
Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

KOOL: An Application of Rewriting Logic to
Language Prototyping and Analysis

Mark Hills and Grigore Roşu
{mhills, grosu}@cs.uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

26 June 2007

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

1 Rewriting Logic Semantics and KOOL

2 Analysis in KOOL with Rewriting Logic

3 Conclusion

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Outline

1 Rewriting Logic Semantics and KOOL

2 Analysis in KOOL with Rewriting Logic

3 Conclusion

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

The KOOL Language

KOOL is

object-oriented: classes, methods, dynamic dispatch,
exceptions; all values objects

dynamic: dynamically typed, adding extensions for modifying
code at runtime

concurrent: multiple threads of execution, shared memory,
locks acquired on objects

extensible, with various features “plugged in”: synchronized
methods, semaphores, reflective capabilities

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Design Motivations for KOOL

Experiment with OO language features

Experiment with optional and pluggable type systems

Investigate interaction of language features with verification
and analysis

Create a language suitable for languages courses, without
some “confusing” features from other languages

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

A Sample KOOL Program: Classes and Methods

1 class Factorial is
2 method Fact(n) is
3 if n = 0 then
4 return 1;
5 else
6 return n * self.Fact(n-1);
7 fi
8 end
9 end

10

11 console << (new Factorial).Fact(200)

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

A Sample KOOL Program: Inheritance

1 class Point is

2 var x,y;

3 method Point(inx, iny) is

4 x <- inx; y <- iny;

5 end

6 method toString is

7 return ("x = " + x.toString() + " and y = " + y.toString());

8 end

9 end

10

11 class ColorPoint extends Point is

12 var c;

13 method ColorPoint(inx, iny, inc) is

14 super(inx,iny); c <- inc;

15 end

16 method toString is

17 return (super.toString() + " and c = " + c.toString());

18 end

19 end

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Rewriting Logic Semantics of Programming Languages

Rewriting logic is an extension of equational logic with
support for concurrency

Language semantics provides formal definitions of language
features

Rewriting logic semantics: formal language definitions using
rewriting logic

Definitions are executable with rewriting logic engines, like
Maude

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

The Rewriting Logic Semantics Project

KOOL is part of ongoing work on rewriting logic semantics

Other work includes many languages and supporting tools,
researchers at multiple universities

Java, Beta, Scheme, Prolog, Haskell, PLAN, BC, CCS, MSR,
ABEL, SILF, FUN, π-calculus, variants of λ-calculus, others

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

KOOL Program Representation

States in KOOL represented as multisets of state components

Multisets formed by putting components next to one another

op : KState KState -> KState [assoc comm id: empty]

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

KOOL Program Representation

State

StringList

ControlEnvironment

StringList Store ClassSet

MethodStack ExceptionStack LoopStackContinuation

Object Name

csetmemoutput
input

k mstack estack
lstack

Nat

nextloc

Thread

env control cobj cclass

t

LockSet

LockTupleSet

busy

holds

Name Nat

lbl tid

Nat

nextTid

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

KOOL Program Representation: A Simple Term

1 stmt(if E then S else S’ fi)

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

KOOL Program Representation: A More Complex Term

1 t(control(k(llookup(L) -> K) CS) TS) mem(Mem)

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Sample KOOL Semantics

Equations represent non-competing transitions, and have the
general form eq l = r (unconditional) or ceq l = r i f c
(conditional):

1 eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .

2 eq val(primBool(true)) -> if(S,S’) = stmt(S) .

3 eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

Rules represent transitions which may compete, and have the
general form r l l => r (unconditional) or crl l => r i f c
(conditional):

1 crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>

2 t(control(k(val(V) -> K) CS) TS) mem(Mem)

3 if V := Mem[L] /\ V =/= undefined .

335 equations in semantics, 15 rules, 1406 lines

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Sample KOOL Semantics

Equations represent non-competing transitions, and have the
general form eq l = r (unconditional) or ceq l = r i f c
(conditional):

1 eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .

2 eq val(primBool(true)) -> if(S,S’) = stmt(S) .

3 eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

Rules represent transitions which may compete, and have the
general form r l l => r (unconditional) or crl l => r i f c
(conditional):

1 crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>

2 t(control(k(val(V) -> K) CS) TS) mem(Mem)

3 if V := Mem[L] /\ V =/= undefined .

335 equations in semantics, 15 rules, 1406 lines

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Sample KOOL Semantics

Equations represent non-competing transitions, and have the
general form eq l = r (unconditional) or ceq l = r i f c
(conditional):

1 eq stmt(if E then S else S’ fi) = exp(E) -> if(S,S’) .

2 eq val(primBool(true)) -> if(S,S’) = stmt(S) .

3 eq val(primBool(false)) -> if(S,S’) = stmt(S’) .

Rules represent transitions which may compete, and have the
general form r l l => r (unconditional) or crl l => r i f c
(conditional):

1 crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>

2 t(control(k(val(V) -> K) CS) TS) mem(Mem)

3 if V := Mem[L] /\ V =/= undefined .

335 equations in semantics, 15 rules, 1406 lines

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Running KOOL Programs

Programs parsed, converted to Maude, and executed, with
results displayed to user

KOOL programs execute directly in the language semantics,
defined using rewriting logic

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Running KOOL Programs: Step 1

1 The KOOL program is created and runkool is invoked

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Running KOOL Programs: Step 2

1 The KOOL program is created and runkool is invoked

2 runkool pulls in the standard prelude and generates a
complete program

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Running KOOL Programs: Step 3

1 The KOOL program is created and runkool is invoked

2 runkool pulls in the standard prelude and generates a
complete program

3 The program is parsed using SDF, generating an SDF ATerm

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Running KOOL Programs: Step 4

1 The KOOL program is created and runkool is invoked

2 runkool pulls in the standard prelude and generates a
complete program

3 The program is parsed using SDF, generating an SDF ATerm

4 A custom processor converts the ATerm into Maude syntax

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Running KOOL Programs: Step 5

1 The KOOL program is created and runkool is invoked

2 runkool pulls in the standard prelude and generates a
complete program

3 The program is parsed using SDF, generating an SDF ATerm

4 A custom processor converts the ATerm into Maude syntax

5 Maude runs the program, generating the proper output based
on the requested execution mode

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

The KOOL Language
Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Running KOOL Programs: An Example

1 > runkool Factorial.kool

2 result String: "7886578673647905035523632139321850622951359776871732632

3 94742533244359449963403342920304284011984623904177212138919638830257642

4 79024263710506192662495282993111346285727076331723739698894392244562145

5 16642402540332918641312274282948532775242424075739032403212574055795686

6 60226031904170324062351700858796178922222789623703897374720000000000000

7 000000000000000000000000000000000000"

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Outline

1 Rewriting Logic Semantics and KOOL

2 Analysis in KOOL with Rewriting Logic

3 Conclusion

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Analysis Overview

KOOL uses analysis capabilities of Maude to provide program
analysis:

Search allows a breadth-first search over the program state
space

Model Checking allows verification of finite-state systems
using LTL formulae

Rewriting logic rules determine size of state space/transitions
between states

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Breadth-First Search

KOOL provides breadth-first search over output values
“out-of-the-box”

Can either find all output values or search for a specific value

Can be useful for testing language extensions

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Search Example: The Thread Game

KOOL version of a problem formulated by J. Moore

1 class ThreadGame is

2 var x;

3

4 method ThreadGame is

5 x <- 1;

6 end

7

8 method Add is

9 while true do x <- x + x; od

10 end

11

12 method Run is

13 spawn(self.Add); spawn(self.Add);

14 console << x;

15 end

16 end

17 (new ThreadGame).Run

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Thread Game Results

1 > runkool -t 5 ThreadGame.kool

2

3 Solution 1 (state 769)

4 SL:[StringList] --> "5"

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Search Example: Synchronized Methods (1)

1 class WriteNum is

2 var num;

3

4 method WriteNum(n) is

5 num <- n;

6 end

7

8 synchronized method set(n) is

9 num <- n;

10 end

11

12 synchronized method write is

13 console << "Start:" << num;

14 self.set(num + 10);

15 self.set(num - 8);

16 console << "End:" << num;

17 end

18 end

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Search Example: Synchronized Methods (2)

1 class Driver is

2 method run is

3 var w1;

4 w1 <- new WriteNum(10);

5 spawn (w1.write);

6 w1.set(20);

7 spawn (w1.write);

8 end

9 end

10

11 (new Driver).run

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Results without Synchronization

1 > runkool -s --final Sync6.kool

2

3 Solution 1 (state 80383)

4 states: 80853 rewrites: 10112671 in 671633ms cpu (674345ms real)

5 (15056 rewrites/second)

6 SL:[StringList] --> "Start:","20","End:","22","Start:","22","End:","24"

7

8 ...

9

10 Solution 470 (state 80852)

11 states: 80853 rewrites: 10112671 in 671645ms cpu (674360ms real)

12 (15056 rewrites/second)

13 SL:[StringList] --> "Start:","10","End:","Start:","20","End:","22","12"

14

15 No more solutions.

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Results with Synchronization

1 > runkool -s --final Sync5.kool

2

3 Solution 1 (state 96)

4 states: 98 rewrites: 10390 in 612ms cpu (612ms real)

5 (16976 rewrites/second)

6 SL:[StringList] --> "Start:","20","End:","22","Start:","22","End:","24"

7

8 Solution 2 (state 97)

9 states: 98 rewrites: 10390 in 612ms cpu (612ms real)

10 (16976 rewrites/second)

11 SL:[StringList] --> "Start:","10","End:","12","Start:","20","End:","22"

12

13 No more solutions.

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Model Checking

KOOL uses Maude to provide basic model checking
capabilities

Extended with labeled statements; labels can be used in LTL
formulae

Runtime allows custom Maude modules with new LTL
properties to be loaded and used during verification

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Dining Philosophers

1 class Philosopher is

2 method Run(id,left,right) is

3 while true do

4 // thinking here...

5 hungry:

6 acquire left;

7 acquire right;

8 eating:

9 release left;

10 release right;

11 od

12 end

13 end

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Search
Model Checking

Model Checking the Dining Philosophers

1 > runkool DP.kool -m ... model checking arguments ...

Model checking arguments generally include formula to check

When formula doesn’t hold, a counterexample is generated

When formula holds, true is returned

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Outline

1 Rewriting Logic Semantics and KOOL

2 Analysis in KOOL with Rewriting Logic

3 Conclusion

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Conclusions

KOOL is a full-featured, pure OO language defined using
rewriting logic

Rewriting logic provides a semantics-based interpreter for
running KOOL programs almost for free

Rewriting logic and KOOL provide analysis capabilities useful
for model checking, search, and testing language extensions

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Future Work

Provide GC for KOOL, which should help improve memory
performance and provide a more realistic memory model

Plug type systems into KOOL, allowing multiple type systems
to be used on a single KOOL program

Further investigate analysis performance optimization (some
work on this is already done – see On Formal Analysis of OO
Languages using Rewriting Logic: Designing for Performance,
Hills and Roşu, FMOODS’07, LNCS Volume 4468, pp
107–121, 2007)

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic



Outline
Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
Conclusion

Related Work

Rewriting Logic Semantics: The Rewriting Logic Semantics
Project, Meseguer and Roşu, TCS, Volume 373(3), pp
217–237, 2007.

Formal Analysis of Java Programs in JavaFAN, Farzan, Chen,
Meseguer, and Roşu, CAV’04, LNCS Volume 3114, pp
501–505, 2004.

Using Maude and its strategies for defining a framework for
analyzing Eden semantics, Hidalgo-Herrero, Verdejo, and
Ortega-Mallén, WRS’06, ENTCS, to appear.

Compiling language definitions: the ASF+SDF compiler, van
den Brand, Heering, Klint, and Olivier, ACM TOPLAS,
Volume 24(4), pp 334–368, 2002.

Mark Hills and Grigore Roşu KOOL: An Application of Rewriting Logic


	Outline
	Rewriting Logic Semantics and KOOL
	
	
	
	

	Analysis in KOOL with Rewriting Logic
	
	

	Conclusion

