
Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

A Rewriting Logic Semantics Approach to Modular
Program Analysis

Mark Hills 1 Grigore Roşu 2

1Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Mark.Hills@cwi.nl

2Formal Systems Laboratory
Department of Computer Science

University of Illinois at Urbana-Champaign
grosu@cs.uiuc.edu

RTA’10, 11 July 2010

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 1 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

1 Overview

2 The SILF Policy Framework

3 Related Work

4 Conclusion

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 2 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Motivation and Approach
Rewriting Logic Semantics

Outline

1 Overview

2 The SILF Policy Framework

3 Related Work

4 Conclusion

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 3 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Motivation and Approach
Rewriting Logic Semantics

Overall Goals

Leverage rewriting logic semantics for program analysis

Focus on modularity at two levels

In the definition: definition should be modular, making it
possible to create new analyses while leveraging large parts of
the existing system
In the analysis itself: should not need to analyze the entire
program, but should instead include support for analysis of
program fragments: functions, etc.

Support simpler languages for experimentation with concepts
(SILF) while supporting more complex languages (C) to
determine if concepts work in real life

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 4 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Motivation and Approach
Rewriting Logic Semantics

Our Approach: Policy Frameworks

A policy framework is a framework for building individual program
analyses (here called policies); a framework uses a combination of a
front-end language parser and a language semantics created using
rewriting logic.

Individual analysis policies provide a combination of an annotation
language and an analysis semantics: analysis leverages term
rewriting by evaluating a program in an abstract rewriting logic
semantics.

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 5 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Motivation and Approach
Rewriting Logic Semantics

Our Approach: Policy Frameworks

A policy framework is a framework for building individual program
analyses (here called policies); a framework uses a combination of a
front-end language parser and a language semantics created using
rewriting logic.

Individual analysis policies provide a combination of an annotation
language and an analysis semantics: analysis leverages term
rewriting by evaluating a program in an abstract rewriting logic
semantics.

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 5 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Motivation and Approach
Rewriting Logic Semantics

Goals of The Work Presented Here

Extended earlier work on CPF, a policy framework for C, to
provide support for type annotations – CPF supported only
annotations in code comments and in comments on function
headers

Provide a simpler environment for experimentation: earlier
work on C made it hard to untangle complexity of the
technique from the complexity of the language

Provide examples of additional policies: in this case several
variants on checking units of measurement plus a static type
system

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 6 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Motivation and Approach
Rewriting Logic Semantics

Motivation for This Approach

Why take this approach?

Rewriting logic powerful enough to define abstract analysis
semantics even for complex features of languages

Modularity of rewriting logic definitions and K (the notation
used here for the semantic rules) provides reuse, allowing a
framework of reusable pieces to be built

Annotation-driven approach taken here provides a natural
mechanism for programmers to give the analysis needed
information

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 7 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Motivation and Approach
Rewriting Logic Semantics

Rewriting Logic Semantics

Presented work in part of Rewriting Logic Semantics project
(Meseguer and Roşu, TCS’07)

Project encompasses many different languages, definitional
formalisms, goals (analysis, execution, formal verification, etc.)

Presented work falls into continuation-based style described in
earlier published work, and is written using K notation

Programs represented as first-class computations that can be
stored, manipulated, and executed, with execution here equal
to analysis

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 8 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

Outline

1 Overview

2 The SILF Policy Framework

3 Related Work

4 Conclusion

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 9 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

The SILF Language

SILF is the Simple Imperative Language with Functions

Provides standard features of a paradigmatic imperative
language: functions, globals, arrays, IO

Introduced in earlier work (Hills, Serbanuta and Rosu,
WRLA’07) (Hills, WRLA’08), so here we can just focus on the
extensions

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 10 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

The SILF Language

Integer Numbers N ::= (+|-)?(0..9)+

Declarations D ::= var I | var I [N]

Expressions E ::= N | E + E | E - E | E * E | E / E | E % E | - E |
E < E | E <= E | E > E | E >= E | E = E | E != E |
E and E | E or E | not E | N | I (El) | I [E] | I | read

Expression Lists El ::= E (,E)∗ | nil

Statements S ::= I := E | I [E] := E | if E then S fi | if E then S else S fi |
for I := E to E do S od | while E do S od | S ; S | D |
I (El) | return E | write E

Function Declarations FD ::= function I (Il) begin S end

Identifiers I ::= (a− zA− Z)(a− zA− Z0− 9)∗

Identifier Lists Il ::= I (, I)∗ | void

Programs Pgm ::= S? FD+

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 11 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

Extension strategy

Question 1: Add analysis extensions in comments, or directly
extend language?

Add in comments, can add policy framework while not breaking
existing implementations
Extend language, can better integrate analysis features
Here, go with #2 – our own language, no concerns over
breaking implementations

Question 2: Use just type annotations, just code annotations,
or both?

Just code annotations make annotation language more verbose
Just type annotations can make some analysis information
difficult to encode
Here, use both: allows user to use whichever feels most
“natural” and can encode the information properly

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 12 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

Extension strategy

Question 1: Add analysis extensions in comments, or directly
extend language?

Add in comments, can add policy framework while not breaking
existing implementations
Extend language, can better integrate analysis features
Here, go with #2 – our own language, no concerns over
breaking implementations

Question 2: Use just type annotations, just code annotations,
or both?

Just code annotations make annotation language more verbose
Just type annotations can make some analysis information
difficult to encode
Here, use both: allows user to use whichever feels most
“natural” and can encode the information properly

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 12 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

The SILF Policy Framework

An extension of the SILF language to support policies

Front-end modified to provide direct language support for type
and code annotations

Policy-generic core semantics created based on SILF dynamic
semantics

Individual policies for types, units as types, and units with code
annotations

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 13 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

Frameworks-Related SILF Extensions

Declarations D ::= ... | var TI | var TI [N]

Statements S ::= ... | for I := E to E IVl do S od | while E IVl do S od |
assert(I): ann; | assume(I): ann;

Function Declarations FD ::= function TI (TIl) PPl begin S end

Typed Identifiers TI ::= I | tann I | tvar I

Typed Identifier Lists TIl ::= TI (,TI)∗ | void

Invariants IV ::= inv(I): ann; | invariant(I): ann;

Invariant Lists IVl ::= IV ∗
PrePosts PP ::= pre(I): ann; | precond(I): ann; | post(I): ann; |

postcond(I): ann; | mod(I): ann; | modifies(I): ann;

PrePost Lists PPl ::= PP∗

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 14 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

Defining Types in SILF

sort BaseType .

subsort BaseType < Type .

ops $int $bool : -> BaseType .

op $array : BaseType -> Type .

op $notype : -> Type .

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 15 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

Defining Type Checking Rules

i1 + i2 → i , if i is the sum of i1 and i2 (1)

($int, $int) y plus → $int (2)

〈k〉 (t, t′) y plus

issueWarning(1,msg) y $int

...〈/k〉, if t =/= $int or t′ =/= $int (3)

if true then Kt else Kf → Kt (4)

$bool y if(Kt,Kf) → Kt y Kf (5)

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 16 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

Checking Types in SILF

1 function $int factorial($int n)

2 begin

3 if n = 0 then

4 return 1;

5 else

6 return n * factorial(m - 1);

7 fi

8 end

Type checking found errors:

ERROR on line 6: Identifier m is not defined.

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 17 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

Checking Types in SILF (2)

1 function $int f($int x)

2 begin

3 return x + 1;

4 end

5 function $int main(void)

6 begin

7 var $int x;

8 x := 3;

9 x := f(x);

10 x := f(x,x);

11 if x then write 1; fi

12 if (x < 5) then write 1; else write false; fi

13 end

Type checking found errors:

ERROR on line 10: Too many arguments provided in call to function f.

ERROR on line 11: Expression x should have type $bool, but has type $int.

ERROR on line 12: Write expression false has type $bool, expected type $int.

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 18 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

The SILF Language
Extending SILF
Type Checking SILF Using Policies
Checking Units of Measurement in SILF

Units in SILF

1 function main(void)

2 begin

3 var x; var y; var n;

4 assume(UNITS): @unit(x) = $m;

5 assume(UNITS): @unit(y) = $kg;

6 for n := 1 to 10

7 invariant(UNITS): @unit(x) = @unit(y);

8 do

9 x := x * x;

10 y := y * y;

11 od

12 write x + y;

13 end

Unit checking successful.

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 19 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Outline

1 Overview

2 The SILF Policy Framework

3 Related Work

4 Conclusion

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 20 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Annotation-Based Approaches

Osprey (Jiang and Su, ICSE’06) uses type annotations to check
units of measurement safety for C programs: fast, less flexible
than approach used here (limited polymorphism, unit of
function result cannot be tied to input units, etc)

Spec# (Barnett, Leino, and Schulte, CASSIS’04), JML (Burdy
et.al. FMICS’03) provide annotation systems for (an extension
to) C# and Java

CQUAL (Foster, FA’99) provides type annotation system for C,
seems to handle more limited annotations than we handle here

Frama-C provides very similar support for C, but performs
static analysis using plug-ins written in OCaml as extensions to
the base framework

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 21 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Earlier Approaches Using RLS

Initial work on BC (Chen, Roşu, and Venkatesan, RTA’03)
started this line of work

Follow-up C-UNITS system (Feng and Roşu, ASE’03) applied
this approach to C and units of measurement; used older
semantic style, much harder to extend, didn’t support many
important C language features

CPF (Hills, Chen and Roşu, RULE’08) reformulated this using
a K-style RLS definition, making it much more modular, while
also focusing on complex C language features (function
pointers, gotos, etc)

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 22 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Outline

1 Overview

2 The SILF Policy Framework

3 Related Work

4 Conclusion

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 23 / 24

Outline
Overview

The SILF Policy Framework
Related Work

Conclusion

Conclusion

The SILF Policy Framework and CPF demonstrate the viability
of using rewriting logic semantics as a platform for writing
static analysis tools

Experience with type and code annotations shows that both
can be useful and should be supported, but with knowledge of
the tradeoffs (e.g., use of type annotations would prevent
standard compilers from compiling code)

Hills and Roşu RTA’10: Rewriting Logic/Modular Program Analysis 24 / 24

	Outline
	Overview
	
	
	

	The SILF Policy Framework
	
	
	
	

	Related Work
	Conclusion

