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Rewriting Logic Semantics and KOOL

The KOOL Language

KOOL is

@ object-oriented: classes, methods, dynamic dispatch,
exceptions; all values objects

@ dynamic: dynamically typed, adding extensions for modifying
code at runtime

@ concurrent: multiple threads of execution, shared memory,
locks acquired on objects

@ extensible, with various features “plugged in": synchronized
methods, semaphores, reflective capabilities
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Rewriting Logic Semantics and KOOL

Design Motivations for KOOL

@ Experiment with optional and pluggable type systems
@ Investigate interaction of language features with verification
and analysis

o Create a language suitable for languages courses, without
some “confusing” features from other languages
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Rewriting Logic Semantics and KOOL

A Sample KOOL Program

1| class Factorial is

2| method Fact(n) is

3 if n = 0 then

4 return 1;

5 else

6 return n * self.Fact(n-1);
7 fi

8 end

9|end

10

11| console << (new Factorial) .Fact(200)
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Rewriting Logic Semantics and KOOL

Rewriting Logic Semantics of Programming Languages

@ Rewriting logic is an extension of equational logic with
support for concurrency

@ Language semantics provides formal definitions of language
features

@ Rewriting logic semantics: formal language definitions using
rewriting logic

@ Definitions are executable with rewriting logic engines, like
Maude
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Rewriting Logic Semantics and KOOL

The Rewriting Logic Semantics Project

@ KOOL is part of ongoing work on rewriting logic semantics
@ Other work includes many languages and supporting tools,
researchers at multiple universities

@ Java, Beta, Scheme, Prolog, Haskell, PLAN, BC, CCS, MSR,
ABEL, SILF, FUN, m-calculus, variants of A-calculus, others
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Rewriting Logic Semantics and KOOL

KOOL Program States

@ States in KOOL represented as multisets of state components

@ Multisets formed by putting components next to one another

op - - : KState KState -> KState [assoc comm id: empty]
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Rewriting Logic Semantics and

KOOL Program States
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Rewriting Logic Semantics and KOOL

KOOL Program States: A Simple Term

Continuation

1 stmt (if E then S else S’ fi)
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Rewriting Logic Semantics and KOOL

KOOL Program States: A More Complex Term

_mel

m— &

control

kK

1 t(control (k(1llookup(L) -> K) CS) TS) mem(Mem)
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Rewriting Logic Semantics and KOOL

Sample KOOL Semantics

Equations represent non-competing transitions, and have the
general form eq | = r (unconditional) or ceq I = r if ¢
(conditional):

[

eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’)
eq val(primBool(true)) -> if(S,S’) = stmt(S)
eq val(primBool(false)) -> if(8,S’) = stmt(S’)

w N
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Rewriting Logic Semantics and KOOL

Sample KOOL Semantics

Equations represent non-competing transitions, and have the
general form eq | = r (unconditional) or ceq I = r if ¢
(conditional):

[

eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’)
eq val(primBool(true)) -> if(S,S’) = stmt(S)
eq val(primBool(false)) -> if(8,S’) = stmt(S’)

w N

Rules represent transitions which may compete, and have the
general form r/ | => r (unconditional) or crl | =>r if ¢

(conditional):

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem)
if V := Mem[L] /\ V =/= undefined .

[SVI SR
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Rewriting Logic Semantics and KOOL

Running KOOL Programs

@ Programs parsed, converted to Maude, and executed, with
results displayed to user

KOOL programs execute directly in the language semantics,
defined using rewriting logic

Stats: 335 equations in semantics, 15 rules, 1406 lines

No type checker; violations (message not understood, wrong
number of arguments, etc) handled at runtime with exceptions
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Analysis in KOOL with Rewriting Logic Model Checking
A Problem...

Analysis Overview

KOOL uses analysis capabilities of Maude to provide program
analysis:

@ Search allows a breadth-first search over the program state
space

@ Model Checking allows verification of finite-state systems
using LTL formulae

@ Rewriting logic rules determine size of state space/transitions
between states
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Search
Analysis in KOOL with Rewriting Logic Model Checking
A Problem...

Breadth-First Search

@ KOOL provides breadth-first search over output values
“out-of-the-box"

@ Can either find all output values or search for a specific value
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Search
Analysis in KOOL with Rewriting Logic Model Checking
A Problem...

Search Example: Output Interleavings

1| class Main is

2 var pl, p2;

3

4 method Test(id) is

5 console << "ID is " << id;
6 end

7

8 method Run is

9 spawn(self.Test(1));
10 spawn (self.Test(2));
11 console << "Done";
12 end

13 | end

14

15 | (new Main) .Run
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Analysis in KOOL with Rewriting Logic Model Checking
A Problem...

Output Interleavings Results

> runkool -s Spawnb.kool

Solution 1 (state 16)

states: 38 rewrites: 8325 in 464ms cpu (471ims real) (17940
rewrites/second)

SL: [StringList] --> "Done"

Solution 13 (state 455)

states: 456 rewrites: 70193 in 4944ms cpu (4994ms real) (14196
rewrites/second)

SL: [StringList] --> "ID is ","2","ID is ","1","Done"

— e
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= o e
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No more solutions.

-
(o))
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Search
Analysis in KOOL with Rewriting Logic Model Checking
A Problem...

Search Example: The Thread Game

KOOL version of a problem formulated by J. Moore

1| class ThreadGame is

2 var x;

3

4 method ThreadGame is

5 x <- 1;

6 end

7

8 method Add is

9 while true do x <- x + x; od
10 end

11

12 method Run is

13 spawn(self.Add); spawn(self.Add);
14 console << Xx;

15 end

16 | end

17 | (new ThreadGame) .Run
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Search
Analysis in KOOL with Rewriting Logic Model Checking
A Problem...

Thread Game Results

> runkool -t 5 ThreadGame.kool

1

2

3| Solution 1 (state 769)
4| SL: [StringList] --> "5"
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Analysis in KOOL with Rewriting Logic Model Checking
A Problem...

Model Checking

@ KOOL uses Maude to provide basic model checking
capabilities

o Extended with labeled statements; labels can be used in LTL
formulae

@ Runtime allows custom Maude modules with new LTL
properties to be loaded and used during verification
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Dining Philosophers

1| class Philosopher is

2 method Run(id,left,right) is
3 while true do

4 // thinking here...
5 hungry:

6 acquire left;

7 acquire right;

8 eating:

9 release left;

10 release right;

11 od

12 end

13 | end
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Search
Analysis in KOOL with Rewriting Logic Model Checking
A Problem...

Model Checking the Dining Philosophers

1| > runkool DP.kool -m ... model checking arguments ...

@ Model checking arguments generally include formula to check
@ When formula doesn’t hold, a counterexample is generated

@ When formula holds, true is returned
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Analysis in KOOL with Rewriting Logic

A Problem Arises

Analysis is slow, we quickly hit maximum problem size.

Search

Model Checking

A Problem...

Ph's No Optimizations
Counterex | DeadFree
2 0.830 1.530
3 0.912 34.924
4 1.466 1226.323
5 6.465 NA
6 66.683 NA
7 805.278 NA
8 NA NA

Figure: Dining Philosophers Model Checking Performance
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A Problem Arises

But why?

@ In KOOL, all operations are message sends, even addition
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A Problem Arises

But why?

@ In KOOL, all operations are message sends, even addition

@ All operations will require memory lookups, since even
numbers are objects
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A Problem Arises

But why?

@ In KOOL, all operations are message sends, even addition

@ All operations will require memory lookups, since even
numbers are objects

@ All memory lookups are rules
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A Problem Arises

But why?

@ In KOOL, all operations are message sends, even addition

@ All operations will require memory lookups, since even
numbers are objects

@ All memory lookups are rules

@ Rules increase the size of the state space
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A Problem Arises

But why?
@ In KOOL, all operations are message sends, even addition

@ All operations will require memory lookups, since even
numbers are objects

@ All memory lookups are rules
@ Rules increase the size of the state space

@ In addition, heap constantly changes, making many more
programs infinite state (impossible to model check)
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A Problem Arises

But why?
@ In KOOL, all operations are message sends, even addition

@ All operations will require memory lookups, since even
numbers are objects

@ All memory lookups are rules
@ Rules increase the size of the state space

@ In addition, heap constantly changes, making many more
programs infinite state (impossible to model check)

@ Shows that a reasonable definition for execution may not work
well for analysis
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A Problem...

Our Goal

Reduce the number of rule applications by changing the semantics
of KOOL while still maintaining observable program behavior
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In General

Auto-Bi g
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Improving Performance
P g serall Results

Optimizing KOOL

Two approaches to optimizing KOOL programs for analysis:

@ Change semantics to reduce usage of rules, focusing on
changes that also speed up normal execution (e.g. reduce

number of message sends)
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Auto-Bi g
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serall Results

Optimizing KOOL

Two approaches to optimizing KOOL programs for analysis:

@ Change semantics to reduce usage of rules, focusing on
changes that also speed up normal execution (e.g. reduce
number of message sends)

@ Change semantics to reduce usage of rules, even at the
expense of slower program execution
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Improving Performance
P g Results

Auto-Boxing in KOOL

; ’ (1 +2) * 3 // desugars as (1.+(2)).*(3)

@ In KOOL, this involves creation of 5 objects, 2 method calls,
multiple primitive manipulation operations

@ Heavy use of memory causes execution and analysis
performance problems

e Familiar problem in OO languages (Smalltalk and SELF, for
instance)

@ Goal: use scalar values instead, automatically converting to
objects (auto-boxing, as in C#) when needed

@ With auto-boxing, 2 operations, neither requiring memory
lookup
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Adding Auto-Boxing

@ Step 1: Allow scalar values, versus just objects (3 equations)
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Adding Auto-Boxing

@ Step 1: Allow scalar values, versus just objects (3 equations)

@ Step 2: Modify method call semantics to handle scalar
operations without performing a method call (42 equations)
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Adding Auto-Boxing

@ Step 1: Allow scalar values, versus just objects (3 equations)

@ Step 2: Modify method call semantics to handle scalar
operations without performing a method call (42 equations)

@ Step 3: Return scalars from some operations that currently
return objects (e.g. primitive integer addition) (50 equations)
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Adding Auto-Boxing

@ Step 1: Allow scalar values, versus just objects (3 equations)

@ Step 2: Modify method call semantics to handle scalar
operations without performing a method call (42 equations)

@ Step 3: Return scalars from some operations that currently
return objects (e.g. primitive integer addition) (50 equations)

@ Step 4: Box scalars when needed (4 equations)
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In General
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Adding Auto-Boxing

Step 1: Allow scalar values, versus just objects (3 equations)

Step 2: Modify method call semantics to handle scalar
operations without performing a method call (42 equations)

Step 3: Return scalars from some operations that currently
return objects (e.g. primitive integer addition) (50 equations)

Step 4: Box scalars when needed (4 equations)

8 more additional changes — most changes for auto-boxing
mechanical
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Improving Performance
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Auto-Boxing Results

Ph's No Optimizations Auto-boxing

Counterex | DeadFree | Counterex | DeadFree

2 0.830 1.530 0.799 0.878

3 0.912 34.924 0.899 2.901

4 1.466 1226.323 1.346 23.451

5 6.465 NA 5.226 237.714

6 66.683 NA 45.747 2501.498

7 805.278 NA 476.916 NA

8 NA NA NA NA

Figure: Dining Philosophers Model Checking Performance
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Shared and Unshared Memory

Improving Performance
P e Overall Results

The KOOL Memory Model

e KOOL memory represented as finite map, Location — Value
@ Object references are Locations, objects are Values

@ Memory at toplevel, since all threads share same memory
space

@ Memory accesses use rules, since accesses in different threads
can compete
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Memory Pools

o Idea: Can we split memory into shared and unshared pools,
only use rules for accessed to shared pool?
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Memory Pools

o Idea: Can we split memory into shared and unshared pools,
only use rules for accessed to shared pool?

@ Answer: Yes, if we're careful...
e Local variable accesses should never compete
o Object-level variable accesses may compete
e If a variable may be shared, anything reachable through it may
be shared as well
o Conservative assumption: if it can be shared, make it shared,
else leave it unshared; once shared, never goes back (simple

rule, room for improvement)
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Implementing Memory Pools

@ Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)
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Improving Performance
P e Overall Results

Implementing Memory Pools

@ Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

@ Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)
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Improving Performance
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Implementing Memory Pools

@ Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

@ Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

@ On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)
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Implementing Memory Pools

@ Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

@ Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

@ On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)

@ On spawn of arbitrary expression, contents of current
environment (all names in scope) shared (1 rule)
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Implementing Memory Pools

@ Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

@ Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

@ On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)

@ On spawn of arbitrary expression, contents of current
environment (all names in scope) shared (1 rule)

@ On assignment to shared location, share new reachable
locations (included in above)
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Shared and Unshared Memory

Improving Performance
P e Overall Results

Implementing Memory Pools

@ Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

@ Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

@ On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)

@ On spawn of arbitrary expression, contents of current
environment (all names in scope) shared (1 rule)

@ On assignment to shared location, share new reachable
locations (included in above)

@ Overall, fewer changes compared to auto-boxing, but more
complex
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In General
Auto- ing
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Overall Results

Shared Memory and Auto-Boxing Combined

Ph's No Optimizations Auto-boxing + Memory Pools

Counterex | DeadFree | Counterex DeadFree

2 0.830 1.530 0.758 0.782

3 0.912 34.924 0.812 1.270

4 1.466 1226.323 1.070 4.192

5 6.465 NA 2.264 22.467

6 66.683 NA 9.236 124.818

7 805.278 NA 50.527 797.308

8 NA NA 299.630 4744427

Figure: Dining Philosophers Model Checking Performance
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In General
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Shared Memory and Auto-Boxing Combined

Ph's Auto-boxing Auto-boxing + Memory Pools

Counterex | DeadFree | Counterex DeadFree

2 0.799 0.878 0.758 0.782

3 0.899 2.901 0.812 1.270

4 1.346 23.451 1.070 4.192

5 5.226 237.714 2.264 22.467

6 45.747 2501.498 9.236 124.818

7 476.916 NA 50.527 797.308

8 NA NA 299.630 4744427

Figure: Dining Philosophers Model Checking Performance
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Conclusion

Conclusions

@ Methods to define languages using rewriting logic semantics
fairly well understood

o Good definitions for execution can have poor analysis
performance

e Optimizations from analysis and programming languages can
be applied to improve analysis performance

@ Two straight-forward implementations of optimizations shown
here; both improve performance dramatically
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Conclusion

Future Work

@ Provide GC for KOOL, which should help improve memory
performance

@ Investigate ways to optimize definitions automatically, and/or
prove changes preserve behavior

@ Look for other optimizations that could further improve
performance

o Investigate modularity of optimizations — can optimized

memory model be applied to memory model for other
languages, for instance?
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@ Rewriting Logic Semantics: The Rewriting Logic Semantics
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