\ CWL_

T— —

An Empirical Study of PHP Feature Usage:
A Static Analysis Perspective

Mark Hills, Paul Klint, and Jurgen J. Vinju
CWI, Software Analysis and Transformation (SWAT)

ISSTA 2013
Lugano, Switzerland
July 16-18, 2013

% http://www.rascal-mpl.org

Thursday, July 18, 13

http://www.rascal-mpl.org
http://www.rascal-mpl.org

PHP

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia

« |Interaction
Help
About Wikipedia

Article Talk

PHP

Create account & Log in

Read Edit View history

Q

o @®

From Wikipedia, the free encyclopedia
(Redirected from Php)

This article is about the scripting language. For other uses, see PHP (disambiguation).

PHP is a server-side scripting language designed for web development but also used as a
general-purpose programming language. PHP is now installed on more than 244 million
websites and 2.1 million web servers.2] Originally created by Rasmus Lerdorf in 1895, the
reference implementation of PHP is now produced by The PHP Group.! While PHP
originally stood for Personal Home Page,!! it now stands for PHP: Hypertext Preprocessor,
a recursive acronym.[5!

PHP code is interpreted by a web server with a PHP processor module which generates the
resulting web pace: PHP commands can be embedded directlv into an HTML source

@mastermm

What’s New in PHP 5.5

H‘__

—

ﬁ | By: Patrick Mulvey | Posted: July 12, 2013 | News & Opinion

PHP

object-oriented, e > T3¢ o ,' oo ' R
reflective v hye N ova .
!arsagOlIJ ’ . . ;;. '1.‘;" -
rdarf A ”""-.7..'.". ;l) ‘.““
roup -, Wk 2 e .
20,2013; 19 F o 1Ig;y I\nw
Y})cu ’
reak ‘f.—_] ta , J -~ . P ;
\e,_F'haIanger, (. e f .(,-'2)011 IO - ‘:jl Q‘Xj..-.,‘v“ T
roject Zero, - C'(‘)}} r Srye ’ it
| A - -

n. &7 .
Hava.Tcl“J he . \ LT) ’

(S$caz; . ¢ Vhata
Cho » |~ \ Qg $C‘) { nay
£ o :

R “ilueae.
F.Cho ' bda t’ (l ' de - LU

Thursday, July 18, 13

PHP Analysis in Rascal (PHP AIR)

» Big picture: develop a framework for PHP source code analysis

« Domains:

» Program analysis (static/dynamic)

« Software metrics

- Empirical software engineering

» Developer tool support

Thursday, July 18, 13

Why look at PHP applications?

Why look at PHP applications?

Thursday, July 18, 13

Thursday, July 18, 13

Thursday, July 18, 13

PHP applications are everywhere!

v

¢ 7 Gl
T 8
0 Q :
YT W

N To g

WIKIPEDIA

The Free Encyclopedia

YaHoO!

Ehe New Jork Times

(Y] photobucket

REUTERS

sourceforge

Thursday, July 18, 13

Open Source Commits by Language (Ohloh.net)

40%
C
30% HTML
Java
2 0% PHP

| -
o NW -

1__JﬂJJ\ufH\hdJhgHjHﬂﬂH_JM,_q“fH_H#;h,fuuwﬁﬂﬂ‘pda_-ﬂ-hdﬁ

2004 2005 2008 2007 2008 2009 2010 2011 2012 207

http://www.ohloh.net/languages/compare?measure=commits&percent=true

L1

o e

o

o

Thursday, July 18, 13

http://www.ohloh.net/languages/compare?measure=commits&percent=true
http://www.ohloh.net/languages/compare?measure=commits&percent=true

Challenges in Tool Development

Thursday, July 18, 13

—xample: Buillding a type inferencer

Thursday, July 18, 13

—xample: Building a type inferencer

* Lots of different statements and expressions, are
they all used? What do we need to implement first
to get up and going?

Thursday, July 18, 13

—xample: Building a type inferencer

* Lots of different statements and expressions, are
they all used? What do we need to implement first
to get up and going?

- What if the code has evals? This could add new types.

Thursday, July 18, 13

—xample: Building a type inferencer

* Lots of different statements and expressions, are
they all used? What do we need to implement first

to get up and going?

- What if the code has evals? This could add new types.

 What if the code has invocation functions? Can we tell what
functions are called?

Thursday, July 18, 13

—xample: Building a type inferencer

* Lots of different statements and expressions, are -
they all used? What do we need to implement first
to get up and going?

- What if the code has evals? This could add new types.

 What if the code has invocation functions? Can we tell what
functions are called?

« What if the code contains variable variables? Can we tell which
variables they refer to?

Thursday, July 18, 13

—xample: Building a type inferencer

* Lots of different statements and expressions, are -
they all used? What do we need to implement first
to get up and going?

- What if the code has evals? This could add new types.

 What if the code has invocation functions? Can we tell what
functions are called?

« What if the code contains variable variables? Can we tell which
variables they refer to?

* What if...

Thursday, July 18, 13

Looking more generally

* PHP is big, which language features should we N
focus on first?

* PHP is dynamic, how much impact do these features have on real
programs?

- What kinds of assumptions (e.g., no evals, no writes through
variable variables) can we safely make about code and still have

good precision?

- How can we build prototypes that work with real PHP code?

Thursday, July 18, 13

SOFTWARE—FPRACTICE AND EXPERIENCE, VOL. 1, 105-133 (1971)

An Empirical Study of FORTRAN Programs¥

DONALD E. ENUTH
Computer Science Department, Stanford University, Stanford, California 94305

SUMMARY

A sample of programs, written in FORTRAN by a wide variety of people for a wide variety
of applications, was chosen ‘at random’ in an attempt to discover guantitatively ‘what
programmers really do’. Statistical results of this survey are presented here, together with
some of their apparent implications for future work in compiler design. The principal
conclusion which may be drawn is the importance of a program ‘profile’, namely a table of
frequency counts which record how often each statement is performed in a typical runj there
are strong indications that profile-keeping should become a standard practice in all computer
systems, for casual users as well as system programmers. This paper is the report of a three
month studv undertaken by the author and about a dozen students and representatives of the
software industry during the summer of 1970. It is hoped that a reader who studies this
report will obtain a fairly clear conception of how FORTRAN is being used, and what
compilers can do about it.

key worns FORTRAN Optimization Efficiency Compiler

Thursday, July 18, 13

Solution: Study PHP feature usage empirically

- What does a typical PHP program (level of focus: individual pages)
look like?

- What features of PHP do people really use?

- How often are dynamic features, which are hard for static analysis
to handle, used in real programs?

- When dynamic features appear, are they really dynamic? Or are
they used in static ways?

Thursday, July 18, 13

Which dynamic features®

- Dynamic includes

- Variable Constructs
» Overloading

- eval

» Variadic Functions

* Dynamic Invocation

12

Thursday, July 18, 13

xperiment: Tools & Methods

Setting Up the

il

Wiam

Ce———

A = ‘
g LD AT AR TSNS
. N ~...t|ﬂu_ ...tv__ ,

. -

»

= - by - - o . :.
_ > 5 ! = _nu ..4.1.\‘ . PN
g L ,.t.-i ' - p* U-. ..
jgae =)o/ RN
= e oM, | A0 B N
4 ;
: 1 R \

|

13

icture/Inc_08 _01/Ihci1.]

raphics/blogs/bi

http://cache.boston.com/universal/site

Thursday, July 18, 13

http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

Building an open-source PHP corpus

» Well-known systems and frameworks:
WordPress, Joomla, MediaWiki, Moodle,
Symfony, Zend

- Multiple domains: app frameworks, CMS, blogging, wikis,
eCommerce, webmail, and others

 Selected based on Ohloh rankings, based on popularity and desire
for domain diversity

» Totals: 19 open-source PHP systems, 3.37 million lines of PHP
code, 19,816 files

14

Thursday, July 18, 13

Methodology

- Corpus parsed with an open-source PHP parser
- Feature usage extracted directly from ASTs
- Dynamic features identified using pattern matching

- More in-depth explorations performed manually or using custom-
written analysis routines

 All computation scripted, resulting figures and tables generated

- http://www.rascal-mpl.org/

15

Thursday, July 18, 13

http://www.rascal-mpl.org/
http://www.rascal-mpl.org/

Threats to validity

 Results could be very corpus-specific

- Large, well-known open-source PHP
systems may not be representative of
typical PHP code

* Dynamic includes could skew results

16

Thursday, July 18, 13

Interpreting the

Results

Table 1: The PHP Corpus.

System Version PHP Release Date File Count SLOC Description
CakePHP 2.20-0 528 2012:07-02 640 137,900 Application Framework 100 102 =~ - T
Codelgniter 212 516 2012-06-20 147 24,386 Applicatioe Tesrmnmel = A
Doctrine ORM 2.2.2 5.3.0 2012-04-13 501 40870 Object-R - = ~
Drupal 7.14] 2012-05-02 268 88,392 CMS 4 . ﬁ = b= | ":
Gallery 3.04 523 2012-06-12 505 38,123 Photo M 10 —a— allocations - - o s e - =
Joomla 254 24 2012-05-02 1,481 152,218 CMS %».,_ — = B0 .
Kohana 3.2 540 2011-07-25 432 27,230 Applicati L - 3 - -pasts - - Table 4: US&gE of D}"l’l&l’l’llﬂ’.‘, Includes.
MediaWiki 1191 523 2012-08-13 1480 846,621 Wiki R 1 $ - —
oG 231 <06 omoaiis "% 14852 Odtme R , -i- invocations 1 B] System Includes Files Gini
proh SN e o iy o 10 - P print i E = Total Dynamic Resolved
phpMyAdmin 3.5.0 5.2.0 2012-04-07 341 116,630 Database BD =] %
SilverStripe 247 520 2012-04-03 514 108,220 CMS ,E' z] Cﬂ.kll’.‘]:’l‘.[l’ 124 120 g1 ﬁ‘lul: lq} (.25
Smarty 3111 520 2012-06-30 126 15468 Template E A0 + - * b -
Squirrel Mail 1422 410 2011-07-12 276 38,082 Webmail ; o o 2 = C::-dclgnil,er 0 &0 a8]_4-;('EU:I 0.44
Symfony 2012 532 20120319 2,187 120317 Applicati g 102 oL o — 2] * N
WordPress 3.4 524 2012-06-13 387 110,190 Blog 5] E hale Doctrine) B Bl hd a6 5”1(14} .19
The Zend Framework 11112 524 2012:08-22 4,342 553,750 Applieati = =1 a0 | . . . i)
The PHP versions listed above in Fol}xmn PHP are the m.inir?'u.:m required \FE‘XEiOHE‘ The File Count includes files g Drupa‘]' 1"?2 171 l‘it] 2“(lh} []'42
In total there are 19 systems consisting of 19,816 files with 3,370,219 total lines of source. E X /_. Gall.&r_‘r' 4‘1 39 2:] :]u:'-j(1[]} []_2ﬁ
10 0 Joomla 354 352 200 1,481(122) 017
Table 10: Usage of Invocation Functions. .) 0 90 Kohana 52 48 4 432(18) 0.55
System Files OUF CUFA OUM CUMA Gini . Ty TR o Perce MediaWiki 554 493 425 1480038) 034
Total Inwv Tne ¢ 0 p = 0 b iJﬂ 5 " P S Moaodle 7,744 4,291 3,350 5,367(504) 0.39
CalePHP & 1 2 o f Fi 3: Features Nee “Commerce 683 539 97 529(22) 028
Codelgniter i’ Feature ratio per file (%) € : PEAR 211 11 0 T4(0) 0.14
A - age. The feature count . i b
Daoctrinel/RM 5l 200 - — ehenR 404 404 313 268(51) 034
?::l]:?l f: 10t Table 5: Usage of Variable Features. tdmin H10 52 15 341(27) 0.23
£ Y il r o
Joomia LA = 800 PHP Variable Features ripe a7 56 27 514{10) 034
Kohana A E: Variables Function Calls Method Calls Property Fetches Instantiations All 38 36 25 126{7) (.24
MediaWiki I H g 400 103 iles Uses Files Uses Files Uses Files Uses Files Uses Files w/lne Uses Gini Mail 426 422 406 2T6(13) 014
N B.: . . BD
S 1 ? T 2 0 0 5 2 55 877 s 05 or @2 M 063 96 95 41 2137(40) 022
PE.'!lH S = 200 4 20 i [i3 11 17 2 a0 a 14 aa 36 116 044 pgg RAM 60 499 3MT(17) 0.2
‘ ‘ 0 0 7 15 8 & 5 60 11 7 28 108 063 . , e . o :
phpBB 2 11 %3 a9 2 3 a0 01 13 5 S0 65 aun pogmework 12,820 350 285 4,342(42) 0.29
phpMyAdmin 3 100 - 3 7 3 T i 14 25 04 13 19 46 48 153 0.2
Silverstripe &l 0 9 4 107 102 101 1 2 [9 10 11 57 239 45 155 101 113 418 061 BitAnd, BitOr, BitXor, BoolAnd, BoolOr, Con-
Smarty l; 0] 7 3 & 4 11 [14 11 12 24 24 36 044 cat, Div, Equal, Geq, Gt, Identical, LShift, Leq,
SouirrelMall H Loc -1 LOC & cumulative LOC & 11 4 3 11 12 43 A 2 50 125 28 218 00 LopAnd, LogOr, LogXor, Lt, Minus, Mod, Mul,
SR #oB @ omaw e dboer e 0h oo Noud, s, Hshiy
‘ordPress : T a : 45 .
ZendFramework 43 Fjgure 1: PHP File Sizes, Linear and Log Scales. ' . | . -) N 16 22 o2 48 038 tugt"-a}r’ thEﬂ_Ul; toFloat, tolnt, toObject,
! _ge of Overloading (Magic Methods) o 47 83 165 049 [OOLHRE tonse .
set set | - == : P) 96 2 168 065 break, continue, declare, do, exit, expStmt, for,
- Syvsbern Files Magic Methods oo a3 173 108 116 432 0.59 foreach, goto, haltCompiler, if, label, return,
CakePHF 095.3% O8.3% Medial ¥ s e 11 1 31 32 14 043 suppress, switch, ternary, throw, tryCatch, while
. q . MM W1 e I U C B8C 0 o 14 47 il 04T classConstDef, classDef, closure, const, function-
osUommerce 95.]""{: ﬂﬁi% SilverSt - - — E{:].;; Eg l?'ﬂ ?SEE g% Def, global, include, interfaceDef, methodDef,
ZendFramework 93.2% 97.3% | phpMyag CakePHP 1§ 18 5 12 7 ¢ 10 0 0B 15 2 s s oir oo mamespace, propertyDef, static, traitDef, use
Table 6: Derivability of Variable-Variable N - Codelgniter 4 a 1 ¥ n M 1 n 3% — - call, eval, methodCall, shellExec, staticCall
able 6: Derivability of Variable-Variable Names. YWordF Dioctrine M 4 4 1 1 Table 89: Usage of Variadic Functions. ps fetchClassConst, fetchConst, fetchStaticProperty,
System Variable-Wariable Uses Ca Drupal 9 13 0 1 System Files VDefs VOalls LCOalls Gini X prup‘ert}_,.rFE‘tch, E_I:I.IFEEE, VAr
Total Names Derivable Derivable % Pl Callery 95 95 4 15 Total VA Wl e T mmmEm o
CakePHP 20 19 95.0 h Joomla 10 10 2 T Cakernr G0 213 227 2 2s13 sw e 53¢ Usage of eval and create function.
gﬂdﬂill%mm 20 16 &0.0 PO gohana a a 2 2 Codelgniter 147 4 %6 B W06 LB 02 Files Total Uses Cini
rup 1 ! 100.0 Sm MediaWiki 14 14 n 3 DoctrineORM 501 112 112 3 36 303 0.
Gallery 7 2 28.6 AT ILEL T ; - . . .

3 : Moodle 61 1.030 g7 41 Druesl 268 o9 08 23 503 268 051 Total EV WI are
Joomla 2 o 0.0 Dr - ! e Callery 505 168 17O 24 722 198 052 - - ~ are
Kohana 7 5 714 osCommerce 0 n 0 0 joomia 1481 999 1,048 15 8517 419 (.59 &40 3 3 5/1 0.33
MediaWild 11 B 5.5 PEAR 1 1 0 0 Kohana @2 6T 67 17 178 B8 047 T 147 2 2 3/0 017
zig;i;gm :g 32 ?;; phpBR 0 0 0 [MedisWiki 1480 656 688 o0 5036 LOSL 063 RM 501 0 0 0/0 N/A
PEAR ! . 000 phpMyAdmin 2 2 1 | Moodle 5A6T 2002 2410 86 1L168 2716 062 68 1 1 1/0 N/A
P . 62 g - St ~ osCommeres st 84 106 0 2 A 042 506 " - /4 0.00
B A 119 e i SilverStripe 9 9 3 O pean ™ 48 48 1 643 136 047 o :
Sitverdtripe 5 | 1 Smarty i 8 5 6 phoBB 260 155 165 6 1201 973 055 1,481 & 7 7/1 021
Smarty 10 - a5 0 SquirrelMail 0 0 0 0 phpMyAdmin 31 148 148 5 1,135 88 070 432 3 3 /2 000 17
SaquirrelMail 24 10 417 Sy q q 9 | SilverStripe 514 #3283 30 984 626 0.54 1,480 G G 41 0.00

| WordPress a7 28 75T A ; o o Smarty 126 % 3 0 1o 1om 053 5.367 30 1077 34730 0.30
Thursday, July 18, 13

Zooming in

* Feature usage and coverage

* Dynamic includes

« Variable variables

e eval

18

Thursday, July 18, 13

Feature usage and coverage

- Goal: analysis prototypes should cover actual programs
 Solution: compute which sets of features cover the most files
* 109 features total

» 7 never used (including goto), mainly newer features

- casts, predicates, unary operations used rarely

74 features cover 80% of all files, over 90% for some systems
(CakePHP: 95.3%, Zend: 93.2%)

19

Thursday, July 18, 13

Dynamic includes

require_once(dirname(_ FILE) . '/Maintenance.php');

$maintananceDir = dirname(dirname(dirname(dirname(
dirname(__FILE__))))) . '/maintenance';
require(“$maintananceDir/Maintenance.php”);

 In PHP, may not know code that will run until runtime

- Q1: How often are dynamic includes used?

- Q2: How often can we resolve them to a specific file up front?

20

Thursday, July 18, 13

Usage of dynamic includes

- 19,816 files in corpus: 3,184 contain dynamic includes (16.1%)
« 25,637 includes in corpus: 7,962 are dynamic (31.1%)

- Some systems worse than others: CakePHP (120 of 124 includes
are dynamic), Codelgniter (69 of 69), Drupal (171 of 172), Moodle
(4291 of 7744)

- Some only use in limited way: Zend only 350 of 12,829 are
dynamic, PEAR only 11 of 211

21

Thursday, July 18, 13

Resolution of dynamic includes

- After resolution, 864 files contain dynamic includes (27.1% of files
with dynamic includes still contain them, 4.4% of total files)

» After resolution, 1,439 dynamic includes remain (18.2% of original)

- Based on current resolution analysis, dynamic includes usually not
brought in through other includes

+ Results on major systems: Drupal (130 of 171 resolved), Joomla
(200 of 352 resolved), MediaWiki (425 of 493), Moodle (3350 of
4291), WordPress (332 of 360), Zend (285 of 350)

* Not always so good: 4 of 48 in Kohana resolved, 41 of 95 In
Symfony, 0 of 11 in PEAR

22

Thursday, July 18, 13

Variable variables

$x = 3;

$y = 'x';

echo $x; // 3
echo $y; // x
echo $%y; // 3
$3y = 4;

echo $x; // 4

* Reflective abillity to refer to variables using strings
- Often used as a code saving device

* Problem: creates aliases using string operations

23

Thursday, July 18, 13

Variable variables: findings

- Question: How often can we statically determine to which names a
variable variable can refer?

 Method: use Rascal to find all locations of variable variables,
manually inspect code

* Restrictions: names statically determinable, no aliases, no other
declarations

» General: 61% of uses resolvable, 75% in newer systems
- Best: 100% in Drupal & PEAR, 95% in Codelgniter & Smarty

« Worst: 0% in Joomla & osCommerce

24

Thursday, July 18, 13

The eval expression (and create_function)

eval(str replace(array('<?php', '?>"), '', $result['code']));

create function('$v’,
'$v[\'title\'] = $v[\'title\'] . \'-transformed\'; return $v;")

» eval and create_function provide for runtime evaluation of arbitrary
code

« Used rarely in corpus: 148 occurrences of eval, 72 of
create_function, many uses in testing and maintenance code

- Uses truly dynamic, need string analysis and (in the general case)
dynamic analysis to determine actually invoked code

25

Thursday, July 18, 13

Occurrences of all dynamic features

+ 19,816 files in corpus: 3,386 contain dynamic features (17.1%)
- Dynamic feature usage varies greatly over systems

« PEAR: 50% of files have at least 1 dynamic feature

» WordPress: 30.7%

» MediaWiki: 14.6%

» Symfony: 9.4%

26

Thursday, July 18, 13

Table 1: The PHP Corpus.

System Version PHP Release Date File Count SLOC Description
CakePHP 2.2.0-0 528 2012:07-02 640 137,900 Application Framework 100 102 =~ T
Codelgniter 212 516 2012-06-20 147 24,386 Applicatioe Tesrmnmel = o0
Doctrine ORM 2.2.2 5.3.0 2012-04-13 501 40870 Object-R =
Drupal T.14 524 2012-05-02 268 88392 CMS 4 = = ﬂ
Gallery 3.04 523 2012-06-12 505 38,123 Photo M 10 § 80 Pr =
Joomla 2.5. 5.2.4 2012-05-02 A8 52,218 CMS &
Kohana s2 580 amiorz Yim 27280 Applicst B Table 4: Usage of Dynamic Includes.
MediaWiki 1.19.1 5.2.3 2012-06-13 1,480 846,621 Wiki $
Moadle 2.3 542 2012-06-25 5367 720,337 Online L = Systcm Includes Files Gini
osCommerce 231 4.0.0 2010-11-15 529 44,952 Online R " Gu
PEAR 9. 4.4.0 2011-07-0 7 31,257 Compone B 2 "y N
phpBB l; ! :j; zﬂ;-am; -zs; 1-:.;,225 Baletin — 10 E = Trdal - Thenomin Rocnlooed Croate account & Login
phpMyAdmin 3.5.0 520 2012-04-07 341 116,630 Databasc D =]
SilverStripe 2.4.7 520 2012-04-05 514 108,220 CMS =} u 198
Smarty 3111 520 2012-06-30 126 15468 Template = E A0 Article | Talk Read Edit View history -
Squirrel Mail 1422 410 2011-07-12 276 38,082 Webmail ; 2 .44
Symfony 2012 532 2012-03-19 2,137 120,317 Applicati g 103 =% = PHP "o “
WordPress 3.4 524 2012-06-13 387 110,100 Blog 5] g WIKIPEDIA L19
“The Zend Framework 11112 524 2012-08-22 4,342 553,750 Applicat! = = 20 The Free Encyclopedia Fm{’; ‘f:‘k‘ze‘j?» 'hePLfe)eemePed‘a
The PHP versions listed above in column PHP are the minimum required versions. The File Count includes files g i]'42
In total there are 10 systems consisting of 10,816 files with 3,370,219 total lines of source. E Main page This article is about the scripting language. For other uses, see PHP (disambiguation). 136
> Eerkre PHP is a server-side scripling language designed for web development but also used as a PHP -
1 Featured content
-0 10 0 em— general-purpose programming language. PHP is now installed on more than 244 million .17
. . urent events websites and 2.1 million web servers.12] Originally created by Rasmus Lerdorf in 1885, the -
Table 10: USH-EE of Invocation Functions. [gz:{e'”'::f‘:mm ra'srsncs\mp\amsnlalmnolPHP\snowEr]gduc;ld by The PyHPGroup.[g]Wm\s PHP 1.55
originally stood for Personal Home Page,!™ it now stands for PHP. Hypertext Preprocessor,
System Files CUF CUFA CUM CUMA Gini S a recrsv aconym B ° e [@ 1.34
L= code is interpreted by a web server with a rocessor module which generates the .
Total Inv Tne 10" o :;:mn; web plagpa‘ ;‘:Pbl‘iomm:nds can b;"smg:deZd directly m: a‘n H:’M’Iiiourns‘ " paradigme) mporatue, oojpoorants .39
pr— p 0 f“;“'“'“":y:;f‘ document rather than calling an external file to process data. It has also evolved to include a < s 198
Cake ¢ . Fig:ure 3: ":"G° T‘ o command-line interface capability and can be used in standalone graphical applications.!! aredtin - 18 years agol’ -
Codelgniter L Feature ratio per file (%} Th R ?‘;'ka PHP is free software released under the PHP License, which is incompatible with the GNU :::gne::vv ::ajfm::::rdang : .14
. age. e ooibox General Public License (GPL) due 1o restrictions on the usage of the term PHP." PHP can | pe cione & PHP Grou
gﬂt“;:‘.l?{]ﬂ:\-{ .;:I: SDD X - » Print/export nedep\LyPa:;n:maslweb’:::v:rs:xr;:]allsamasaslar::a\onegshe\'\l:n;\mo::‘fer‘f:::almg :uh::h“e ;T'S.OP:;:EO:MQ;W 1.34
Fup 4 Table 5: Usage of Variable Features. - lmgages g YRemandpatom s ofchage dorosgo 9
Callery 5 10 ag P Vet b :‘mkaam . Contents [ride] ::::'gdhm"m :w:';m‘.wea:," ; -2
Joomla LA = /00 - . aril eatures — - 1st:iwneleasemmw pirntrs Qs P 4 L4
Kohana TH Variables Function Calls Method Calls Property Fetches Instantiations Aragonés 2 Syntax \fenced by Pert 6. Ges.gava. Tolf 1.29
MediaWiki T @ 102 fles Uses Files Uses Files Uses Files Uses Files Uses Files w/Ine Uses Gini Mail 426 422 4086 276(13) 0.14
3 . . .
o i T 20 L] 0 18 25 53 3T 39 93 91 92 5 DES] 95 41 2,137(40) 0.22
' o o 1w NS R e aw™ R W0 s 0w
B o — 11 8 a2 2 3 2 01 15 2 50 65 4gz pggamework 12, 5 5 4842(42) 0.
F N ’ \ \ — 109 t—m—— oot 3 7 3 T B 14 25 G4 13 19 A6 48 133 0a2
“ » 4 10" 10% 10t 1 2 fi 4 1 11 5T 239 45 155 101 113 418 o061 BitAnd, BitQr, BitXor, DoolAnd, BoolOr, Con-
g ‘) 0 3 7 3 & 4 11 B 14 11 12 24 24 6 044 cat, Div, Equal, Geq, Gt, Identical, LShift, Leq,
E N -1 LOC & cumulative LOC 6 11 3 3 11 12 45 g4 72 50 123 282 213 00 LopAnd, LogOr, DogXor, Lt, Minus, Mod, Mul,
2] ;g :}g i) Qﬂg ﬁ; 3; 2-‘1? I,Z?E 1?'.? 3?.'!-; JIT“? 1:‘1;3 2,022 g:? NDtEqU&l., NUtId, P].l‘lb, Rsh'lﬁ
12' le S Li dL Scal 3 h1 3‘ N - . o ! i; ;2 23 23 1:8 D.’!; toArray, toBool, toFloat, tolnt, toObject,
izes, Linear an og Scales. : 2 - S e aStrine. toUnset
- ge oa M 19 27 47 B3 165 049 Es
| - == of Overl dll’.lg (Mﬂglﬂ Eth{)dﬂ}. P) 96 2 168 065 break, continue, declare, do, exit, expStmt, for,
- — System Files Magic Methods GC 55 173 108 116 482 059 foreach, y © U7 T 7T o
S ELAESL 11K ALl o0 = D:i‘:!'{: Medial ¥ & o 11 21 31 a2 14 043 suppress, =
. MR W1 =0 I T C B8C 0 o 18 47 al 047 glassCons n-
osCommerce 95.1% 96.4% SilverSt . . . 38 57 B 90 223 053 pop i) p
s Dake 5 T 13 108 0 115 301 060 i B
ZendFramework 93.2% 97.3% | phpMyag CakePHP 18 18 “ 12 .7 0 10 0 028 b s a0 namespac
Table 6: Derivabili f Variahle-Variahle N e T Codelgniter 4 5 1 5 n n 1 N nae call, swsl]
able 6: Derivability of VariablecVariahle Names. Wnral — - e - : 4 1 1 Table 9: Usage of Variadic Functions. ps fetchClas: ¥,
System Varia [phpmastermm 13 0 1 System Files VDefs VCalls LCalls Gini propertyFoC ioduta ., :
R - b e L ST > : T v g
Total Names 26 4 15 Total VA WI el o MmO,
CakePHP 20 , \ 10 2 T Cakepur 640 213 227 s 2513 s oed 3 Usage of ewioo = Mooy tat) e,
Codelgniter 20 What S New in PHP 5.5 a9 a % Codelgniter 147 24 25 i 106 W06 LE2 File <l Fdar . :
Dirupal 1 14 9 g3 DoctrineQRM GOL 112 112 a5 a6 a3 044 Vo Fe) -
Gallery 7 30 g7 41 Drupsl 268 99 108 23 53 268 051 Total EV Plion va,. are
Joomla 2 : Gallery BB 16 17O 24 T30 190 052 OCho » “datyp,, O=\ss
N ! 0 0 0 i ’ T ler, are
ofana Joomln 1481 909 1,048 15 8,537 419 0.5 40 e 1¢ eda. 9
MediaWiki 11 q ho w, i
1 0 [} Hohana 132 67 67 17 178 &8 047 T 147 / s
Z‘i‘é‘;ilerm :g 0 0 0 MediaWiki 1480 656 088 90 5036 LOS1 063 RM 501 0 0 0/0 N/A
PEAR 1 2 1 | Moodle 56T 2002 2,410 &G 11,168 2716 (062 964 1 1 1,0 N/A
A 4o © osCommerce iest] 84 106 a 201 Ml 042 505 5 - 1/4 0.00
B i Adons 112 9 3 O pean T4 48 48 1 843 136 047 o :
gﬂﬁﬂééﬂ;’:m .] 5§ phpbB 269 165 165 B 1291 973 055 1:'1{-"1 & T /1 021 ,
Smarty 10 0 0 0 pheMyAdmin Ml 148 148 51,13 &R 0.0 432 3 3 /2 0.00 27
SquirrelMail 24 D | By: Patrick Mulvey | Posted: July 12, 2013 | News & Opinion [+ a 1 &lljveq".f‘trlpe 514 J:Eﬂ e 0 o i [}'5’:1 1,480 o o 4/1 0.00
Word Press P - o I) - - Smarty 126 26 bt a 100 108 0.3 5.367 a9 1077 24 /490 030

Thursday, July 18, 13

Summary: What have we learned?

 Prototypes can be built to cover a subset of the language and still
cover a significant number of real program files

- Knowledge of how often dynamic features appear provides firmer
ground for assumptions we make in building analyses

 Patterns of dynamic feature usage can be exploited in analysis
tools to improve precision, mitigate against dynamic effects

* Need to look more closely at how PHP files are used (e.g., user
facing vs. unit test code), application phases (e.g., plugin
initialization), may be able to leverage this

» Hybrid static/dynamic solutions are clearly needed in some cases

28

Thursday, July 18, 13

Backup Slides

Table 1: The PHP Corpus.

System Version PHP Release Date File Count SLOC Description
CakePHP 2.20-0 528 2012:07-02 640 137,900 Application Framework 100 102 =~ - T
Codelgniter 212 516 2012-06-29 147 24,386 Applicatioe Prarmmmels = A
Doctrine ORM 2.2.2 5.3.0 2012-04-13 501 40870 Object-R - = ~
Drupal T.14 524 2012-05-02 268 88392 CMS 4 . = b~ -
Gallery 3.04 523 2012-06-12 505 38,123 Photo M 10 —a— allocations - - E s e =
Joomla 254 524 201240502 1481 152218 CMS %».,_ — = B0 .
Kohana 3.2 530 20110725 432 27230 Applicati b — g - -pasts - = Table 4: US&gE of D}"I’IBII'I.I(‘, Includes.
MediaWiki 1191 523 2012-06-13 1,480 846,821 Wik et Ll $ - —
oG 231 <06 omoaiis "% 14852 Odtme R , -i- invocations 1 B] System Includes Files Gini
proh SN e o isons Denn . 10 - P print —H— E = Total Dynamic Resolved
phpMyAdmin 3.5.0 5.2.0 2012-04-07 341 116,630 Database BD =] %
SilverStripe 247 5.20 2012-04-05 514 108,220 CMS ,E' u] Cﬂ.kll’.‘]:’Hl’ 124 12[] ql ﬁ‘lul: lq} [] 23
Smarty 3111 520 2012-06-30 126 15468 Template E A0 + - * b -
Squirrel Mail 1422 410 2011-07-12 276 38,082 Webmail ; o o = = Codelgniter 0 &0 a8]_4-;('EU:I 0.44
Symfony 2012 532 20120319 2,187 120317 Applicati g 102 oL o — 2] : N
WordPress 3.4 524 2012-06-13 387 110,190 Blog 5] E hale Doctrine) B Bl hd a6 5”1(14} .19
The Zend Framework 11112 524 2012:08-22 4,342 553,750 Applieati = =1 a0 | . . . i)
The PHP versions listed above in Fol}xmn PHP are the m.inir?'u.:m required \FE‘XEiOHE‘ The File Count includes files g Drupa‘]' 1"?2 171 l‘iu 2“(lh} []'42
In total there are 10 systems consisting of 10,816 files with 3,370,219 total lines of source. E 1 /_. Gallcr_-r- 44 10 25 e':l[l.‘]l: lf.l} 0.26
10 0 Joomla 354 352 200 1,481(122) 017
Table 10: Usage of Invocation Functions. .) 0 90 Kohana 5 48 4 432(18) 0.55
System Files OUF CUFA OUM CUMA Gini N Ty TR o Peree MediaWiki 554 493 425 1480038) 034
Total Inwv Tne ¢ - b—1r - Moaodle 7,744 4,291 3,350 5,367(504) 0.39
pT— o 0 10 20 30 40 50 60 70 Fi 3: Features Nee “Commerce 653 539 97 529(22) 028
Codelgniter i’ Feature ratio per file (%) € : PEAR 211 11 0 T4(0) 0.14
DoctrineOORM 5i age. The feature count ™" . e .
b : al- . o 200 it . - — b 404 404 313 269(51) 0.34
C::l]; . 10 Table 5: Usage of Variable Features. tdmin H10 52 15 341(27) 0.23
T Y a .
Joomla LA = 800 PHP Varisble Features ripe a7a 56 27 514(10) 0.34
Kohana A E: Variables Function Calls Method Calls Property Fetches Instantiations All 38 36 25 126{7) (.24
MediaWiki I H g 400 103 iles Uses Files Uses Files Uses Files Uses Files Uses Files w/lne Uses Gini Mail 426 422 406 2T6(13) 014
N B.: . . BD
;;",‘:T;me ‘2‘ g ¥ 720 0 0 18 23 53 art 9 03 o1 92 A4 0630 96 95 41 2137(40) 022
PE.'!lH S o [200 4 20 i i1 11 17 2 a0 a 14 aa 36 116 044 pgg RAM 60 499 3MT(17) 0.2
: ‘ i] 7 13 8 & 5 6l 11 21 28 M 108 063 . , e . e :
phpBB 2 11 %3 a9 2 4 a0 01 13 5 S0 65 aun pogmework 12,820 350 285 4,342(42) 020
phpMyAdmin 3 100 - 3 7 3 T i 14 25 04 13 19 46 48 153 0.2
Silverstripe &l 3] 9 4 10° 102 104 1 2 i [10 11 57T 249 45 155 101 113 418 o061 BitAnd, BitQr, BitXor, DoolAnd, BoolOr, Con-
Smarty l; 0] 7 3 & 4 11 [14 11 12 24 24 36 044 cat, Div, Equal, Geq, Gt, Identical, LShift, Leq,
SnuirrelMail 2 Loc -1 LOC & cumulative LOC 6 11 3 3 11 12 45 g4 72 90 123 282 213 030 [ngAnd, LogOr, LogXor, Lt, Minus, Mod, Mul,
Symfony L k K : . i 47 K 1 L5 - .
Svmifi 2.1 19 30 68 203 i3 t.3 248 1,276 170 38T 472 1410 2,020 059 Not Equal Notld, Plus Rsh'lﬁ
WordPress 3t 2 B i z o o . L La 10 88 60 U7 04 éuArra}r "toBool, toFloat, tolnt, toOhject,
ZendFramework 43 Figure 1: PHP File Sizes, Linear and Log Scales. ' ‘ . I ! 7 v 2@ 48 0as ing ot ' B
& ’ 1€ 208 2CAES: pe of Overloading (Magic Methods). 9 2 11 & 165 oqp foStrimg tolinset o
st set | 8 g 16 a6 168 0.65 Erea ,hc-:m muei-mlcccu.n:, ‘_i:h Ex:f, li:-;:p 1 mt, for,
- Cvstern Files Masic Methods oC 55 173 108 116 432 059 foreach, goto, tompiler, i, al, return,
CakePHF 095.3% O8.3% Medial ¥ s e 11 1 31 32 14 043 suppress, switch, ternary, throw, tryCatch, while
. q . MM W1 e I U C B8C 0 o 14 47 il 04T classConstDef, classDef, closure, const, function-
osUommerce 95.]""{: ﬂﬁi% SilverSt . - — 48 57 Bl gg 2n D63 Def, global, include, interfaceDef, methodDef,
ZendFramework 93.2% 97.3% | phpMyag SakelHP 1§ 18 5 12 7 ¢ 10 0 0B 15 2 s s oir oo mamespace, propertyDef, static, traitDef, use
Tahle 6: Derivability of Variable-Variahle N r Codelgniter 4 i 1 G n 4 1 n 3% - - - - - = - call, eval, methodCall, shellExec, staticCall
able 6: Derivability of Variable-Variable Names. YWordF Dioctrine M 4 4 1 1 Table 89: Usage of Variadic Functions. ps fetchClassConst, fetchConst, fetchStaticProperty,
System Variable-Wariable Uses Ca Drupal 9 13 0 1 System Files VDefs VOalls LCOalls Gini pIDpEIt}:.fFEtCh, E_I:IiFEEE, VAr
Total Names Derivable Derivable % Pl Callery 95 95 4 15 Total VA Wl m ey b o
CakePHP 20 19 95.0 h Jouvmla 10 10 2 T Cakerup G40 213 227 s 255 sw oer 3: Usage of eval and create_function.
Codelgniter 20 16 80.0 POl grohana a a 2 2 Codelgniter 147 24 26 i 106 W06 0.62 Files Total Uses Cini
Drupal 1 ! 100.0 Sm Media Wik 14 14 9 g DoctrineORM Bl 112 112 35 36 A 0dd
Callery 7 2 28.6 M AMedia Wik . - . - -

3 : Moodle 61 1.030 g7 41 Druesl 268 o9 08 23 503 268 051 Total EV WI are
Joomla 2 o 0.0 Dr - ! e Callery 505 168 17O 24 722 198 052 - - = are
Kohana 7 5 714 osCommerce 0 0 0 0 joomia 1481 999 1,048 15 8517 419 (.59 &40 3 3 5/1 0.33
MediaWild 11 5 5.5 PEAR 1 1 0 0 Kohana 432 67 &7 17 178 B8 04T T 147 2 2 350 047
zig;i;gm :g 22 ?;; phpRE i i 0 0 MedisWiki 1480 656 688 o0 5036 L0SI 063 RM 501 o o 0/0 N/A
PEAR L . 1000 phpMyAdmin 2 2 1 | Moodle 5A6T 2002 2410 86 11,168 2716 0.62 68 1 1 1/0 N/A

P - 62 g S 7 osCommeres st 84 106 0 2 A 042 506 " - /4 0.00
B A 119 e i SilverStripe 9 9 3 O pean ™ 48 48 1 643 136 047 o :
Sitverdtripe 5 | 1 Smarty T 8 5 6 phpBB 260 155 165 6 1201 973 055 1,481 & 7 7/1 021 ,
Smarty 10 - a5 0 SquirrelMail 0 0 0 0 pheMyAdmin 31 148 18 51,135 &8 070 432 3 3 1/2 000 29
SaquirrelMail 24 10 oy Svrnfon q q 9 | SilverStripe 514 #3283 30 984 626 0.54 1,480 G G 41 0.00
| WordPress a7 28 5.7 A ; o o marty 126 % 3 0 1o 1om 053 5.367 30 1077 34730 0.30
Thursday, July 18, 13

System Feature Coverage: Overall

[mplemented Features

100
B0
60

40 1

20 |)Lui
20

A0 80 80 100
Percent of Files Covered

30

Thursday, July 18, 13

Related Work in JavaScript

An Analysis of the Dynamic Behavior of JavaScript Programs

Gregor Richards Sylvain Lebresne Brian Burg Jan Vitek

53 Lab, Department of Computer Science, Purdue University, West Lafayette, IN
{gkrichar,slebresn bburg,jv }@cs.purdue.edu

Abstract

The JavaScript programming language is widely used for web
programming and, increasingly, for general purpose computing.
As such, improving the correctness, security and performance of
JavaScript applications has been the driving force for research in
type systems, static analysis and compiler techniques for this lan-
guage. Many of these technigues aim to reign in some of the most
dynamic features of the language, yet little seems to be known
about how programmers actually utilize the language or these fea-
tures. In this paper we perform an empirical study of the dynamic
behavior of a corpus of widely-used JavaScript programs, and an-
alyze how and why the dynamic features are used. We report on
the degree of dynamism that is exhibited by these JavaScript pro-
grams and compare that with assumptions commonly made in the
literature and accepted industry benchmark suites.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing|: Metrics; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms Experimentation, Languages, Measurement

Keywords Dynamic Behavior, Execution Tracing, Dynamic Met-
rics, Program Analysis, JavaScript

Proceedings of PLDI 2010, pages 1 - 12

becoming a general purpose computing platform with office appli-
cations, browsers and development environments [15] being devel-
oped in JavaScript. It has been dubbed the “assembly language™
of the Internet and is targeted by code generators from the likes
of Java®* and Scheme [20]. In response to this success, JavaScript
has started to garner academic atiention and respect. Researchers
have focused on three main problems: security, correctness and
performance. Security is arguably JavaScript's most pressing prob-
lem: a number of attacks have been discovered that exploit the lan-
guage's dynamism (mostly the ability to access and modify shared
objects and to inject code via eval). Researchers have proposed ap-
proaches that marry static analysis and runtime monitoring to pre-
vent a subset of known attacks [6, 12, 21, 27, 26]. Another strand of
research has tried to investigate how to provide better tools for de-
velopers for catching errors early. Being a weakly typed language
with no type declarations and only run-time checking of calls and
field accesses, it is natural to try to provide a static type system
for JavaScript [2, 1, 3, 24, 13]. Finally, after many years of neglect,
modern implementations of JavaScript have started to appear which
use state of the art just-in-time compilation techniques [10].

In comparison to other mainstream object-oriented languages,
JavaScript stakes a rather extreme position in the spectrum of dy-
namicity. Everything can be modified, from the fields and methods
of an obiect to its parents. This presents a challenee to static analv-

31

Thursday, July 18, 13

Related Work in JavaScript

Tool-supported Refactoring for JavaScript

Asger Feldthaus * Todd Millstein Anders Mgller”
Aarhus University University of California, Aarhus University
asf@cs.au.dk Los Angeles amoeller@cs.au.dk
todd@cs.ucla.edu
Max Schiifer Frank Tip
University of Oxford IBM Research

max.schaefer@cs.ox.ac.uk

Abstract

Refactoring is a popular technique for improving the struc-
ture of existing programs while maintaining their behav-
ior. For statically typed programming languages such as
Java, a wide variety of refactorings have been described,
and tool support for performing refactorings and ensuring
their correctness is widely available in modern IDEs. For the
JavaScript programming language, however, existing refac-
toring tools are less mature and often unable to ensure that
program behavior is preserved. Refactoring algorithms that
have been developed for statically typed languages are not
applicable to JavaScript because of its dynamic nature.

ftip@us.ibm.com

1. Introduction

Refactoring is the process of improving the structure of soft-
ware by applying behavior-preserving program transforma-
tions [9], and has become an integral part of current software
development methodologies [4]. These program transforma-
tions, themselves called refactorings, are typically identified
by a name, such as RENAME FIELD, and characterized by
a set of preconditions under which they are applicable and
a set of algorithmic steps for transforming the program'’s
source code. Checking these preconditions and applying the
transformations manually is tedious and error-prone, so in-
terest in automated tool support for refactorings has been

Proceedings of OOPSLA 2011, pages 119 - 137

32

Thursday, July 18, 13

Related Work in Ruby

Profile-Guided Static Typing for Dynamic Scripting Languages

Michael Furr Jong-hoon (David) An Jeffrey S. Foster
University of Maryland
{furr,davidan,jfoster}@cs.umd.edu

Abstract

Many popular scripting languages such as Ruby, Python,
and Perl include highly dynamic language constructs, such
as an eval method that evaluates a string as program text.
While these constructs allow terse and expressive code, they
have traditionally obstructed static analysis. In this paper
we present PRuby, an extension to Diamondback Ruby
(DRuby), a static type inference system for Ruby. PRuby
augments DRuby with a novel dynamic analysis and trans-
formation that allows us to precisely type uses of highly
dynamic constructs. PRuby’s analysis proceeds in three
steps. First, we use run-time instrumentation to gather per-
application profiles of dynamic feature usage. Next, we re-
place dynamic features with statically analyzable alterna-
tives based on the profile. We also add instrumentation to
safely handle cases when subsequent runs do not match the
profile. Finally, we run DRuby’s static type inference on the
transformed code to enforce type safety.

U STRTE W

Keywords Ruby, profile-guided analysis, RIL, Scripting
Languages

1. Introduction

Many popular, object-oriented scripting languages such as
Ruby, Python, and Perl are dynamically typed. Dynamic typ-
ing gives programmers great flexibility, but the lack of static
typing can make it harder for “little” scripts to grow into ma-
ture, robust code bases. Recently, we have been developing
Diamondback Ruby (DRuby), a tool that brings static type
inference to Ruby.! DRuby aims to be simple enough for
programmers to use while being expressive enough to pre-
cisely type typical Ruby programs. In prior work, we showed
that DRuby could successfully infer types for small Ruby
scripts (Furr et al. 2009¢).

However, there is a major challenge in scaling up static
typing to large script programs: Scripting languages typi-
cally include a range of hard-to-analyze, highly dynamic

Proceedings of OOPSLA 2009, pages 283 - 300

33

Thursday, July 18, 13

Other Related Work: Analysis for Dynamic Languages

“Eval Begone!: Semi-Automated Removal of eval from JavaScript Programs”, Fadi
Meawad, Gregor Richards, Floréal Morandat, Jan Vitek. OOPSLA 2012.

“Tool-supported Refactoring for JavaScript”, Asger Feldthaus, Todd D. Millstein, Anders
Moller, Max Schéfer, Frank Tip. OOPSLA 2011.

“The Eval That Men Do - A Large-Scale Study of the Use of Eval in JavaScript
Applications”, Gregor Richards, Christian Hammer, Brian Burg, Jan Vitek. ECOOP 2011.

“Type Analysis for JavaScript”, Simon Holm Jensen, Anders Mgller, Peter Thiemann. SAS
2009.

34

Thursday, July 18, 13

http://www.informatik.uni-trier.de/~ley/pers/hd/f/Feldthaus:Asger.html
http://www.informatik.uni-trier.de/~ley/pers/hd/f/Feldthaus:Asger.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Millstein:Todd_D=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Millstein:Todd_D=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sch=auml=fer:Max.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sch=auml=fer:Max.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tip:Frank.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tip:Frank.html

Related Work: Program Analysis for PHP

“The HipHop Compiler for PHP”, Haiping Zhao, lain Proctor, Minghui Yang, Xin Qi, Mark
Williams, Qi Gao, Guilherme Ottoni, Andrew Paroski, Scott MacVicar,Jason Evans,
Stephen Tu. OOPSLA 2012.

“Design and Implementation of an Ahead-of-Time Compiler for PHP”, Paul Biggar. PhD
Thesis, Trinity College Dublin, April 2010.

“Static Detection of Cross-Site Scripting Vulnerabilities”, Gary Wassermann, Zhendong
Su. ICSE 2008.

“Sound and Precise Analysis of Web Applications for Injection Vulnerabilities”, Gary
Wassermann, Zhendong Su. PLDI 2007.

35

Thursday, July 18, 13

http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zhao:Haiping.html
http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zhao:Haiping.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Proctor:Iain.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Proctor:Iain.html
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yang:Minghui.html
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yang:Minghui.html
http://www.informatik.uni-trier.de/~ley/pers/hd/q/Qi:Xin.html
http://www.informatik.uni-trier.de/~ley/pers/hd/q/Qi:Xin.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Williams:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Williams:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Williams:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Williams:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gao:Qi.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gao:Qi.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Ottoni:Guilherme.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Ottoni:Guilherme.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Paroski:Andrew.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Paroski:Andrew.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/MacVicar:Scott.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/MacVicar:Scott.html
http://www.informatik.uni-trier.de/~ley/pers/hd/e/Evans:Jason.html
http://www.informatik.uni-trier.de/~ley/pers/hd/e/Evans:Jason.html

System Feature Coverage: Per System

Svsterm B0%% Q0% Syvstem B0%% Q0%

set st set set
CakePHP 95.3% 98.3% MediaWiki HE6.1% 94.6%
osCommerce 95.1% 96.4%% SilverStripe 85.4% 91.1%
ZendFramework 93.2% 97.3% | phpMyAdmin 855.3% 90.3%
Kohana 92.1% 96.5% WordPress 82.4% 95.1%
Svmfony 91.1% 94.99% Gallery B1.0% 96.6%
Joomla 91.0% 97.0% PEAR T75.7% 90.5%
SquirrelhMail 90.9% 95.7% phpBR T2.1% 85.1%
DoctrineQRM 809,29 96.6% Smarty 6G6.7% B6.5%
Moodle 87.6% 96.9% Drupal 57.1% 93.7%

Codelgniter 87.1% 91.8%

36

Thursday, July 18, 13

Current uses & future work

* First target: resolution of dynamic includes
 Current work: string resolution (possibly incorporating earlier work)

- Investigating hybrid static/dynamic approaches, staged analysis for
plugin architectures

* Need to look at segmenting system into user-facing, developer,
and admin parts, get more fine grained results

37

Thursday, July 18, 13

WE /.

P E O P L E YOUR VOICE IN OUR GOVERNMENT

WE PETITION THE OBAMA ADMINISTRATION TO:

Secure resources and funding, and begin construction
of a Death Star by 2016.

Those who sign here petition the United States government to secure funding and resources, and begin
construction on a Death Star by 2016.

By focusing our defense resources into a space-superiority platform and weapon system such as a
Death Star, the government can spur job creation in the fields of construction, engineering, space
exploration, and more, and strengthen our national defense.

https://petitions.whitehouse.gov/petition/secure-resources-and-funding-and-begin-construction-death-star-20 | 6/wlfKzFkN

Thursday, July 18, 13

https://petitions.whitehouse.gov/petition/secure-resources-and-funding-and-begin-construction-death-star-2016/wlfKzFkN
https://petitions.whitehouse.gov/petition/secure-resources-and-funding-and-begin-construction-death-star-2016/wlfKzFkN

