
Enabling Go Program Analysis in Rascal

https://www.rascal-mpl.org/ 

Luke Swearngan and Mark Hills


23rd IEEE International Working Conference on Source Code Analysis and 
Manipulation (SCAM 2023), Engineering Track

October 2-3, 2023

Bogotá, Colombia


1

https://www.rascal-mpl.org/


Background: Why look at Go?

• Go is a widely used language with an interesting channel-based 
concurrency model plus traditional concurrency features


• Origin of this work was a student MS thesis


• Earlier work had studied how channel-based concurrency was 
used in Go programs (see “An Empirical Study of Message 
Passing Concurrency in Go Projects” by Dilley and Lange from 
SANER 2019)


• Student’s Focus: How do people use traditional concurrency 
features, like mutex and condition variables? Do they? 

2

Image from: https://medium.com/nerd-for-tech/learn-golang-in-one-blog-fdd568e6f631



First Idea: Just write this in Go!

• Go includes several libraries for working with Go programs, so it’s 
fairly easy to get started


• The go/ast library defines all the interfaces (e.g., Expr) and 
structures (e.g., SelectorExpr) for Abstract Syntax Tree nodes


• The go/parser library lets you parse Go code and get back an 
AST


• The go/token library defines all the lexical tokens in the 
language


• So, just create a Visitor, walk the AST, and collect the info — done!
3Image from: https://medium.com/nerd-for-tech/learn-golang-in-one-blog-fdd568e6f631



The problem: Matching AST nodes

4

Image from: https://medium.com/nerd-for-tech/learn-golang-in-one-blog-fdd568e6f631

NOTE: We are looking for something like: var wg sync.WaitGroup

func matchWaitGroupDecl(x *ast.GenDecl, v *Visitor, n ast.Node) {
for i := 0; i < len(x.Specs); i++ {

if spec, ok := x.Specs[i].(*ast.ValueSpec); ok == true {
if spec.Type != nil {

if t, ok := spec.Type.(*ast.SelectorExpr); ok == true {
if tsel, ok := t.X.(*ast.Ident); ok == true {

if tsel.Name == "sync" && t.Sel.Name == "WaitGroup" {
for j := 0; j < len(spec.Names); j++ {

id := spec.Names[j]
v.addDef(createDecl(id.Name, WaitGroup))
v.state.addWaitGroupDecl()

}
}

}
}

} } } } // all on one line so this fits on a slide!



The problem: Matching AST nodes

• Note: the code on the prior slide is not bad, it is just very verbose!


• spec, ok := x.Specs[I].(*ast.ValueSpec) is a type 
assertion: we want to make sure that spec (which is just defined 
as being of interface type Spec) is of a certain concrete type (a 
ValueSpec) — this is essentially a downcast


• We then check to see if ok == true, which means that the 
type assertion passed and spec can now be treated as a value 
of that type (which it must be if this worked) — if we just do the 
assertion without the ok check, this will panic (i.e., crash) if the 
assertion fails

5

Image from: https://medium.com/nerd-for-tech/learn-golang-in-one-blog-fdd568e6f631



Is there a better way?

• Rascal is designed for these kinds of applications!


• The following is the Rascal version of what was inside the for loop 
in the example Go code:


• Pattern matching gives us a natural way to work with AST terms, 
built-in relation types and comprehensions help us with fact 
extraction and analysis

6

Image from: https://medium.com/nerd-for-tech/learn-golang-in-one-blog-fdd568e6f631

if (valueSpec(names,someExpr(selectorExpr(ident("sync"),"WaitGroup")),_) := d) {
featureDecls = featureDecls 

+ { < d.at, featureDecl(d.at, n, waitGroupDecl())> | n <- names };
}

}



Go AiR

• Go AiR (Analysis in Rascal) is a prototype analysis framework for 
Go

7

Go System

Go System 
ASTs (Rascal)

Go Parser/AST 
Printer (Go)

Go AiR
(Rascal)

Interactive Querying/
Empirical Analysis 

(Rascal)

Program Analysis 
(Rascal)

Result 
Reports 
(LaTeX, 
dot, etc)

Serialized Go 
ASTs

Go File



What can we currently do?

• We can extract ASTs from Go source code (using a Go program to 
do this) and read them into Rascal, either for individual files or 
entire systems (tested across a large number of popular systems)


• We can serialize/deserialize these systems, along with additional 
extracted data


• We can explore Go code using Rascal’s pattern matching features


• We can work with multiple releases of a system, based on Git 
version history


• We are moving earlier fact extraction code, written in Go, over to 
Rascal 8



What would we like to do?

• We want to redo our earlier work on traditional concurrency 
features and compare this to earlier work on message passing


• We want to integrate this with a rewriting logic semantics of Go, 
focused on concurrency, for concurrency analysis and verification


• We want to extract models of concurrent behavior to help 
developers understand the possible behaviors of their code

9



And now for some controversy

• We want to extend this to be interprocedural, 
but: for a really dynamic language, where even the decision of what 
code to include is deferred until runtime, is this even useful?


• To borrow from earlier: keep it simple! Do we even need to support 
the entire language for this to be useful for developers?


• For artifacts, are full VMs at all useful? Should we aim at using 
something like Docker? Images available in the cloud? Something 
else?

10



• Go AiR: https://github.com/PLSE-Lab/go-analysis 


• Rascal: https://www.rascal-mpl.org/ 


• Me: https://cs.appstate.edu/hillsma/ 

11

Thank you!

Any Questions?

Discussion

https://github.com/PLSE-Lab/go-analysis
https://www.rascal-mpl.org/
https://cs.appstate.edu/hillsma/

