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Abstract
Jupyter notebooks are currently one of the most popular environ-

ments for Python development, especially in domains such as data sci-
ence. Existing studies have shown that notebooks may promote bad
coding habits, leading to poor code quality and challenges with repli-
cating notebook results. In this paper, we compare the code quality of
Python machine learning code found in Jupyter notebooks to that found
in regular Python scripts. The goal of this work is to better understand
how the machine learning code created in Jupyter notebooks differs both
from machine learning code provided in scripts and from the larger body
of Python code, with the aim of creating tools to better support both
data science students and practitioners.
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1 Introduction

According to a study in 2018 [4], Python is the most used language for machine
learning on GitHub, as well as the third most used programming language on
GitHub overall. One of the most popular environments for Python program-
ming is Jupyter notebooks [16]. Jupyter notebooks provide a literate program-
ming environment, where Python code can be combined with descriptive text
and computational results. These results can be in text, but formats such as
images and even video are also supported. While Jupyter notebooks can be
used for a wide variety of different application domains, they were created with
a focus on supporting applications in data science and scientific computing.

With the growth of interest in data science, millions of Jupyter notebooks
have been created and shared on sites such as GitHub and Kaggle, a website
that hosts data science competitions. Recent work (see Section 2) has explored
issues with the quality of the code in these notebooks. For instance, the work of
Grotov et al. [5] compared the quality of the code found in Jupyter notebooks
to that of Python scripts. This comparison was done across all domains, while
noting that results may differ if focused on a specific domain. In this paper, we
narrow this prior comparison to focus specifically on machine learning code,
while also comparing our results to those found in this earlier work.

The rest of this paper is organized as follows. First, Section 2 discusses
related work. Section 3 then details the corpus of Python scripts and Jupyter
notebooks used to conduct this study. Section 4 describes the process used
to extract metrics and style errors from the code and to compute the results
reported in Section 5. Section 5 evaluates our initial results, including a com-
parison to results found in earlier work. Lastly, Section 6 concludes the paper
and describes possible future applications of our results. All code and data sets
used in this paper are available in a replication package on Zenodo [29].

2 Related Work

Some of the prior work on Jupyter notebooks focuses on how notebooks are
used in practice, including for collaboration and reproducibility. Kery et al. [11]
interviewed 21 professional data scientists to learn more about how they use
Jupyter notebooks, and also conducted a survey of 45 data scientists to learn
more about potential tool support for allowing data scientists to interact with a
history of notebook changes. Chattopadhyay et al. [3] used a combination of a
survey and interviews to identify “pain points” encountered by users of compu-
tational notebooks, including Jupyter notebooks. Pimentel at al. [14] studied
the use of both good and bad coding practices in Jupyter notebooks, with a fo-
cus on the impact of these practices on reproducibility. They used the results of
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this study to recommend best practices for developing notebooks. Pimintel et
al. [15] then extended this work with additional analyses and the introduction
of a tool, Julynter, that suggests notebook modifications for improving repro-
ducibility. Quaranta et al. [17] also focused on best practices, specifically for
collaboration. Wang et al. [25] looked at notebook documentation, evaluating
a system named Themisto that automatically generates notebook documenta-
tion based on best practices gleaned from a collection of 80 top-rated notebooks
from Kaggle. Additional work on collaboration with notebooks includes that
of Zhang et al. [30], which explored collaborative roles and practices; and Rule
et al. [20], which evaluated the impact of a cell folding extension to Jupyter
notebooks on notebook understandability and reuse. Beyond this, papers by
Rule et al. [19] and Amershi et al. [1] focused on how notebooks are used for
different purposes and on how teams collaborate on machine learning tasks.

Other prior work focuses specifically on tools and analyses for understand-
ing and improving the use of notebooks. Kery and Meyers [10] described and
evaluated Verdant, a system for versioning notebook artifacts. Head at al. [6]
described an analysis that uses program slicing over execution logs to compute
notebook dependencies, along with code gathering tools that track notebook
history. Wenskovitch et al. [27] designed a visualization tool, Albireo, that
allows for multiple levels of visualization as well as exploration of cell depen-
dencies. Wang et al. [26] focused on the need for improved tools for analyzing
Jupyter notebooks, showing that notebooks include substantial amounts of
poor-quality code. Yang et al. [28] used code summarization techniques to
show the impact of data wrangling code by showing the effect of the code on
the data being analyzed by the notebook. Venkatesh and Bodden [23] pre-
sented an analysis and tool that generates cell headers for notebook cells based
on the position of the cell in a broader machine learning workflow. Titov et
al. [21] described an analysis and tool, ReSplit, that refactors existing note-
book cells. Jiang et al. [8] presented an algorithm for generating a dependency
graph between cells in a Jupyter notebook and labeling these cells with the
relevant machine learning state, based on the API calls used in the cell. Quar-
anta et al. [18] introduced Pynblint, a linter for Jupyter notebooks that checks
for violations of best practices and provides fix recommendations.

Grotov et al. [5] conducted a comparison of Python code in Python scripts
and in Jupyter notebooks. Scripts and notebooks were compared using a com-
bination of structural metrics (e.g., SLOC, cyclomatic complexity) and code
style violations. The corpus included all Jupyter notebooks publicly available
on GitHub, as well as all Python scripts from the 10,000 most starred Python
repositories on GitHub, narrowed to use only those notebooks and scripts re-
leased under a permissive software license. This resulted in 847,881 notebooks
and 465,776 scripts. To detect style errors, the authors used Hyperstyle [2], a
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tool for detecting style violations in student programming assignments. A sec-
ond tool, named Matroskin, was created to work with notebooks, including to
compute structural metrics. One specific style issue, that of excessive imports,
was also noted by Vilkomir [24]. Our work builds upon, and is compared with,
the earlier work of Grotov et al. and Vilkomir, focusing on differences in code
quality between scripts and notebooks used specifically for machine learning.

3 Corpus

To carry out our comparison, a corpus of Python scripts and Jupyter note-
books, focused specifically on machine learning, was needed. Kaggle [9] is a
website dedicated to machine learning and data science. It holds data science
competitions, some with cash prizes, and makes some of the solutions (those
the authors allow to be released publicly) available for public inspection and
download. Some of the published solutions are created using Jupyter note-
books, while some are created using Python scripts. Some are also created
using other languages (e.g., R), but those are ignored here.

To get the initial corpus of data, we used Meta Kaggle [13]. Meta Kaggle is
a public dataset, published by Kaggle, that contains information about compe-
titions and the public solutions posted as part of these competitions. Using this
data set, a Python script was used to extract the information needed to down-
load each solution. The projects were sorted by the user rating (stars) they
received on Kaggle in descending order. We decided to limit our corpus to the
top 100,000 projects. Next, the Kaggle API was used to download the project
code corresponding to each project. This download process was executed as
part of a Bash script for repeatability. The result of executing this script was a
collection of Python script files, Jupyter notebooks, and potentially other files
that may have been included with the solution.

Using the Kaggle API, a total of 69,858 machine learning files were obtained.
Only files written in Python (either notebooks or scripts) were processed fur-
ther. These files were split into two datasets, one for Python scripts, and one
for notebooks. In total, there are 12,136 Python scripts (with a .py extension),
and 57,722 Jupyter notebooks (with a .ipynb extension) in these two datasets.
The number of files in the final corpus is different from the initial size we
planned to obtain because some files were unavailable for download.

4 Methodology

We have used a methodology that mirrors that found in the paper by Grotov
et al. [5] to allow for a comparison of our results, focused just on machine
learning code, with their results, which looked at notebooks and scripts in
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general (including machine learning code). This includes using and reporting
the same structural metrics they used over their dataset.

Matroskin [12, 5] is a library designed for analyzing Juptyer notebooks. It
focuses on computing structural metrics for the Python code included in the
notebooks. Hyperstyle [2, 7] is a tool that is able to analyze code for style
errors. It works for code written in Python, Java, or Kotlin, and can follow
different style guides, such as PEP-8 [22]. To compute metrics over the code in
our corpus, several scripts were developed to automate the use of Hyperstyle
and Matroskin. These scripts extract the results of running these tools and aid
in the analysis of the metrics and style errors. Other scripts were developed
to convert between notebook and script formats, which allowed the scripts
(after conversion to notebook format) to be processed using Matroskin and the
notebooks (after conversion to script format) to by analyzed using Hyperstyle.

4.1 Matroskin Methodology

Matroskin was developed to handle a large number of notebooks at once, there-
fore we were able to run the tool on our entire corpus of notebooks by running
it on the directory containing our dataset of downloaded notebooks. The script
that runs the tool is a variant of a script provided with Matroskin, edited in
order to output the results in a format more amenable to further process-
ing. Results of running the script were stored in a single JSON file for each
processed notebook. To avoid problems with name collisions in cases where
multiple notebooks used the same file name, the results were stored in files
that were each given a unique number (e.g., 0.json, 1.json), with a separate
CSV file mapping from the original file name of the processed notebook to the
relevant JSON file containing the analysis results.

This process was then repeated on the dataset of Python scripts. The anal-
ysis first converted each script into a notebook with a single cell containing
the script code. The same process described previously was then used to pro-
cess these converted files: information on each notebook was extracted and
saved into a JSON file, with information to link these files back to the related
notebook (and thus, the original script).

A separate script was created to analyze the results stored in these JSON
files. This script reads the results saved in the JSON files, computing the results
shown in Section 5. During this process, we could not process 385 of the JSON
files generated for the notebooks and 154 of the JSON files generated for the
scripts due to an error in the result format. This error appears to be in the
information generated by Matroskin, but further work is needed to determine
the actual source of the error.
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4.2 Hyperstyle Methodology

Hyperstyle was run individually on each Python script in the corpus, with
results output to individual files for later processing. A bug in Hyperstyle,
which we have not yet isolated, would cause it to get stuck at random points
during the analysis if run repeatedly on a sequence of input scripts. This
required us to process these files outside of the script we developed to automate
this process. In this way, it was possible to process all scripts in the dataset.
While Hyperstyle also includes an option to process an entire directory, the
information returned by Hyperstyle in that case differs from the per-file results,
generally reporting many fewer style issues. The process used for the scripts was
then repeated on the dataset of notebooks. A script was used to first convert
each notebook into a script file, which was then processed by Hyperstyle.

A separate analysis script then processes the Hyperstyle result files, gener-
ating the results seen in Section 5. During processing, for the results from the
collection of scripts, one result file was unable to be processed due to a Uni-
codeDecoder Error and thirteen results files were unable to be processed due
to syntax errors. These are based on characteristics of the original analyzed
files. For the results from the collection of notebooks, three results files were
unable to be processed due to syntax errors.

5 Evaluation

In this section, we present the results of both the structural and style analyses
described in Section 4. For the structural results, the mean (written as M) and
standard deviation (written as STD) are shown. Using the mean of the results
allows a better comparison of the two datasets due to their difference in size.

5.1 Evaluation of Structural Metrics

The results of comparing the structural metrics between scripts and notebooks
can be found in Table 1. We found that the notebooks (M = 174.48, STD =
216.45), on average, contained more source lines of code than the scripts (M
= 105.02, STD = 180.11). Notebooks (M = 27.93, STD = 48.51) and scripts
(M = 26.96, STD = 57.13) have a similar number of commented lines unless
markdown cells (“extended comments”, which may be actual comments on the
code or descriptive text to be shown as part of the notebook) are included, in
which case notebooks (M = 75.40, STD = 113.45) are shown to have almost
three times as many comment lines as scripts.

While they tend to have fewer lines of code, the scripts (M = 12.00, STD
= 23.71) are shown to have a higher cyclomatic complexity as compared to
notebooks (M = 6.18, STD = 9.28). Also, scripts (M = 1.00, STD = 0.24) have,
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Table 1: Structural Metrics, Notebooks and Scripts
Metric Notebook Mean (STD) Script Mean (STD)

SLOC 174.48 (216.45) 105.02 (180.11)
Comments LOC 27.93 (48.51) 26.96 (57.13)

Extended Comments LOC 75.40 (113.45) N/A (N/A)
Blank Lines Count 30.42 (46.97) 32.53 (46.69)

Cyclomatic Complexity 6.18 (9.28) 12.00 (23.71)
NPAVG 0.71 (0.27) 1.00 (0.24)

API Functions Count 6.95 (6.69) 10.20 (10.06)
API Functions Uses 13.17 (20.24) 23.29 (81.93)

Defined Functions Count 3.45 (6.00) 3.39 (6.86)
Defined Functions Uses 5.83 (13.31) 4.72 (12.91)

Built in Functions Count 4.83 (3.30) 3.80 (3.20)
Built in Functions Uses 22.51 (35.88) 14.78 (25.26)
Other Functions Uses 86.02 (99.11) 28.73 (54.03)

Cell Coupling 48.44 (358.84) N/A (N/A)
Function Coupling 10.49 (101.02) 12.59 (105.80)

on average, a higher number of inputs per function (NPAVG) than notebooks
(M = 0.71, STD = 0.27). When it comes to function usage, scripts (M = 10.20,
STD = 10.06) include more unique API function imports than notebooks (M
= 6.95, STD = 6.69). Scripts (M = 23.29, STD = 81.93) also use those API
functions more than the notebooks (M = 13.17, STD = 20.24). For built-in
functions, notebooks (M = 4.83, STD = 3.30) take advantage of a larger number
of different functions than the scripts (M = 3.80, STD = 3.20). The notebooks
(M = 22.51, STD = 35.88) also call the built-in functions much more than
scripts (M = 14.78, STD = 25.26). When it comes to user-defined functions,
notebooks (M = 3.45, STD = 6.00) have about the same amount as scripts
(M = 3.39, STD = 6.86). For number of uses of the user-defined functions,
notebooks (M = 5.83, STD = 13.31) again have more uses than scripts (M =
4.72, STD = 12.91). For any other functions, the number of uses in notebooks
(M = 86.02, STD = 99.11) is significantly greater than in scripts (M = 28.73,
STD = 54.03). Lastly, coupling (use of shared/common elements) between
functions is greater in scripts (M = 12.59, STD = 105.80) than notebooks (M
= 10.49, STD = 101.02) unless we consider cells to be functions (cell coupling),
in which case coupling is much higher in notebooks (M = 48.44, STD = 358.84),
showing how connected code in notebooks is, even though it is less complex.

Comparing with Prior Results: While most of the metrics computed
by Grotov et al. [5] (referenced just as “prior results” below) have been nor-
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Table 2: Top Style Errors, Notebooks and Scripts.
Error Code Error Description Category Notebooks % Scripts %

W0611 Import module or variable is not used Best Practices 41 64
W0621 Redefining name from outer scope Best Practices 22 27
W0404 Re-imported module Best Practices 16 13
W0612 Unused variable name Best Practices 8 14
W0613 Unused argument Best Practices 4 9
C0411 Import order not followed Code Style 38 57
C0412 Imports not grouped by package Code Style 21 19
C0305 Trailing newlines Code Style 20 15
W0301 Unnecessary semicolon Code Style 7 4
W0311 Bad indentation Code Style 5 11
E1101 Variable accessed for nonexistent member Error Proneness 47 59
E0001 Syntax error Error Proneness 47 3
W0104 Statement seems to have no effect Error Proneness 33 6
E0611 No name in module Error Proneness 29 54
W0106 Expression is assigned to nothing Error Proneness 9 1

malized to the source lines of code, we can still compare certain metrics as
well as general trends. We found that both notebooks and scripts in our data
contain more SLOC on average (64 for notebooks, 23 for scripts) than those
from the prior results. The results for functions are very similar except for
built-in function uses. In our corpus, notebooks have a higher mean number
of uses compared to scripts, while the prior results show both having a simi-
lar number. Interestingly, our results show both notebooks and scripts having
higher cyclomatic complexity than the prior results, although in both cases
scripts are more complex than notebooks.

5.2 Evaluation of Style Metrics

Next we compare the style metrics gathered using Hyperstyle. Although the
notebooks had a much higher number of source lines of code, they have a much
lower average of warnings per file—for notebooks, a mean of 14.21, versus a
mean of 23.77 for scripts. In order to evaluate the warnings, we have taken
the ones that appear most frequently from three different categories and found
the percentage of scripts and notebooks in which they appear in each dataset.
The results of this are found in Table 2. Note that the error codes are based
on the codes used in Pylint, a popular linting tool for Python.

Of the top five issues in Best Practices, two are related to imports and
two are related to variables. For these four, there is a higher frequency of
errors in scripts than in notebooks. For both issues with imports, W0611
(import module or variable is not used) and W0404 (re-imported module), it
is possible they are caused because of how the code is created, with developers
copying code from existing samples and pasting it (including imports) in to
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their own code. Error code W0621 (redefining name from outer scope) is
the issue of duplicate variable names that refer to values in different scopes,
while errors W0612 (unused variable name) and W0613 (unused argument) are
related to unused variables and parameters. Again, these issues may be created
when code is copied in to a program and then edited, keeping declarations of
variables and/or parameters but removing lines of code including the uses.

Of the top five issues in Code Style, this time three are more frequent in
notebooks while two are more common in scripts. Also, two of them again have
to do with imports, while the other two deal with spacing. Both C0411 (import
order not followed) and C0412 (imports not grouped by package) are problems
with the ordering of imports. PEP8 has a specific import standard which ex-
pects imports to be ordered in a certain way and grouped together. This can
be an issue if imports are not added until they are needed, and therefore get
added to the bottom of the import list. For spacing, issue C0305 (trailing new-
lines) and issue W0311 (bad indentation) do not impact correctness, although
W0311 could lead to maintenance issues later since bad or irregular indenting
can lead to confusion about the expected behavior of the code. The last code
style issue is W0301 (unnecessary semicolon). Semicolons are rarely used in
Python code, but this could imply that the writer of the file has experience in
writing in other languages where semicolons are commonly used.

In the last category, Error Proneness, we once again see that three of the
issues are more frequent in notebooks while the other two are more frequent
in scripts. The most frequent issue for both sets of files is E1101 (variable
accessed for nonexistent member). This error can indicate a bug in the code,
but can also indicate that the dependencies that provide this member are not
available. This may also account for the high frequency of code E0611 (no
name in module). E0001 (syntax error) is the code given for syntax errors.
This issue is significantly more frequent in notebooks than scripts. This could
be due to how code is executed in specific parts of a notebook, meaning that
some cells could contain syntax errors. The following issue, W0104 (statement
seems to have no effect) could have a similar problem, where the statement
does have an effect but only for the user using the notebook (e.g., to display a
value). The last issue is W0106 (expression is assigned to nothing). This only
occurs in 1% of the scripts as opposed to 9% of the notebooks.

Comparing with Prior Results: Comparing with the prior results, we
share 1 style error in the top 5 errors for the Error-Proneness category, 0 style
errors in the Code Style category, and 2 style errors for the Best Practices
category. Of the 15 style errors from the prior results, 13 of them appear in a
higher percentage of notebooks than scripts, while this is only true for 7 out of
the 15 of our style errors. Of the 3 shared errors, the prior results show all 3
appearing in a higher percentage of notebooks, however, in our results, only 1
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of them appears in a higher percentage of notebooks. Studying the reason for
these differences is part of our future work.

6 Conclusions and Future Work

In this paper, we presented an analysis of Python scripts and Jupyter note-
books, comparing structural and style metrics extracted from both. The results
show that Jupyter notebooks are generally larger, but less complex. They tend
to use built-in functions much more than scripts and have a higher coupling
rate. Scripts averaged more style issues per file than notebooks. For the fifteen
issues chosen, the scripts had the issues appear more frequently for eight, while
the notebooks had the issues appear more frequently for seven.

For future work, we would like to expand the machine learning corpus to
include code from other sources beyond Kaggle (e.g., through detecting use of
ML APIs in code on GitHub). We would also like to explore what aspects of the
code are leading to the differences between ML code (specifically) and Python
code (in general) that we reported in Section 5. Beyond this, we also believe it
is important to create new analysis tools, including linters/style checkers, that
are specifically aimed at notebooks created for machine learning tasks. These
tools could better support both students and practitioners, giving targeted
advice that would make sense given the medium (notebooks), the domain,
and the domain’s structural and style characteristics. Given the results, tools
that would help to integrate existing code examples (such as snippets of code
from other samples, from API documentation, or from Stack Overflow) seem
particularly important. These could help to keep a consistent set of properly-
ordered imports while avoiding the re-declaration of existing variables or the
inclusion of unused variables and/or code, and could ensure consistent spacing
based on current style conventions. Navigation and code inspection tools that
can help developers navigate the many API calls they use in notebooks could
also be important, especially for newer developers learning how to use machine
learning APIs. Finally, tools that can detect unused code in notebooks, and
that can illustrate dependencies between code blocks, could be valuable for
students trying to understand existing notebooks or developing their own.
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