KOOL: An Application of Rewriting Logic to
Language Prototyping and Analysis

Mark Hills and Grigore Rosu
{mhills, grosu}@cs.uiuc.edu

Department of Computer Science
University of lllinois at Urbana-Champaign

26 June 2007

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Outline

@ Rewriting Logic Semantics and KOOL

Analysis in KOOL with Rewriting Logic
y

© Conclusion

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Rewriting Logic Semantics and KOOL C Semantics
ntation and Semantics

Outline

@ Rewriting Logic Semantics and KOOL

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Rewriting Logic Semantics and KOOL emantics
r resentation and Semantics

The KOOL Language

KOOL is

@ object-oriented: classes, methods, dynamic dispatch,
exceptions; all values objects

@ dynamic: dynamically typed, adding extensions for modifying
code at runtime

@ concurrent: multiple threads of execution, shared memory,
locks acquired on objects

@ extensible, with various features “plugged in": synchronized
methods, semaphores, reflective capabilities

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Rewriting Logic Semantics and KOOL emantics
r resentation and Semantics

Design Motivations for KOOL

Experiment with OO language features

Experiment with optional and pluggable type systems

Investigate interaction of language features with verification
and analysis

o Create a language suitable for languages courses, without
some “confusing” features from other languages

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

The KOOL Language

Rewriting Logic Semantics and KOOL ewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

A Sample KOOL Program: Classes and Methods

1|class Factorial is

2| method Fact(n) is

3 if n = 0 then

4 return 1;

5 else

6 return n * self.Fact(n-1);
7 fi

8 end

9|end

10

11| console << (new Factorial) .Fact(200)

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

The KOOL Language

Rewriting Logic Semantics and KOOL Rewriting Logic Semantics
KOOL Program Re ntation and Semantics
The KOOL Runtime

A Sample KOOL Program: Inheritance

1 class Point is

2 var Xx,y;

3 method Point(inx, iny) is

4 x <- inx; y <- iny;

5 end

6 method toString is

7 return ("x = " + x.toString() + " and y = " + y.toString());
8 end

9 end

10

11 class ColorPoint extends Point is

12 var c;

13 method ColorPoint(inx, iny, inc) is

14 super (inx,iny); c <- inc;

15 end

16 method toString is

17 return (super.toString() + " and ¢ = " + c.toString());
18 end

19 end

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

The KOOL Language

Rewriting Logic Semantics and KOOL Rewriting Logic Sel ics
KOOL Program Representation and Semantics
The KOOL Runtime

Rewriting Logic Semantics of Programming Languages

@ Rewriting logic is an extension of equational logic with
support for concurrency

@ Language semantics provides formal definitions of language
features

@ Rewriting logic semantics: formal language definitions using
rewriting logic

@ Definitions are executable with rewriting logic engines, like
Maude

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

The KOOL Language

Rewriting Logic Semantics and KOOL Rewriting Logic Sel ics
KOOL Program Representation and Semantics
The KOOL Runtime

The Rewriting Logic Semantics Project

@ KOOL is part of ongoing work on rewriting logic semantics
@ Other work includes many languages and supporting tools,
researchers at multiple universities

@ Java, Beta, Scheme, Prolog, Haskell, PLAN, BC, CCS, MSR,
ABEL, SILF, FUN, m-calculus, variants of A-calculus, others

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

The K g
Rewriting Logic Semantics and KOOL Rewrit mantics

KOOL gram Representation and Semantics
The KOOL Runtime

KOOL Program Representation

@ States in KOOL represented as multisets of state components

o Multisets formed by putting components next to one another

op - - : KState KState -> KState [assoc comm id: empty]

Mark Hills and Grigore Rosu

KOOL: An Application of Rewriting Logic

KOOL Language
Rewriting Logic Semantics and KOOL ing Logic Semantics
ogram Representation and Semantics
The KOOL Runtime

KOOL Program Representation

~— nextoc busy__ —nextTid____
cset - -

StringList StringList Store Thread ClassSet Nat LockSet Nat

control

env- cobj cclasf
Environment Control Object Name LockTupleSet Name Nat
Kk mstack estack Istack
Continuation MethodStack ExceptionStack LoopStack

Mark Hills and Grigore Rosu f Rewriting Logic

Rewriting Logic Semantics and KOOL ing Log
ogram Representation and Semantics
The KOOL Runtime

KOOL Program Representation: A Simple Term

Continuation

1 stmt (if E then S else S’ fi)

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Rewriting Logic Semantics and KOOL ing Log
ogram Representation and Semantics
The KOOL Runtime

KOOL Program Representation: A More Complex Term

control

1 t(control(k(llookup(L) -> K) CS) TS) mem(Mem)

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

The K g
Rewriting Logic Semantics and KOOL Rewrit mantics

KOOL gram Representation and Semantics
The KOOL Runtime

Sample KOOL Semantics

Equations represent non-competing transitions, and have the
general form eq | = r (unconditional) or ceq | = r if ¢
(conditional):

-

eq stmt(if E then S else S’ fi) = exp(E) -> if(8,S’)
eq val(primBool(true)) -> if(S,S’) = stmt(S)
eq val(primBool(false)) -> if(S,S’) = stmt(S’)

w N

Mark Hills and Grigore Rosu

KOOL: An Application of Rewriting Logic

The KOOL Language

Rewriting Logic Semantics and KOOL Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Sample KOOL Semantics

W N =

W N =

Equations represent non-competing transitions, and have the
general form eq | = r (unconditional) or ceq | = r if ¢
(conditional):

eq stmt(if E then S else S’ fi) = exp(E) -> if(8,S’)
eq val(primBool(true)) -> if(S,S’) = stmt(S)
eq val(primBool(false)) -> if(S,S’) = stmt(S’)

Rules represent transitions which may compete, and have the
general form r/ | => r (unconditional) or crl | => r if ¢
(conditional):

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem)
if V := Mem[L] /\ V =/= undefined .

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

The KOOL Language

Rewriting Logic Semantics and KOOL Rewriting Logic Semantics
KOOL Program Representation and Semantics
The KOOL Runtime

Sample KOOL Semantics

W N =

W N =

Equations represent non-competing transitions, and have the
general form eq | = r (unconditional) or ceq | = r if ¢
(conditional):

eq stmt(if E then S else S’ fi) = exp(E) -> if(8,S’)
eq val(primBool(true)) -> if(S,S’) = stmt(S)
eq val(primBool(false)) -> if(S,S’) = stmt(S’)

Rules represent transitions which may compete, and have the
general form r/ | => r (unconditional) or crl | => r if ¢
(conditional):

crl t(control(k(llookup(L) -> K) CS) TS) mem(Mem) =>
t(control(k(val(V) -> K) CS) TS) mem(Mem)
if V := Mem[L] /\ V =/= undefined .

335 equations in semantics, 15 rules, 1406 lines

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

e
Rewriting Logic Semantics and KOOL ogic Semantics

0C am Representation and Semantics
The KOOL Runtime

Running KOOL Programs

oo Merged SDF ATerm of Maude-Syntax
KooL KOOL KOOL ATerm KOOL
Program runkeol " Source SOF *| Program Processor Program Maude
KOOL l l i

KOoOL
Syntax Model
Prelude Definition Execution Search Chicking
. o OQutput Result(s) Result

@ Programs parsed, converted to Maude, and executed, with
results displayed to user

@ KOOL programs execute directly in the language semantics,
defined using rewriting logic

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

The KOOL Language
Rewriting Logic Semantics and KOOL C

tation and Semantics
The KOOL Runtime

Running KOOL Programs: Step 1

oL Merged SDF ATerm of Maude-Syntax
Program »| runkool w BOOL SDF Kbor i S R Mauds
Source Program Processor Program
. ! '
KoOL
Syntax . Model
Prelude s Execution Search Crossing
Output Resuli(s)
S I Result
J\

© The KOOL program is created and runkool is invoked

Mark Hills and Grigore Ro:

OOL: An Application of Rewriting Logic

e
Rewriting Logic Semantics and KOOL ogic Semantics

0C am Representation and Semantics
The KOOL Runtime

Running KOOL Programs: Step 2

0oL Merged SDF ATerm of Maude-Syntax
Program »| runkool fooL } . sof OO b o S R > Maude
Source Program Processor Program

. L I

KooL
Syntax Model
Prelude o sl Execution Search Creskin
_— =N Output Result(s) e

© The KOOL program is created and runkool is invoked

@ runkool pulls in the standard prelude and generates a
complete program

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Rewriting Logic Semantics and KOOL

The KOOL Runtime

Running KOOL Programs: Step 3

ooL Merged DF ATerm of Maude-Syntax
KooL KooL KOOL ATerm KooL
Fiogem ® ko) Source e Program || Processor | ™| Program = M
KoOL KooL ¢ ¢ i

Syntax Model
Prelude Definition Execution Search Checking
__— \/-\ Output Result(s) Result

@ The KOOL program is created and runkool is invoked

@ runkool pulls in the standard prelude and generates a
complete program

© The program is parsed using SDF, generating an SDF ATerm

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Rewriting Logic Semantics and KOOL

The KOOL Runtime

Running KOOL Programs: Step 4

KOOL
Program »| runkool

!

KOOL
Prelude

N

Merged
KoOL

Source £ B80F

!

KOOL
Syntax
Definition

g

Y

DF ATerm of] Maude-Sy
KOOL KOOL ATerm KOOL
> .
Program Processor Program

! '

Execution Search
Output Result(s)

@ The KOOL program is created and runkool is invoked

@ runkool pulls in the standard prelude and generates a
complete program

WModel
Checking
Result

S

© The program is parsed using SDF, generating an SDF ATerm

@ A custom processor converts the ATerm into Maude syntax

Mark Hills and Grigore Rosu

KOOL: An Application of Rewriting Logic

Rewriting Logic Semantics and KOOL

The KOOL Runtime

Running KOOL Programs: Step 5

ool Merged SDF ATerm of " Y
KOoOoL KOOL KOOL ATerm KooL
Progmm Rinkock Source SBE Program Processor Program Meiuds

’ 1 [

Ft(rggdLQ Syntax Model
Definition Checking

_ - Result

Execution Search
Output Result(s)

@ The KOOL program is created and runkool is invoked

@ runkool pulls in the standard prelude and generates a
complete program

© The program is parsed using SDF, generating an SDF ATerm
@ A custom processor converts the ATerm into Maude syntax
o

Maude runs the program, generating the proper output based
on the requested execution mode

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Rewriting Logic Semantics and KOOL

The KOOL Runtime

Running KOOL Programs: An Example

N O Ol W N

> runkool Factorial.kool

result String: "7886578673647905035523632139321850622951359776871732632
94742533244359449963403342920304284011984623904177212138919638830257642
79024263710506192662495282993111346285727076331723739698894392244562145
16642402540332918641312274282948532775242424075739032403212574055795686
60226031904170324062351700858796178922222789623703897374720000000000000
000000000000000000000000000000000000"

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

ch
Analysis in KOOL with Rewriting Logic odel Checking

Outline

@ Analysis in KOOL with Rewriting Logic

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Analysis Overview

KOOL uses analysis capabilities of Maude to provide program
analysis:

@ Search allows a breadth-first search over the program state
space

@ Model Checking allows verification of finite-state systems
using LTL formulae

@ Rewriting logic rules determine size of state space/transitions
between states

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Breadth-First Search

@ KOOL provides breadth-first search over output values
“out-of-the-box”

@ Can either find all output values or search for a specific value

@ Can be useful for testing language extensions

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Search Example: The Thread Game

KOOL version of a problem formulated by J. Moore

1| class ThreadGame is

2 var x;

3

4 method ThreadGame is

5 x <- 1;

[§ end

7

8 method Add is

9 while true do x <- x + x; od
10 end

11

12 method Run is

13 spawn (self.Add); spawn(self.Add);
14 console << Xx;

15 end

16 | end

17 | (new ThreadGame) .Run

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Thread Game Results

> runkool -t 5 ThreadGame.kool

1

2

3| Solution 1 (state 769)
4| SL: [StringList] --> "5"

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Search Example: Synchronized Methods

1 class WriteNum is

2 var num;

3

4 method WriteNum(n) is

5 num <- n;

6 end

7

8 synchronized method set(n) is
9 num <- n;

10 end

11

12 synchronized method write is
13 console << "Start:" << num;
14 self.set(num + 10);

15 self.set(num - 8);

16 console << "End:" << num;
17 end

18 end

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Search Example: Synchronized Methods

class Driver is
method run is
var wl;
wl <- new WriteNum(10);
spawn (wl.write);
wl.set(20);
spawn (wl.write);
end
end

—
= O © N oG A W N

(new Driver).run

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Results without Synchronization

> runkool -s --final Sync6.kool

1

2

3| Solution 1 (state 80383)

4 | states: 80853 rewrites: 10112671 in 671633ms cpu (674345ms real)
(15056 rewrites/second)

SL: [StringList] --> "Start:","20","End:","22","Start:","22","End:","24"

10 | Solution 470 (state 80852)
11 | states: 80853 rewrites: 10112671 in 671645ms cpu (674360ms real)

12 (15056 rewrites/second)
13 SL:[StringList] --> "Start:","10","End:","Start:","20","End:","22","12"
14

15 | No more solutioms.

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Results with Synchronization

1|> runkool -s --final Syncb.kool
2
3| Solution 1 (state 96)
4| states: 98 rewrites: 10390 in 612ms cpu (612ms real)
5 (16976 rewrites/second)
6| SL: [StringList] --> "Start:","20","End:","22","Start:","22","End:","24"
7
8 | Solution 2 (state 97)
9| states: 98 rewrites: 10390 in 612ms cpu (612ms real)
10 (16976 rewrites/second)
11| SL: [Stringlist] --> "Start:","10","End:","12","Start:","20","End:","22"
12
13 | No more solutions.

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Model Checking

@ KOOL uses Maude to provide basic model checking
capabilities

@ Extended with labeled statements; labels can be used in LTL
formulae

@ Runtime allows custom Maude modules with new LTL
properties to be loaded and used during verification

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search
Analysis in KOOL with Rewriting Logic Model Checking

Dining Philosophers

1| class Philosopher is

2 method Run(id,left,right) is
3 while true do

4 // thinking here...
5 hungry:

6 acquire left;

7 acquire right;

8 eating:

9 release left;

10 release right;

11 od

12 end

13 | end

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Search

Analysis in KOOL with Rewriting Logic Model Checking

Model Checking the Dining Philosophers

1| > runkool DP.kool -m ... model checking arguments ...

@ Model checking arguments generally include formula to check
@ When formula doesn't hold, a counterexample is generated

@ When formula holds, true is returned

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Conclusion

Outline

© Conclusion

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Conclusion

Conclusions

@ KOOL is a full-featured, pure OO language defined using
rewriting logic

@ Rewriting logic provides a semantics-based interpreter for
running KOOL programs almost for free

@ Rewriting logic and KOOL provide analysis capabilities useful
for model checking, search, and testing language extensions

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Conclusion

Future Work

@ Provide GC for KOOL, which should help improve memory
performance and provide a more realistic memory model

@ Plug type systems into KOOL, allowing multiple type systems
to be used on a single KOOL program

e Further investigate analysis performance optimization (some
work on this is already done — see On Formal Analysis of OO
Languages using Rewriting Logic: Designing for Performance,
Hills and Rosu, FMOODS'07, LNCS Volume 4468, pp
107-121, 2007)

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

Conclusion

Related Work

@ Rewriting Logic Semantics: The Rewriting Logic Semantics
Project, Meseguer and Rosu, TCS, Volume 373(3), pp
217-237, 2007.

@ Formal Analysis of Java Programs in JavaFAN, Farzan, Chen,
Meseguer, and Rosu, CAV'04, LNCS Volume 3114, pp
501-505, 2004.

@ Using Maude and its strategies for defining a framework for
analyzing Eden semantics, Hidalgo-Herrero, Verdejo, and
Ortega-Mallén, WRS'06, ENTCS, to appear.

o Compiling language definitions: the ASF+SDF compiler, van
den Brand, Heering, Klint, and Olivier, ACM TOPLAS,
Volume 24(4), pp 334-368, 2002.

Mark Hills and Grigore Rosu KOOL: An Application of Rewriting Logic

	Outline
	Rewriting Logic Semantics and KOOL
	
	
	
	

	Analysis in KOOL with Rewriting Logic
	
	

	Conclusion

