
Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Towards a Module System for K

Mark Hills and Grigore Roşu
{mhills, grosu}@cs.uiuc.edu

Department of Computer Science
University of Illinois at Urbana-Champaign

WADT’08, 14 June 2008

Hills and Roşu WADT’08: Towards a Module System for K 1 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

1 Motivation

2 K

3 Context Transformers

4 Variable Patterns and Sort Inference

5 The K Module System

6 Related and Future Work

Hills and Roşu WADT’08: Towards a Module System for K 2 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Motivation

Formal semantics of programming languages not used widely
outside of research community

We strongly believe that one important way to increase use of
formal semantics is to make semantic definitions more broadly
usable and useful

This work focuses on two aspects of this goal:

Enable improved reuse of definitions through definitional
modularity
Provide tool support for working with language definitions

Hills and Roşu WADT’08: Towards a Module System for K 3 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

K Overview
Language Semantics in K
For More Information

K: High Level View

K provides a rewrite-based method to formally define
computation

Focus here: formal definitions of programming languages

Definitions should be flexible and modular: use, and reuse, for
language documentation, program execution, analysis, proof

Hills and Roşu WADT’08: Towards a Module System for K 4 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

K Overview
Language Semantics in K
For More Information

K Basics: Computations

K based around concepts from Rewriting Logic Semantics, with
some intuitions from Chemical Abstract Machines and
Reduction Semantics

Abstract computational structures contain context needed to
produce a future computation (like continuations)

Context can consist of lists or multisets, generally representing
sequential or concurrent computation potential

Context includes special component, k, made up of list of
computational tasks separated by y, like t1 y t2 y ... y tn

From here on, computational structures called computations

Hills and Roşu WADT’08: Towards a Module System for K 5 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

K Overview
Language Semantics in K
For More Information

K Basics: Computations, Continued

Intuition from CHAMs: language constructs can heat (break
apart into pieces for evaluation) and cool (form back together)

Represented using
, like a1 + a2
 a1 y � + a2

Operators containing � called freezers

Heating/cooling pair can be seen as an equation

Intuition from RS: � can be seen as similar to evaluation
contexts, marking the location where evaluation can occur

Hills and Roşu WADT’08: Towards a Module System for K 6 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

K Overview
Language Semantics in K
For More Information

K Basics: Cells

Computations take place in context of a configuration

Configurations hierarchical (like in RLS), made up of K cells

Each cell holds specific piece of information: computation,
environment, store, etc

Two regularly used cells:

> (top), representing entire configuration
k , representing current computation

Cells can be repeated (e.g., multiple computations in a
concurrent language)

Hills and Roşu WADT’08: Towards a Module System for K 7 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

K Overview
Language Semantics in K
For More Information

Example: K Configuration

Hills and Roşu WADT’08: Towards a Module System for K 8 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

K Overview
Language Semantics in K
For More Information

K Basics: Equations and Rules

Computations defined used equations and rules

Heating/Cooling Rules (Structural Equations): manipulate
term structure, non-computational, reversible, can think of as
just equations

Rules: computational, not reversible, may be concurrent

Hills and Roşu WADT’08: Towards a Module System for K 9 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

K Overview
Language Semantics in K
For More Information

Example: Equations

a1 + a2
 a1 y � + a2

a1 + a2
 a2 y a1 + �

if b then s1 else s2 = b y if � then s1 else s2

Reminder: � is not an evaluation context, but a freezer. Also,
operations with freezers are boring to write, so we can mark
operations strict(natlist), with a freezer generated for each
position in the list. To do so for all operands, just use strict.

+ : AExp AExp -> AExp [strict]

Hills and Roşu WADT’08: Towards a Module System for K 10 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

K Overview
Language Semantics in K
For More Information

Example: Rules

i1 + i2 → i , where i is the sum of i1 and i2

if true then s1 else s2 → s1

if false then s1 else s2 → s2

Lx := v

·
|〉k 〈|(x , l)|〉env 〈|(l ,

v

|〉store

Hills and Roşu WADT’08: Towards a Module System for K 11 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

K Overview
Language Semantics in K
For More Information

For More Information

For more information on K:

“A Rewriting Logic Approach to Type Inference” (earlier talk)

K website: http://fsl.cs.uiuc.edu/k
Includes tech reports and other papers related to K

Hills and Roşu WADT’08: Towards a Module System for K 12 / 29

http://fsl.cs.uiuc.edu/k

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Overview
Example Problem
Context Transformers

The Need for Context Transformers

Rewriting logic semantics equations/rules (just rules from here,
unless distinction matters) match across configuration items

Configuration items provide context to where rule can apply

Problem: change in configuration structure can change context,
break existing rules

Hills and Roşu WADT’08: Towards a Module System for K 13 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Overview
Example Problem
Context Transformers

The Need for Context Transformers

Rewriting logic semantics equations/rules (just rules from here,
unless distinction matters) match across configuration items

Configuration items provide context to where rule can apply

Problem: change in configuration structure can change context,
break existing rules

Hills and Roşu WADT’08: Towards a Module System for K 13 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Overview
Example Problem
Context Transformers

Example

Lx := v

·
|〉k 〈|(x , l)|〉env 〈|(l ,

v

|〉store

Hills and Roşu WADT’08: Towards a Module System for K 14 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Overview
Example Problem
Context Transformers

Example, After Configuration Change

LLx := v

·
|〉k 〈|(x , l)|〉env Mt 〈|(l ,

v

|〉store

Hills and Roşu WADT’08: Towards a Module System for K 15 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Overview
Example Problem
Context Transformers

Context Transformers

Context transformers solve problem by transforming context of
rule to match configuration

Handles almost all common cases using simple restrictions

Top level configuration items should have distinct names
Matching items are those closest together in graph

Ambiguous matches will be flagged by tool

User can explicitly specify context to handle unusual cases

Hills and Roşu WADT’08: Towards a Module System for K 16 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Variable Patterns
Sort Inference

Variable Patterns

Provide way to define sorts of variables based on regular
expressions for variable names

Similar concepts found in other formalisms (e.g., ASF+SDF)

Patterns visible throughout specification, not just in declaration
module

Example: var Var[0-9] for variables Var0, Var1, ...,
Var9

Hills and Roşu WADT’08: Towards a Module System for K 17 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Variable Patterns
Sort Inference

Sort Inference

In some specifications, variable declarations can make up half
of spec

Patterns help reduce this; sort inference can reduce even more

Sorts of variables inferred based on definitions of ops

Variables can always be explicitly declared or tagged with sorts
if needed

Lx := v

·
|〉k 〈|(x , l)|〉env 〈|(l ,

v

|〉store

Hills and Roşu WADT’08: Towards a Module System for K 18 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Module Syntax
Generic Modules
Abstract Syntax Modules
Semantics Modules
Language Modules

Module Formats

Modules use similar syntax to Maude modules

Module formats provided on top of standard module syntax to
improve conciseness, allow defaults, enable special tool support

Currently defined module formats: abstract syntax, language
feature/semantics, configuration item, utility (similar to
generic), language

K provides built-ins (sets, maps, lists, etc); additional can be
defined using standard algebraic techniques

Note: Meta-information can be associated with all items in
modules; not shown below to reduce clutter

Hills and Roşu WADT’08: Towards a Module System for K 19 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Module Syntax
Generic Modules
Abstract Syntax Modules
Semantics Modules
Language Modules

Generic Modules

1 module Path/Name

2 imports /Some/Mod, /Other/Mod with { attribs } .

3 exports SImp, SImp’, _op_ : SImp SImp’ -> SImp’ .

4 requires Val, SReq, _ : SReq -> SReq .

5

6 sort Loc .

7 sortalias Store = FiniteMap(Loc,Val) .

8 subsort SSub < SSup .

9

10 var V : Val . var Store[0-9’]* : Store .

11

12 op _someop_ : SomeSort SomeSort -> SomeSort .

13 eq [OptEqName] T = T’ [where optional side-conditions] .

14 rl [OptRlName] T2 => T3 [where optional side-conditions] .

15 end module

Hills and Roşu WADT’08: Towards a Module System for K 20 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Module Syntax
Generic Modules
Abstract Syntax Modules
Semantics Modules
Language Modules

Example: Abstract Syntax

1 module Exp/AExp is
2 imports Exp with { sort Exp renamed AExp } .
3 var AE[0-9’a-zA-Z]* : AExp .
4 end module

Undecorated module names are syntax modules

Imports allow sort renaming

Variable pattern declarations usable in other modules that
(directly or indirectly) import this module

Non-pattern variable declarations considered local

Hills and Roşu WADT’08: Towards a Module System for K 21 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Module Syntax
Generic Modules
Abstract Syntax Modules
Semantics Modules
Language Modules

Example: Abstract Syntax

1 module Exp/AExp/Plus is
2 imports Exp/AExp .
3 _+_ : AExp AExp -> AExp .
4 end module

Syntax defined using mixfix notation

Any K attributes (strict, etc) defined directly on syntax
considered defaults

Hills and Roşu WADT’08: Towards a Module System for K 22 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Module Syntax
Generic Modules
Abstract Syntax Modules
Semantics Modules
Language Modules

Example: Semantics

1 module Exp/AExp/Plus[Dynamic] is

2 imports Exp/AExp/Plus

3 with { op _+_ now strict, extends + [Int * Int -> Int] } .

4 end module

Type of dynamics given after path in [brackets]

Any K attributes on syntax can be overridden on import

Strictness auto-generates structural equalities for
heating/cooling

Extends uses predefined operations to give semantics to
common constructs

Hills and Roşu WADT’08: Towards a Module System for K 23 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Module Syntax
Generic Modules
Abstract Syntax Modules
Semantics Modules
Language Modules

Example: Semantics

1 module Dynamic/Exp/BExp/And[Dynamic] is

2 imports Exp/BExp/And with { op _and_ now strict(1) } .

3 rl true and B => B .

4 rl false and B => false .

5 end module

Strictness can be enforced on individual arguments; here only
first strict for short-circuit evaluation

Combination of rules and strictness assign meaning to language
construct

Hills and Roşu WADT’08: Towards a Module System for K 24 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Module Syntax
Generic Modules
Abstract Syntax Modules
Semantics Modules
Language Modules

Example: Semantics

1 module Exp/BExp/And[Static] is

2 imports Exp/BExp/And with { op _and_ now strict } .

3 rl bool and bool => bool .

4 rl T1 and T2 => fail [where T1 =/= bool or T2 =/= bool] .

5 end module

Strictness can be different for static or dynamic semantics

Side condition added to distinguish fail case

Hills and Roşu WADT’08: Towards a Module System for K 25 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Module Syntax
Generic Modules
Abstract Syntax Modules
Semantics Modules
Language Modules

Example: Language

1 module Imp[Language] is

2 imports type=Config Top, K, Env, Store .

3 config = top(store(Store) env(Env) k(K) nextLoc(Nat)) .

4

5 imports type=Dynamic

6 Val/Int, Val/Bool, Exp/AExp/Name, Exp/AExp/Plus,

7 Exp/BExp/LEq, Exp/BExp/Not, Exp/BExp/And, Stmt/Seq,

8 Stmt/Assign, Stmt/IfThenElse, Stmt/While, Stmt/Halt, Pgm .

9 end module

Language modules set up configuration, bring in semantics

On import, type=tag syntactic sugar for Module[tag]

config used to define state configuration

Hills and Roşu WADT’08: Towards a Module System for K 26 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Module Syntax
Generic Modules
Abstract Syntax Modules
Semantics Modules
Language Modules

Config Example

config =

top(store(Store)

t*(env(Env) k(K))

nextLoc(Nat)) .

Hills and Roşu WADT’08: Towards a Module System for K 27 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Related Work
Future Work

Related Work, Briefly

Modular Semantics: MSOS, Action Semantics, Monads,
Modular ASMs (Montages)

Rewriting Logic Semantics: work on modularity (Braga and
Meseguer)

Tool Support: Action Semantics, Montages, many others

Hills and Roşu WADT’08: Towards a Module System for K 28 / 29

Outline
Motivation

K
Context Transformers

Variable Patterns and Sort Inference
The K Module System

Related and Future Work

Related Work
Future Work

Future Work

Continue development of tools (Eclipse plugin, translation to
Maude/K)

Continue moving over language modules

Online module database with links into tool: build languages
through module sharing and reuse

Hills and Roşu WADT’08: Towards a Module System for K 29 / 29

	Outline
	Motivation
	K
	
	
	

	Context Transformers
	
	
	

	Variable Patterns and Sort Inference
	
	

	The K Module System
	
	
	
	
	

	Related and Future Work
	
	

