
Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

On Formal Analysis of OO Languages using
Rewriting Logic: Designing for Performance

Mark Hills and Grigore Roşu
{mhills, grosu}@cs.uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

6 June 2007

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

1 Rewriting Logic Semantics and KOOL

2 Analysis in KOOL with Rewriting Logic

3 Improving Performance

4 Conclusion

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Outline

1 Rewriting Logic Semantics and KOOL

2 Analysis in KOOL with Rewriting Logic

3 Improving Performance

4 Conclusion

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

The KOOL Language

KOOL is

object-oriented: classes, methods, dynamic dispatch,
exceptions; all values objects

dynamic: dynamically typed, adding extensions for modifying
code at runtime

concurrent: multiple threads of execution, shared memory,
locks acquired on objects

extensible, with various features “plugged in”: synchronized
methods, semaphores, reflective capabilities

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Design Motivations for KOOL

Experiment with optional and pluggable type systems

Investigate interaction of language features with verification
and analysis

Create a language suitable for languages courses, without
some “confusing” features from other languages

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

A Sample KOOL Program

1 class Factorial is
2 method Fact(n) is
3 if n = 0 then
4 return 1;
5 else
6 return n * self.Fact(n-1);
7 fi
8 end
9 end

10

11 console << (new Factorial).Fact(200)

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Rewriting Logic Semantics of Programming Languages

Rewriting logic is an extension of equational logic with
support for concurrency

Language semantics provides formal definitions of language
features

Rewriting logic semantics: formal language definitions using
rewriting logic

Definitions are executable with rewriting logic engines, like
Maude

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

The Rewriting Logic Semantics Project

KOOL is part of ongoing work on rewriting logic semantics

Other work includes many languages and supporting tools,
researchers at multiple universities

Java, Beta, Scheme, Prolog, Haskell, PLAN, BC, CCS, MSR,
ABEL, SILF, FUN, π-calculus, variants of λ-calculus, others

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

KOOL Program States

States in KOOL represented as multisets of state components

Multisets formed by putting components next to one another

op : KState KState -> KState [assoc comm id: empty]

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

KOOL Program States

State

StringList

ControlEnvironment

StringList Store ClassSet

MethodStack ExceptionStack LoopStackContinuation

Object Name

csetmemoutput
input

k mstack estack
lstack

Nat

nextloc

Thread

env control cobj cclass

t

LockSet

LockTupleSet

busy

holds

Name Nat

lbl tid

Nat

nextTid

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

KOOL Program States: A Simple Term

1 stmt(if E then S else S’ fi)

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

KOOL Program States: A More Complex Term

1 t(control(k(llookup(L) -> K) CS) TS) mem(Mem)

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Sample KOOL Semantics

Equations represent non-competing transitions, and have the
general form eq l = r (unconditional) or ceq l = r i f c
(conditional):

1 eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .

2 eq val(primBool(true)) -> if(S,S’) = stmt(S) .

3 eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

Rules represent transitions which may compete, and have the
general form r l l => r (unconditional) or crl l => r i f c
(conditional):

1 crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>

2 t(control(k(val(V) -> K) CS) TS) mem(Mem)

3 if V := Mem[L] /\ V =/= undefined .

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Sample KOOL Semantics

Equations represent non-competing transitions, and have the
general form eq l = r (unconditional) or ceq l = r i f c
(conditional):

1 eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .

2 eq val(primBool(true)) -> if(S,S’) = stmt(S) .

3 eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

Rules represent transitions which may compete, and have the
general form r l l => r (unconditional) or crl l => r i f c
(conditional):

1 crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>

2 t(control(k(val(V) -> K) CS) TS) mem(Mem)

3 if V := Mem[L] /\ V =/= undefined .

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Running KOOL Programs

Programs parsed, converted to Maude, and executed, with
results displayed to user

KOOL programs execute directly in the language semantics,
defined using rewriting logic

Stats: 335 equations in semantics, 15 rules, 1406 lines

No type checker; violations (message not understood, wrong
number of arguments, etc) handled at runtime with exceptions

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Outline

1 Rewriting Logic Semantics and KOOL

2 Analysis in KOOL with Rewriting Logic

3 Improving Performance

4 Conclusion

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Analysis Overview

KOOL uses analysis capabilities of Maude to provide program
analysis:

Search allows a breadth-first search over the program state
space

Model Checking allows verification of finite-state systems
using LTL formulae

Rewriting logic rules determine size of state space/transitions
between states

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Breadth-First Search

KOOL provides breadth-first search over output values
“out-of-the-box”

Can either find all output values or search for a specific value

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Search Example: Output Interleavings

1 class Main is

2 var p1, p2;

3

4 method Test(id) is

5 console << "ID is " << id;

6 end

7

8 method Run is

9 spawn(self.Test(1));

10 spawn(self.Test(2));

11 console << "Done";

12 end

13 end

14

15 (new Main).Run

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Output Interleavings Results

1 > runkool -s Spawn5.kool

2

3 Solution 1 (state 16)

4 states: 38 rewrites: 8325 in 464ms cpu (471ms real) (17940

5 rewrites/second)

6 SL:[StringList] --> "Done"

7

8 ...

9

10 Solution 13 (state 455)

11 states: 456 rewrites: 70193 in 4944ms cpu (4994ms real) (14196

12 rewrites/second)

13 SL:[StringList] --> "ID is ","2","ID is ","1","Done"

14

15 No more solutions.

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Search Example: The Thread Game

KOOL version of a problem formulated by J. Moore

1 class ThreadGame is

2 var x;

3

4 method ThreadGame is

5 x <- 1;

6 end

7

8 method Add is

9 while true do x <- x + x; od

10 end

11

12 method Run is

13 spawn(self.Add); spawn(self.Add);

14 console << x;

15 end

16 end

17 (new ThreadGame).Run

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Thread Game Results

1 > runkool -t 5 ThreadGame.kool

2

3 Solution 1 (state 769)

4 SL:[StringList] --> "5"

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Model Checking

KOOL uses Maude to provide basic model checking
capabilities

Extended with labeled statements; labels can be used in LTL
formulae

Runtime allows custom Maude modules with new LTL
properties to be loaded and used during verification

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Dining Philosophers

1 class Philosopher is

2 method Run(id,left,right) is

3 while true do

4 // thinking here...

5 hungry:

6 acquire left;

7 acquire right;

8 eating:

9 release left;

10 release right;

11 od

12 end

13 end

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Model Checking the Dining Philosophers

1 > runkool DP.kool -m ... model checking arguments ...

Model checking arguments generally include formula to check

When formula doesn’t hold, a counterexample is generated

When formula holds, true is returned

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

A Problem Arises

Analysis is slow, we quickly hit maximum problem size.

Ph’s No Optimizations

Counterex DeadFree

2 0.830 1.530

3 0.912 34.924

4 1.466 1226.323

5 6.465 NA

6 66.683 NA

7 805.278 NA

8 NA NA

Figure: Dining Philosophers Model Checking Performance

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

A Problem Arises

But why?

In KOOL, all operations are message sends, even addition

All operations will require memory lookups, since even
numbers are objects

All memory lookups are rules

Rules increase the size of the state space

In addition, heap constantly changes, making many more
programs infinite state (impossible to model check)

Shows that a reasonable definition for execution may not work
well for analysis

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

A Problem Arises

But why?

In KOOL, all operations are message sends, even addition

All operations will require memory lookups, since even
numbers are objects

All memory lookups are rules

Rules increase the size of the state space

In addition, heap constantly changes, making many more
programs infinite state (impossible to model check)

Shows that a reasonable definition for execution may not work
well for analysis

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

A Problem Arises

But why?

In KOOL, all operations are message sends, even addition

All operations will require memory lookups, since even
numbers are objects

All memory lookups are rules

Rules increase the size of the state space

In addition, heap constantly changes, making many more
programs infinite state (impossible to model check)

Shows that a reasonable definition for execution may not work
well for analysis

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

A Problem Arises

But why?

In KOOL, all operations are message sends, even addition

All operations will require memory lookups, since even
numbers are objects

All memory lookups are rules

Rules increase the size of the state space

In addition, heap constantly changes, making many more
programs infinite state (impossible to model check)

Shows that a reasonable definition for execution may not work
well for analysis

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

A Problem Arises

But why?

In KOOL, all operations are message sends, even addition

All operations will require memory lookups, since even
numbers are objects

All memory lookups are rules

Rules increase the size of the state space

In addition, heap constantly changes, making many more
programs infinite state (impossible to model check)

Shows that a reasonable definition for execution may not work
well for analysis

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

A Problem Arises

But why?

In KOOL, all operations are message sends, even addition

All operations will require memory lookups, since even
numbers are objects

All memory lookups are rules

Rules increase the size of the state space

In addition, heap constantly changes, making many more
programs infinite state (impossible to model check)

Shows that a reasonable definition for execution may not work
well for analysis

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Search
Model Checking
A Problem...

Our Goal

Reduce the number of rule applications by changing the semantics
of KOOL while still maintaining observable program behavior

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Outline

1 Rewriting Logic Semantics and KOOL

2 Analysis in KOOL with Rewriting Logic

3 Improving Performance

4 Conclusion

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Optimizing KOOL

Two approaches to optimizing KOOL programs for analysis:

Change semantics to reduce usage of rules, focusing on
changes that also speed up normal execution (e.g. reduce
number of message sends)

Change semantics to reduce usage of rules, even at the
expense of slower program execution

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Optimizing KOOL

Two approaches to optimizing KOOL programs for analysis:

Change semantics to reduce usage of rules, focusing on
changes that also speed up normal execution (e.g. reduce
number of message sends)

Change semantics to reduce usage of rules, even at the
expense of slower program execution

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Auto-Boxing in KOOL

1 (1 + 2) * 3 // desugars as (1.+(2)).*(3)

In KOOL, this involves creation of 5 objects, 2 method calls,
multiple primitive manipulation operations

Heavy use of memory causes execution and analysis
performance problems

Familiar problem in OO languages (Smalltalk and SELF, for
instance)

Goal: use scalar values instead, automatically converting to
objects (auto-boxing, as in C#) when needed

With auto-boxing, 2 operations, neither requiring memory
lookup

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Adding Auto-Boxing

Step 1: Allow scalar values, versus just objects (3 equations)

Step 2: Modify method call semantics to handle scalar
operations without performing a method call (42 equations)

Step 3: Return scalars from some operations that currently
return objects (e.g. primitive integer addition) (50 equations)

Step 4: Box scalars when needed (4 equations)

8 more additional changes – most changes for auto-boxing
mechanical

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Adding Auto-Boxing

Step 1: Allow scalar values, versus just objects (3 equations)

Step 2: Modify method call semantics to handle scalar
operations without performing a method call (42 equations)

Step 3: Return scalars from some operations that currently
return objects (e.g. primitive integer addition) (50 equations)

Step 4: Box scalars when needed (4 equations)

8 more additional changes – most changes for auto-boxing
mechanical

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Adding Auto-Boxing

Step 1: Allow scalar values, versus just objects (3 equations)

Step 2: Modify method call semantics to handle scalar
operations without performing a method call (42 equations)

Step 3: Return scalars from some operations that currently
return objects (e.g. primitive integer addition) (50 equations)

Step 4: Box scalars when needed (4 equations)

8 more additional changes – most changes for auto-boxing
mechanical

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Adding Auto-Boxing

Step 1: Allow scalar values, versus just objects (3 equations)

Step 2: Modify method call semantics to handle scalar
operations without performing a method call (42 equations)

Step 3: Return scalars from some operations that currently
return objects (e.g. primitive integer addition) (50 equations)

Step 4: Box scalars when needed (4 equations)

8 more additional changes – most changes for auto-boxing
mechanical

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Adding Auto-Boxing

Step 1: Allow scalar values, versus just objects (3 equations)

Step 2: Modify method call semantics to handle scalar
operations without performing a method call (42 equations)

Step 3: Return scalars from some operations that currently
return objects (e.g. primitive integer addition) (50 equations)

Step 4: Box scalars when needed (4 equations)

8 more additional changes – most changes for auto-boxing
mechanical

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Auto-Boxing Results

Ph’s No Optimizations Auto-boxing

Counterex DeadFree Counterex DeadFree

2 0.830 1.530 0.799 0.878

3 0.912 34.924 0.899 2.901

4 1.466 1226.323 1.346 23.451

5 6.465 NA 5.226 237.714

6 66.683 NA 45.747 2501.498

7 805.278 NA 476.916 NA

8 NA NA NA NA

Figure: Dining Philosophers Model Checking Performance

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

The KOOL Memory Model

KOOL memory represented as finite map, Location → Value

Object references are Locations, objects are Values

Memory at toplevel, since all threads share same memory
space

Memory accesses use rules, since accesses in different threads
can compete

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Memory Pools

Idea: Can we split memory into shared and unshared pools,
only use rules for accessed to shared pool?

Answer: Yes, if we’re careful...

Local variable accesses should never compete
Object-level variable accesses may compete
If a variable may be shared, anything reachable through it may
be shared as well
Conservative assumption: if it can be shared, make it shared,
else leave it unshared; once shared, never goes back (simple
rule, room for improvement)

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Memory Pools

Idea: Can we split memory into shared and unshared pools,
only use rules for accessed to shared pool?

Answer: Yes, if we’re careful...

Local variable accesses should never compete
Object-level variable accesses may compete
If a variable may be shared, anything reachable through it may
be shared as well
Conservative assumption: if it can be shared, make it shared,
else leave it unshared; once shared, never goes back (simple
rule, room for improvement)

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Implementing Memory Pools

Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)

On spawn of arbitrary expression, contents of current
environment (all names in scope) shared (1 rule)

On assignment to shared location, share new reachable
locations (included in above)

Overall, fewer changes compared to auto-boxing, but more
complex

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Implementing Memory Pools

Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)

On spawn of arbitrary expression, contents of current
environment (all names in scope) shared (1 rule)

On assignment to shared location, share new reachable
locations (included in above)

Overall, fewer changes compared to auto-boxing, but more
complex

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Implementing Memory Pools

Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)

On spawn of arbitrary expression, contents of current
environment (all names in scope) shared (1 rule)

On assignment to shared location, share new reachable
locations (included in above)

Overall, fewer changes compared to auto-boxing, but more
complex

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Implementing Memory Pools

Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)

On spawn of arbitrary expression, contents of current
environment (all names in scope) shared (1 rule)

On assignment to shared location, share new reachable
locations (included in above)

Overall, fewer changes compared to auto-boxing, but more
complex

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Implementing Memory Pools

Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)

On spawn of arbitrary expression, contents of current
environment (all names in scope) shared (1 rule)

On assignment to shared location, share new reachable
locations (included in above)

Overall, fewer changes compared to auto-boxing, but more
complex

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Implementing Memory Pools

Add second memory pool (smem), with equations and rules to
access it (4 equations, 2 rules)

Add equations to move items from unshared to shared
memory, taking account of transitivity (3 equations)

On spawn of a new method, all locations reachable through
message target and actual arguments shared (1 rule)

On spawn of arbitrary expression, contents of current
environment (all names in scope) shared (1 rule)

On assignment to shared location, share new reachable
locations (included in above)

Overall, fewer changes compared to auto-boxing, but more
complex

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Shared Memory and Auto-Boxing Combined

Ph’s No Optimizations Auto-boxing + Memory Pools

Counterex DeadFree Counterex DeadFree

2 0.830 1.530 0.758 0.782

3 0.912 34.924 0.812 1.270

4 1.466 1226.323 1.070 4.192

5 6.465 NA 2.264 22.467

6 66.683 NA 9.236 124.818

7 805.278 NA 50.527 797.308

8 NA NA 299.630 4744.427

Figure: Dining Philosophers Model Checking Performance

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

In General
Auto-Boxing
Shared and Unshared Memory
Overall Results

Shared Memory and Auto-Boxing Combined

Ph’s Auto-boxing Auto-boxing + Memory Pools

Counterex DeadFree Counterex DeadFree

2 0.799 0.878 0.758 0.782

3 0.899 2.901 0.812 1.270

4 1.346 23.451 1.070 4.192

5 5.226 237.714 2.264 22.467

6 45.747 2501.498 9.236 124.818

7 476.916 NA 50.527 797.308

8 NA NA 299.630 4744.427

Figure: Dining Philosophers Model Checking Performance

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Outline

1 Rewriting Logic Semantics and KOOL

2 Analysis in KOOL with Rewriting Logic

3 Improving Performance

4 Conclusion

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Conclusions

Methods to define languages using rewriting logic semantics
fairly well understood

Good definitions for execution can have poor analysis
performance

Optimizations from analysis and programming languages can
be applied to improve analysis performance

Two straight-forward implementations of optimizations shown
here; both improve performance dramatically

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Future Work

Provide GC for KOOL, which should help improve memory
performance

Investigate ways to optimize definitions automatically, and/or
prove changes preserve behavior

Look for other optimizations that could further improve
performance

Investigate modularity of optimizations – can optimized
memory model be applied to memory model for other
languages, for instance?

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Improving Performance

Conclusion

Related Work

Rewriting Logic Semantics: The Rewriting Logic Semantics
Project, José Meseguer and Grigore Roşu, TCS, Volume
373(3), pp 217–237, 2007.

Rewriting Logic Definition Performance: On Modelling Sensor
Networks in Maude, Dilia E. Rodŕıguez, WRLA’06.

Analysis Performance in Maude: State Space Reduction of
Rewrite Theories Using Invisible Transitions, Azadeh Farzan
and José Meseguer, AMAST 2006; Partial Order Reduction
for Rewriting Semantics of Programming Languages, Azadeh
Farzan and José Meseguer, WRLA 2006.

Mark Hills and Grigore Roşu OO Languages and Rewriting Logic: Designing for Performance


	Outline
	Rewriting Logic Semantics and KOOL
	Analysis in KOOL with Rewriting Logic
	Search
	Model Checking
	A Problem...

	Improving Performance
	In General
	Auto-Boxing
	Shared and Unshared Memory
	Overall Results

	Conclusion

