
Static, Lightweight Includes Resolution for PHP

Mark Hills, Paul Klint, and Jurgen J. Vinju

29th IEEE/ACM International Conference on Automated Software Engineering

September 17-19, 2014

Västerås, Sweden

Motivating stats on PHP

• #7 on TIOBE Programming Community Index

• 4th most popular language on GitHub by repositories created

• Used by 82.2% of all websites whose server-side language can be
determined

• Some figures show up to 20% of new sites run WordPress

• Big projects: MediaWiki 1.22.0 has more than 1 million lines of
PHP

2

Open Source Commits by Language (Ohloh.net)

3

http://www.ohloh.net/languages/compare?measure=commits&percent=true

http://www.ohloh.net/languages/compare?measure=commits&percent=true

An Empirical Study of PHP Feature Usage (ISSTA 2013)

• Research questions:

• How do people actually use PHP?

• What assumptions can we make about code and still have precise
analysis in practice?

• One finding: include expressions have a high impact on creating
precise program analysis algorithms, and are a common feature

4

Research Questions

• Can we devise precise, lightweight static analysis algorithms for
resolving PHP include expressions?

• Can we provide support that is fast enough to realistically integrate
with IDEs?

• How far can we get without applying heavier-weight analysis, with
assumption that these results can be refined in the future?

5

Includes Analysis Alias Analysis Type Inference

The (non-trivial) PHP File Inclusion Model

6

Find Include
File, Given Input

File Name

Path starts with
directory characters?

File Missing

File Found

Lookup File
Using Directory

Info

File found using
include path?

File found using
including script path?

File found using
current working

directory?

File located?

No

Yes

Yes

No

Yes Yes Yes

No No

No

What are the challenges?

• Include expression may include concatenation, constants, function
calls, or even arbitrary code

• Location to load file from may not be obvious:

• Is it on the include path?

• Is it based on the current working directory?

• Is it based on the script directory?

• Are the first two changed at runtime?

7

Statically resolving PHP includes: FLRES and PGRES

• FLRES: File-Level Includes RESolution

• PGRES: ProGram-Level Includes RESolution

• Why two?

• PGRES can take advantage of context information unavailable to
FLRES

• FLRES tuned to provide fast resolution

8

FLRES Building Blocks

• We may have no information on the base path

• We can take advantage of unique constants

• We can simulate some PHP expressions

• We can match the constant part of the path at the end of the given
file name (if present)

9

Building block 1: Base paths for includes

10

template.php

...
require './headers.php'
...

Building block 1: Base paths for includes

11

template.php

...
require './headers.php'
...

headers.php

...

...

...

Building block 1: Base paths for includes

12

template.php

...
require './headers.php'
...

headers.php

...

...

...

template.php

...
require './headers.php'
...

headers.php

...

...

...

headers.php

...

...

...

main.php

...
require 'd/template.php'
...

Directory dDirectory /

Building block 1: Base paths for includes

13

template.php

...
require './headers.php'
...

headers.php

...

...

...

headers.php

...

...

...

main.php

...
require 'd/template.php'
...

Directory dDirectory /

Building block 1: Base paths for includes

14

Building block 1: Base paths for includes

15

template.php

...
require './headers.php'
...

headers.php

...

...

...

headers.php

...

...

...

main.php

...
require 'd/template.php'
...

Directory dDirectory /

template.php

...
require './headers.php'
...

headers.php

...

...

...

headers.php

...

...

...

main.php

...
require 'd/template.php'
...

Directory dDirectory /

Building block 1: Base paths for includes

16

Building block 1: Base paths for includes

• If we have a literal path starting with ‘/‘, we can 
use this — rules say it must be looked up from 
web root

• Note: this is very uncommon, forces install location

• Otherwise, path can’t tell us where to start looking for the file

17

Building block 2: Unique constants

• If a constant is always defined with the same value, 
we allow the algorithm to use it

18

wp-load.php

...
define('WPINC', 'wp-includes');
...

wp-settings.php

...
define('WPINC', 'wp-includes');
...

wp-mail.php

...

...Use Of WPINC...

...

Building block 2: Unique constants

• If a constant is always defined with the same value, 
we allow the algorithm to use it

19

wp-load.php

...
define('WPINC', 'wp-includes');
...

wp-settings.php

...
define('WPINC', 'wp-includes');
...

wp-mail.php

...

...'wp-includes'...

...

Building block 2: Unique constants

• If a constant is always defined with the same value, 
we allow the algorithm to use it

• Is this sound?

• See discussion in paper

• Working assumption: we know all declared constants

• Short answer: no if constant is undefined but used anyway or is one
we are unaware of, otherwise yes

20

Building block 3: PHP expression simulation

21

From wp-comments-post.php:

require(dirname(__FILE__) . '/wp-load.php');

Building block 3: PHP expression simulation

22

From wp-comments-post.php:

require(dirname(__FILE__) . '/wp-load.php');

Building block 3: PHP expression simulation

23

From wp-comments-post.php:

require(dirname(‘/webroot/wp-comments-post.php’) . '/wp-load.php');

Building block 3: PHP expression simulation

24

From wp-comments-post.php:

require(dirname(‘/webroot/wp-comments-post.php’) . '/wp-load.php');

Building block 3: PHP expression simulation

25

From wp-comments-post.php:

require(‘/webroot’ . '/wp-load.php');

Building block 3: PHP expression simulation

26

From wp-comments-post.php:

require(‘/webroot’ . '/wp-load.php');

Building block 3: PHP expression simulation

27

From wp-comments-post.php:

require(‘/webroot/wp-load.php');

Building block 3: PHP expression simulation

• Magic constants evaluated

• Functions and string operations simulated on constant strings

• This is a fixpoint computation — it can generate new string
constants that allow further reduction

28

Building block 4: Path matching

29

Input Expression:
require("$maintenanceDir/Maintenance.php");

Generate RegExp

Generated RegExp:
\S*Maintenance[.]php

List of System Files:
...
/includes/ImageFunctions.php
/maintenance/Maintenance.php
/skins/Vector.php
...

Match Available
Files

Matched Files:
/maintenance/Maintenance.php

PGRES Building Blocks

• We now have information on the base path

• We can take advantage of non-unique constants

• We need to be aware of PHP functions that can change the include
path or current working directory at runtime

30

Building block 1: We can use the base path

31

template.php

...
require './headers.php'
...

headers.php

...

...

...

headers.php

...

...

...

main.php

...
require 'd/template.php'
...

Directory dDirectory /

X

Building block 2: Unique constants

• If a constant could have multiple values, we can use 
it if all included definitions are the same

32

wp-load.php

...
define('WPINC', 'wp-includes');
...

wp-settings.php

...
define('WPINC', 'includes');
...

wp-mail.php

...

...Use Of WPINC...

...

Building block 2: Unique constants

• If a constant could have multiple values, we can use 
it if all included definitions are the same

33

wp-load.php

...
define('WPINC', 'wp-includes');
...

wp-settings.php

...
define('WPINC', 'includes');
...

wp-mail.php

...

...Use Of WPINC...

...

Building block 2: Unique constants

• If a constant could have multiple values, we can use 
it if all included definitions are the same

34

wp-load.php

...
define('WPINC', 'wp-includes');
...

wp-settings.php

...
define('WPINC', 'includes');
...

wp-mail.php

...

...'wp-includes'...

...

Building block 3: functions can impact lookups

• PHP include paths and working directories can be 
changed at runtime

• chdir changes the current working directory

• set_include_path sets the include path

• ini_set can also set the include path

• Reachable uses of these cause us to ignore base path info, just like in
FLRES

35

Any new soundness concerns?

• Inherits all soundness concerns from FLRES

• One new one: we assume functions that change include path and
working directory not called in obfuscated ways (e.g., using eval)

36

Setting Up the Experiment: Tools & Methods

37
http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

http://cache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_08_01/lhc11.jpg

Building an open-source PHP corpus

• Same corpus as used in ISSTA 2013, updated  
versions, added Magento

• Systems selected based on Ohloh (now Black Duck) rankings

• Totals: 20 open-source PHP systems, 4.59 million lines of PHP
code, 32,682 files

38

Evaluating FLRES: Technique
• Run FLRES over entire corpus

• Track execution time on each file

• Basic stats: how many includes have static or dynamic args?

• Includes stats: how many resolve to a unique file? to any file? to
something in between?

39

Evaluating FLRES: Overall

• Almost 86% of all includes resolved to a unique file

• 4.71% of all includes still could reference any file

• Most files analyzed in 5 to 50 milliseconds, median just over 5 (but
some outliers)

40

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

TOTAL 28,219 18,560 9,659 24,259 243 1,329 2,388 86.46

Table 3: Results of Running FLRES on the Corpus.

of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.

Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.
Figure 4 shows an overview of the running times per file

for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis

In many of the systems the number of unique includes
is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,
performance is also good. While we are investigating the

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

TOTAL 28,219 18,560 9,659 24,259 243 1,329 2,388 86.46

Table 3: Results of Running FLRES on the Corpus.

of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.

Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.
Figure 4 shows an overview of the running times per file

for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis

In many of the systems the number of unique includes
is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,
performance is also good. While we are investigating the

Evaluating FLRES: WordPress

• 609 of 656 resolve uniquely, 28 could be any file, 9 could be
multiple files (on average, out of 6 files)

41

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

TOTAL 28,219 18,560 9,659 24,259 243 1,329 2,388 86.46

Table 3: Results of Running FLRES on the Corpus.

of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.

Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.
Figure 4 shows an overview of the running times per file

for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis

In many of the systems the number of unique includes
is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,
performance is also good. While we are investigating the

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

TOTAL 28,219 18,560 9,659 24,259 243 1,329 2,388 86.46

Table 3: Results of Running FLRES on the Corpus.

of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.

Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.
Figure 4 shows an overview of the running times per file

for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis

In many of the systems the number of unique includes
is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,
performance is also good. While we are investigating the

Evaluating FLRES: MediaWiki

• 480 of 514 resolve uniquely, 25 could be any, 2 could be any of (on
average) 11 files

42

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

TOTAL 28,219 18,560 9,659 24,259 243 1,329 2,388 86.46

Table 3: Results of Running FLRES on the Corpus.

of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.

Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.
Figure 4 shows an overview of the running times per file

for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis

In many of the systems the number of unique includes
is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,
performance is also good. While we are investigating the

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

TOTAL 28,219 18,560 9,659 24,259 243 1,329 2,388 86.46

Table 3: Results of Running FLRES on the Corpus.

of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.

Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.
Figure 4 shows an overview of the running times per file

for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis

In many of the systems the number of unique includes
is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,
performance is also good. While we are investigating the

Evaluating FLRES: Moodle and phpBB

• Not everything is as good:

• Moodle has a large number of “Other” includes with a high
average

• phpBB has nothing that can be resolved

43

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

TOTAL 28,219 18,560 9,659 24,259 243 1,329 2,388 86.46

Table 3: Results of Running FLRES on the Corpus.

of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.

Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.
Figure 4 shows an overview of the running times per file

for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis

In many of the systems the number of unique includes
is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,
performance is also good. While we are investigating the

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

TOTAL 28,219 18,560 9,659 24,259 243 1,329 2,388 86.46

Table 3: Results of Running FLRES on the Corpus.

of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.

Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.
Figure 4 shows an overview of the running times per file

for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis

In many of the systems the number of unique includes
is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,
performance is also good. While we are investigating the

System Includes Results

Total Static Dynamic Unique Missing Any Other Average

CakePHP 125 4 121 55 3 22 45 4.87

CodeIgniter 69 0 69 25 13 27 4 11.00

DoctrineORM 74 2 72 55 1 18 0 0.00

Drupal 173 1 172 132 5 33 3 3.67

Gallery 47 5 42 29 2 14 2 2.50

Joomla 444 4 440 228 10 162 44 10.84

Kohana 51 4 47 6 1 41 3 2.00

Magento 193 129 64 123 2 48 20 2.60

MediaWiki 514 43 471 480 7 25 2 10.50

Moodle 8,619 3,438 5,181 6,798 114 237 1,470 138.27

osCommerce 705 149 556 90 1 41 573 2.60

PEAR 211 200 11 147 0 11 53 2.00

phpBB 415 0 415 0 0 415 0 0.00

phpMyAdmin 887 731 156 842 3 34 8 46.88

SilverStripe 554 482 72 521 8 23 2 5.00

Smarty 37 2 35 27 0 10 0 0.00

SquirrelMail 427 4 423 412 5 9 1 17.00

Symfony 246 5 241 157 16 64 9 2.33

WordPress 656 3 653 609 10 28 9 5.78

ZendFramework 13,772 13,354 418 13,523 42 67 140 2.19

TOTAL 28,219 18,560 9,659 24,259 243 1,329 2,388 86.46

Table 3: Results of Running FLRES on the Corpus.

of the Zend Framework libraries, and in Gallery,
which uses part of Kohana. Although this could mean
we are counting the same resolved cases multiple times,
it could also mean we have the same unresolved cases
appearing in multiple locations. We have not attempted
to determine which versions of these libraries appear
embedded in other projects, or whether the included
code is the original code or has been modified.

3. If a system violates the soundness assumptions given in
Section 3 FLRES would return incorrect results. We be-
lieve this is unlikely: it should be possible to determine
which external libraries are used by a system, and we
have not seen the situation we described with defined
constants in any of the code we have examined.

5.2.3 Results for FLRES

Table 3 shows the result of running FLRES on the corpus
shown in Table 2. The first column shows the name of
the system. The second, third, and fourth columns provide
information about the includes in this system: Total gives the
total number of include expressions, Static gives the number
of these includes where the file to include is given as a string
literal, and Dynamic gives the number of includes that use
expressions other than a string literal to specify the included
file. This is a good proxy for which includes could include
multiple files, but not perfect: Figure 3 illustrated that file
paths given as string literals may refer to multiple files.

The five columns under Results then show the actual results
of the analysis. Unique shows the total number of includes
that can be assigned a single possible target file by FLRES.

Missing then shows the number of includes with no possible
target file. While in some cases this appears to be an error
in the code, in many the missing includes are surrounded
by a check to see if the file is present, and appear to be for
included files which are part of optional extensions to the
system. Column Any illustrates the other extreme, cases
where the include could refer to 90 percent or more of the
files in the system. Other then shows includes between these
two extremes—includes that could refer to more than one
file, but are specific enough to not refer to at least 90 percent
of the files. Finally, the Average column indicates how many
files, on average, each of these Other includes could actually
refer to. For instance, for CakePHP, each of the includes
classified as Other could refer to roughly 5 (4.87) files.
Figure 4 shows an overview of the running times per file

for all files in the corpus. The plot shows that although there
exist some outliers above 5 seconds (the largest outlier, at
138 seconds, is not included in this plot), and quite a few
outliers that may take up to half a second, FLRES is able to
analyze most of the files within 5 to 50 milliseconds, with a
median of just over 5.

5.2.4 Analysis

In many of the systems the number of unique includes
is quite high, while the average number of possible files for
those includes in the Other category are much lower than
the total number of files in the system, with many systems
having a range from roughly 2 (Kohana, Pear, the Zend
Framework, Symfony) up to around 5. As indicated above,
performance is also good. While we are investigating the

Evaluating PGRES: Technique

• Evaluation requires more in-depth knowledge of 
system being evaluated

• Picked 408 programs from MediaWiki (137), WordPress (91),
phpMyAdmin (90), osCommerce (88), CakePHP (2)

• Added threat: if these are not programs, any improvements shown
by PGRES could be accidental

44

Evaluating PGRES: Results

• No improvements: MediaWiki, WordPress

• Other systems show at least some improvements

• phpMyAdmin and CakePHP shows small reduction in candidate
sets

• osCommerce shows significant improvement: candidate sets
with higher numbers shrink or disappear, unique matches
increase significantly

• Execution time: median is 17.483s, average is 20.962s

45

Evaluating PGRES: Explaining the results

• MediaWiki and WordPress have unresolved includes 
for plugin support (plugins, extensions, skins, etc)

• osCommerce has file structure with repeated file names — use of
base location necessary to properly resolve

• Better resolution of constants and file paths both contribute to
improvements — but we need to gather precise figures on this from
the analysis traces

46

Beyond FLRES and PGRES

• Some systems make odd use of variables — we could do better in
these cases, given a stronger analysis (although this would be
slower as well)

• In many cases, we believe we cannot do better

• Many unresolved includes support dynamic features, like plugins

• It may be possible to resolve these in a specific environment, but not
in general

• Using pipeline approach shown earlier may be most fruitful approach

47

Wrapping Up

• Dynamic includes make static analysis of PHP code much harder

• Building on our earlier results from ISSTA 2013, we created two
static analyses to resolve includes

• FLRES provides a fast, file-level analysis that is very effective

• PGRES provides a program level analysis that is more precise

• FLRES and PGRES can yield precise results in many cases on real
PHP code

48

• Rascal: http://www.rascal-mpl.org

• PHP AiR: https://github.com/cwi-swat/php-analysis

• SWAT: http://www.cwi.nl/sen1

• Me: http://www.cs.ecu.edu/hillsma

49

Thank you!
Any Questions?

Discussion

http://www.rascal-mpl.org
http://www.cwi.nl/sen1

Threats to validity

• Results could be very corpus-specific

• Large, well-known open-source PHP  
systems may not be representative of  
typical PHP code

• Some systems may include parts of 
other systems, could skew results by 
measuring same thing multiple times

• Answers: diversity of systems mitigates first two points, while the
third is actually representative of real systems

50

PHP Analysis in Rascal (PHP AiR)

• Big picture: develop a framework for PHP source code analysis

• Domains:

• Program analysis (static/dynamic)

• Software metrics

• Empirical software engineering

• Developer tool support

51

