in Kohana resolved, 41 of 95 in
Symfony, 0 of 11 in PEAR 22

Thursday, July 18, 13

Variable variables

• Reflective ability to refer to variables using strings

• Often used as a code saving device

• Problem: creates aliases using string operations

23

$x	
 =	
 3;
$y	
 =	
 'x';
echo	
 $x;	
 //	
 3
echo	
 $y;	
 //	
 x
echo	
 $$y;	
 //	
 3
$$y	
 =	
 4;
echo	
 $x;	
 //	
 4

Thursday, July 18, 13

Variable variables: findings

• Question: How often can we statically determine to which names a
variable variable can refer?

• Method: use Rascal to find all locations of variable variables,
manually inspect code

• Restrictions: names statically determinable, no aliases, no other
declarations

• General: 61% of uses resolvable, 75% in newer systems

• Best: 100% in Drupal & PEAR, 95% in CodeIgniter & Smarty

• Worst: 0% in Joomla & osCommerce
24

Thursday, July 18, 13

The eval expression (and create_function)

• eval and create_function provide for runtime evaluation of arbitrary
code

• Used rarely in corpus: 148 occurrences of eval, 72 of
create_function, many uses in testing and maintenance code

• Uses truly dynamic, need string analysis and (in the general case)
dynamic analysis to determine actually invoked code

25

eval(str_replace(array('<?php',	
 '?>'),	
 '',	
 $result['code']));

create_function('$v',	

	
 	
 '$v[\'title\']	
 =	
 $v[\'title\']	
 .	
 \'-­‐transformed\';	
 return	
 $v;')

Thursday, July 18, 13

Occurrences of all dynamic features

• 19,816 files in corpus: 3,386 contain dynamic features (17.1%)

• Dynamic feature usage varies greatly over systems

• PEAR: 50% of files have at least 1 dynamic feature

• WordPress: 30.7%

• MediaWiki: 14.6%

• Symfony: 9.4%

26

Thursday, July 18, 13

Summary

27

Thursday, July 18, 13

Summary: What have we learned?

• Prototypes can be built to cover a subset of the language and still
cover a significant number of real program files

• Knowledge of how often dynamic features appear provides firmer
ground for assumptions we make in building analyses

• Patterns of dynamic feature usage can be exploited in analysis
tools to improve precision, mitigate against dynamic effects

• Need to look more closely at how PHP files are used (e.g., user
facing vs. unit test code), application phases (e.g., plugin
initialization), may be able to leverage this

• Hybrid static/dynamic solutions are clearly needed in some cases 28

Thursday, July 18, 13

Backup Slides

29

Thursday, July 18, 13

System Feature Coverage: Overall

30

Thursday, July 18, 13

Related Work in JavaScript

31
Proceedings of PLDI 2010, pages 1 - 12

Thursday, July 18, 13

Related Work in JavaScript

32
Proceedings of OOPSLA 2011, pages 119 - 137

Thursday, July 18, 13

Related Work in Ruby

33
Proceedings of OOPSLA 2009, pages 283 - 300

Thursday, July 18, 13

Other Related Work: Analysis for Dynamic Languages

34

“Eval Begone!: Semi-Automated Removal of eval from JavaScript Programs”, Fadi
Meawad, Gregor Richards, Floréal Morandat, Jan Vitek. OOPSLA 2012.

“Tool-supported Refactoring for JavaScript”, Asger Feldthaus, Todd D. Millstein, Anders
Møller, Max Schäfer, Frank Tip. OOPSLA 2011.

“The Eval That Men Do - A Large-Scale Study of the Use of Eval in JavaScript
Applications”, Gregor Richards, Christian Hammer, Brian Burg, Jan Vitek. ECOOP 2011.

“Type Analysis for JavaScript”, Simon Holm Jensen, Anders Møller, Peter Thiemann. SAS
2009.

Thursday, July 18, 13

http://www.informatik.uni-trier.de/~ley/pers/hd/f/Feldthaus:Asger.html
http://www.informatik.uni-trier.de/~ley/pers/hd/f/Feldthaus:Asger.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Millstein:Todd_D=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Millstein:Todd_D=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sch=auml=fer:Max.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sch=auml=fer:Max.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tip:Frank.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tip:Frank.html

Related Work: Program Analysis for PHP

35

“The HipHop Compiler for PHP”, Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark
Williams, Qi Gao, Guilherme Ottoni, Andrew Paroski, Scott MacVicar,Jason Evans,
Stephen Tu. OOPSLA 2012.

“Design and Implementation of an Ahead-of-Time Compiler for PHP”, Paul Biggar. PhD
Thesis, Trinity College Dublin, April 2010.

“Static Detection of Cross-Site Scripting Vulnerabilities”, Gary Wassermann, Zhendong
Su. ICSE 2008.

“Sound and Precise Analysis of Web Applications for Injection Vulnerabilities”, Gary
Wassermann, Zhendong Su. PLDI 2007.

Thursday, July 18, 13

http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zhao:Haiping.html
http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zhao:Haiping.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Proctor:Iain.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Proctor:Iain.html
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yang:Minghui.html
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yang:Minghui.html
http://www.informatik.uni-trier.de/~ley/pers/hd/q/Qi:Xin.html
http://www.informatik.uni-trier.de/~ley/pers/hd/q/Qi:Xin.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Williams:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Williams:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Williams:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Williams:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gao:Qi.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gao:Qi.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Ottoni:Guilherme.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Ottoni:Guilherme.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Paroski:Andrew.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Paroski:Andrew.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/MacVicar:Scott.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/MacVicar:Scott.html
http://www.informatik.uni-trier.de/~ley/pers/hd/e/Evans:Jason.html
http://www.informatik.uni-trier.de/~ley/pers/hd/e/Evans:Jason.html

System Feature Coverage: Per System

36

Thursday, July 18, 13

Current uses & future work

• First target: resolution of dynamic includes

• Current work: string resolution (possibly incorporating earlier work)

• Investigating hybrid static/dynamic approaches, staged analysis for
plugin architectures

• Need to look at segmenting system into user-facing, developer,
and admin parts, get more fine grained results

37

Thursday, July 18, 13

https://petitions.whitehouse.gov/petition/secure-resources-and-funding-and-begin-construction-death-star-2016/wlfKzFkN

Thursday, July 18, 13

https://petitions.whitehouse.gov/petition/secure-resources-and-funding-and-begin-construction-death-star-2016/wlfKzFkN
https://petitions.whitehouse.gov/petition/secure-resources-and-funding-and-begin-construction-death-star-2016/wlfKzFkN

