
Variable Feature Usage Patterns in PHP

Mark Hills
East Carolina University, Greenville, NC, USA

mhills@cs.ecu.edu

Abstract—PHP allows the names of variables, classes, func-
tions, methods, and properties to be given dynamically, as
expressions that, when evaluated, return an identifier as a string.
While this provides greater flexibility for programmers, it also
makes PHP programs harder to precisely analyze and understand.
In this paper we present a number of patterns designed to
recognize idiomatic uses of these features that can be statically
resolved to a precise set of possible names. We then evaluate these
patterns across a corpus of 20 open-source systems totaling more
than 3.7 million lines of PHP, showing how often these patterns
occur in actual PHP code, demonstrating their effectiveness at
statically determining the names that can be used at runtime,
and exploring anti-patterns that indicate when the identifier
computation is truly dynamic.

I. INTRODUCTION

PHP is an imperative, object-oriented language focused on
server-side application development. As of April 2015, it ranks
7th on the TIOBE programming community index,1 and is used
by 82 percent of all websites whose server-side language can
be determined.2 Designed to allow for the rapid construction
of websites, PHP includes a number of dynamic language
features used to simplify code, provide reflective capabilities,
and support deferring configuration decisions to runtime.

An example of one such feature is variable variables.
Instead of giving the name of a variable directly, it is given
by an expression which should evaluate to a string containing
the name of the variable. The actual variable to be accessed is
then determined at runtime, based on the result of evaluating
the expression providing the name. This provides a lightweight
form of aliasing, and is often used to allow the same block of
code to be applied to a number of different variables. At the
same time, this makes it challenging to provide precise static
analysis algorithms needed to support more advanced program
analysis tasks and developer tools—without further analysis, a
variable variable could refer to any variable in scope, including
(if used in a global declaration) global variables.

In prior work [1] we showed that many occurrences of
variable variables could actually be resolved to a limited
set of names statically, just by inspecting the code. Many
occurrences also fell into a small number of standard usage
patterns. However, this prior work was not automated, but
instead was based on reviewing how each variable variable was
actually used in the program. The lack of automation makes it
difficult to use these results in other analyses and tools, or to
update them to take account of new systems or new releases
of the analyzed systems. This prior work also focused just on
variable variables, ignoring patterns of use of similar features
for specifying the names of functions, methods, properties,

1http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
2http://w3techs.com/technologies/details/pl-php/all/all

and classes at runtime. Below, we refer to these generally as
variable features, and specifically as, e.g., variable functions
or variable methods.

The main contributions presented in this paper are as follows.
First, taking advantage of our prior work, we have developed
a number of patterns for detecting idiomatic uses of variable
features in PHP programs and for resolving these uses to a
set of possible names. Written using the Rascal programming
language [2], [3], these patterns work over the ASTs of the
PHP scripts, with more advanced patterns also taking advantage
of control flow graphs and lightweight analysis algorithms for
detecting value flow and reachability. Each of these patterns
works generally across all variable features, instead of being
designed specifically to recognize variable variables.

Second, to empirically determine how often these patterns
actually occur in practice, we have applied them across a
corpus of 20 open-source PHP systems. This corpus, made up
of 31,624 files and 3,725,904 lines of PHP, includes a number of
popular frameworks and systems including WordPress, Joomla,
MediaWiki, and Symfony. Results are reported both in total
and for groupings of similar patterns, providing insight into
how each of the systems in the corpus uses variable features.
Several anti-patterns, indicating that an occurrence is most likely
unresolvable statically, are also presented; their effectiveness is
measured by comparing detected occurrences with occurrences
that are actually resolved using the patterns.

The rest of the paper is organized as follows. In Section II,
we discuss PHP variable features in more depth, describing
the various types of variable features available in the language
and showing examples of how they are used. Section III then
describes the corpus, tools, and research method applied to
conduct this analysis. Following this, Section IV describes the
patterns developed to detect idiomatic occurrences of variable
features where these features can be statically resolved to pre-
cise sets of names as well as anti-patterns used to detect when
this most likely is not possible. To determine how often these
patterns and anti-patterns occur in actual open-source software,
Section V presents the results from evaluating them using the
corpus mentioned above. Finally, Section VI describes related
work, and Section VII concludes. All software used in this
paper, including the corpus used for the validation, is available
for download at https://github.com/cwi-swat/php-analysis.

II. OVERVIEW

In PHP, a variable feature is a dynamic variant of a feature,
like a variable, which normally uses an identifier but instead
uses an expression to compute the name of the identifier. This
allows the decision about which identifier to use to be deferred
until runtime, providing a lightweight form of reflection that is

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://w3techs.com/technologies/details/pl-php/all/all
https://github.com/cwi-swat/php-analysis

TABLE I. VARIABLE FEATURES IN PHP.

Language Feature Expression Allowed For

Variable Variable Name
Object Creation/Instantiation Class Name
Function Call Function Name
Method Call Method Name
Static Method Call Class Name, Method Name
Property Fetch/Reference Property Name
Static Property Reference Class Name, Property Name
Class Constant Reference Class Name

used to support runtime configuration and generic algorithms
while minimizing code duplication.

Table I shows the variable features available in PHP. The
first column shows the language feature where an expression
can be used in place of an identifier, while the second column
shows where in this feature these expressions can appear. For
instance, an expression can be used to compute the name
of the variable when variables are used, or the name of a
class in a new expression, a static method call, or a class
constant reference. Note that, in PHP, variables are prefixed
with $, like $var. If an expression is used in a position
where an identifier would normally be expected, such as
following the $ used for a variable, this indicates that the
expression should be evaluated to compute the identifier name,
so $$var computes the value of $var and uses this as
the variable identifier. The expression after $ can also be
wrapped in braces, like ${$var . ’local’}, when a more
complex expression (here, looking up the value of $var and
concatenating ’local’) is used.

An example of each of these features is shown in Figure 1.
All of these examples are from the corpus: the first five examples
are from MediaWiki 1.24.1; example six is from the Zend
Framework 2.3.7; examples seven and eight are from Moodle
2.8.5; example nine is from CakePHP 2.6.3; and example ten
is from phpBB 3.1.3. Each example gives the feature being
shown as well as the path to the file containing this occurrence
and the line number in the file where the occurrence can be
found. In order, the examples show the following:

EX1 The name of the variable to use is computed by
evaluating $var.

EX2 The function to call is computed by evaluating
$strcmp.

EX3 The method to call is computed by evaluating
$method.

EX4 The class used to create a new object instance is
computed by evaluating $class.

EX5 The property to use is computed by evaluating $o.
EX6 The class containing the class constant being used

is computed by evaluating $color.
EX7 The static method to call is computed by evaluating

$method (the class name is also computed, see
the next example).

EX8 The class containing the static method being called
is computed by $class.

EX9 The static property to use is computed by $name.
EX10 The class containing the static property to look up

is computed by $type (this example also has a
variable static property).

Figure 2 shows how the first example is actually used,

1 // EX1. Variable variable,
2 // /includes/Sanitizer.php, line 427
3 $$var = array_flip($$var);
4

5 // EX2. Variable function call,
6 // /includes/utils/StringUtils.php, line 187
7 $strcmp($endDelim,
8 substr($subject, $tokenOffset, $endLength))
9

10 // EX3. Variable method call,
11 // /maintenance/fileOpPerfTest.php, line 139
12 $backend->$method($ops5, $opts)
13

14 // EX4. Variable object instantiation,
15 // /includes/WebRequest.php, line 834
16 $this->response = new $class();
17

18 // EX5. Variable property lookup,
19 // /includes/HttpFunctions.php, line 259
20 $this->$o = $options[$o];
21

22 // EX6. Variable class constant lookup,
23 // /library/Zend/Console/Adapter/Posix.php, line 388
24 $color::BACKGROUND
25

26 // EX7. Variable static method call,
27 // /cache/tests/fixtures/lib.php, line 528
28 $class::$method($definition)
29

30 // EX8. Variable target for static method call,
31 // /cache/classes/factory.php, line 352
32 $class::config_file_exists()
33

34 // EX9. Variable static property lookup,
35 // /lib/Cake/Utility/CakeTime.php, line 118
36 return self::${$name};
37

38 // EX10. Variable target for static property lookup,
39 // /notification/manager.php, line 569
40 $type::$notification_option

Fig. 1. Examples of Variable Features in PHP.

putting it into context by showing the surrounding code (slightly
reformatted to fit better). Here, an array of string literals is
created and assigned to variable $vars. The foreach loop
then takes each element of $vars in turn and assigns it to
variable $var. This has the effect of running the body of the
loop on each of the variables named by the string literals in the
array. In PHP, arrays are actually dictionaries, with each value
associated with a key— standard arrays without explicit keys
are associated with numeric keys indicating their index. The
body takes the arrays htmlpairsStatic, htmlsingle,
etc., and “flips” them, inverting each array so that the keys
become the values and the values the keys. Although dynamic,
the behavior here is essentially static, with the names the
variable can reference given directly in the code. Patterns
such as this are common idioms for variable feature usage,
so recognizing occurrences of these patterns is important for
properly understanding the code. Section IV describes these
patterns, and how they are recognized, in more detail.

1 // MediaWiki, /includes/Sanitizer.php, lines 424-428
2 $vars = array(’htmlpairsStatic’, ’htmlsingle’,
3 ’htmlsingleonly’, ’htmlnest’,
4 ’tabletags’, ’htmllist’, ’listtags’,
5 ’htmlsingleallowed’, ’htmlelementsStatic’);
6 foreach ($vars as $var) {
7 $$var = array_flip($$var);
8 }

Fig. 2. Variable Variables with a foreach Loop, Matching Pattern LP-2.

TABLE II. THE PHP CORPUS.

System Version PHP Release Date File Count SLOC Description

CakePHP 2.6.3 5.2.8 3/16/15 671 155,320 Application Framework
CodeIgniter 3.0.0 5.2.4 3/31/15 198 29,169 Application Framework
Doctrine ORM 2.4.7 5.3.2 12/16/14 763 64,168 Object-Relational Mapping
Drupal 7.35 5.2.4 3/18/15 276 89,658 CMS
Gallery 3.0.9 5.2.3 6/28/13 505 39,087 Photo Management
Joomla 3.4.1 5.3.10 3/21/15 2,333 247,426 CMS
Kohana 3.3.3.1 5.3.3 12/10/14 482 30,207 Application Framework
Magento 1.9.1.0 5.2.0 11/24/14 8,248 652,116 Online Retail
MediaWiki 1.24.1 5.3.2 12/17/14 1,710 321,928 Wiki
Moodle 2.8.5 5.4.4 3/10/15 7,515 1,027,999 Online Learning
osCommerce 2.3.4 4.0.0 6/5/14 698 60,003 Online Retail
PEAR 1.9.5 4.4.0 7/12/14 74 31,283 Component Framework
phpBB 3.1.3 5.3.3 2/1/15 740 182,969 Bulletin Board
phpMyAdmin 4.3.13 5.3.0 3/29/15 487 149,765 Database Administration
SilverStripe 3.1.2 5.3.2 10/22/13 572 92,216 CMS
Smarty 3.1.21 5.2.0 10/18/2014 126 16,266 Template Engine
Squirrel Mail 1.4.22 4.1.0 7/12/11 276 36,082 Webmail
Symfony 2.6.5 5.3.3 3/17/15 3,083 200,219 Application Framework
WordPress 4.1.1 5.2.4 2/18/15 476 141,399 Blog
The Zend Framework 2.3.7 5.3.23 3/12/15 2,391 158,624 Application Framework

The PHP versions listed in column PHP are the minimum required versions. The File Count includes files with a .php or an .inc extension. In total there are 20 systems consisting of
31,624 files with 3,725,904 total lines of source.

III. CORPUS AND RESEARCH METHOD

In this section we first introduce the corpus used in this
paper. We then discuss our research method at a high level,
describing how the experiment was conducted.

A. Corpus

The corpus used in this paper includes 20 large open-source
PHP systems. These systems were selected based on popularity
rankings provided by Black Duck’s Open Hub site,3 a site
that tracks open-source projects. The systems are shown in
Table II, with versions based on what was current at the end of
March 2015. Systems were initially selected mainly based on
this ranking, although in some cases we skipped systems if we
already had several, more popular systems of the same type
in the corpus, ensuring diversity in the types of systems we
are analyzing. We used popularity, instead of actual number of
downloads or installed sites, since we have no way to accurately
compute the number of downloads or installations. In total, the
corpus consists of 31, 624 PHP files with 3, 725, 904 lines of
PHP source, counted using the cloc [4] tool.

When we initially assembled the corpus for our earlier
work [1] we focused on larger, more widely used systems for
two reasons. First, these systems are more likely to benefit
from improved tools and analysis techniques than smaller
systems, and second, larger systems should provide more
diversity in which PHP features are used and in how they are
used, providing more usage patterns like those we discuss in
Section IV. We also had the benefit of having looked specifically
at variable variables in this earlier work, categorizing them
generally into how many could be resolved to specific sets
of identifiers by code inspection versus how many appeared
to actually be dynamic.4 This paper extends this work by

3https://www.openhub.net/tags?names=php, formerly known as Ohloh.
4Note that this earlier work did not include Magento, which was added to

the corpus later.

automating this process based on common usage patterns and
by looking at all variable features, not just variable variables.

B. Research Method

PHP AiR, a framework for PHP Analysis in Rascal [5], is
used to perform all the analysis used to compute the results in
this paper. Rascal [2], [3] is a meta-programming language for
source code analysis and transformation. PHP AiR is written in
Rascal, and makes heavy use of Rascal features such as pattern
matching, tree traversals, and relations to extract information
from PHP Abstract Syntax Trees using the patterns described in
Section IV. PHP AiR includes support for parsing PHP scripts,
building and traversing control flow graphs, and performing
simplifications on PHP expressions using techniques such as al-
gebraic simplification and function call simulation, all of which
are used in the pattern recognizers described in Section IV.
Using Rascal ensures that the analysis itself is fully scripted
and reproducible, including the generation of the LATEX used
for the tables and pgfplots figures in this paper. All code
is available online at https://github.com/cwi-swat/php-analysis.

The parser used inside PHP AiR is our fork5 of an open-
source PHP parser6 based on the grammar used inside the Zend
Engine, the scripting engine for PHP. This parser generates
ASTs as terms formed over Rascal’s algebraic datatypes. We
have opted to reuse an existing PHP parser instead of creating
one in Rascal since this makes it easier to stay compatible with
changes to the PHP language as it evolves.

To conduct the experiment, first all occurrences of variable
features in the corpus were identified using pattern matching
to detect all places where an expression was used in place of
an identifier. Each pattern recognizer was then run over all
occurrences that had not already been resolved by an earlier
pattern (the patterns are generally distinct, so this is mainly

5https://github.com/cwi-swat/PHP-Parser
6https://github.com/nikic/PHP-Parser/

https://www.openhub.net/tags?names=php
https://github.com/cwi-swat/php-analysis
https://github.com/cwi-swat/PHP-Parser
https://github.com/nikic/PHP-Parser/

TABLE III. LOOP PATTERNS.

Pattern ID Description

LP-1 Foreach iterates directly over array of string literals, value variable used directly to provide identifier
LP-2 Foreach iterates over array of string literals assigned to array variable, value variable used directly to provide identifier
LP-3 Foreach iterates directly over array of string literals, key variable used directly to provide identifier
LP-4 Foreach iterates over array of string literals assigned to array variable, key variable used directly to provide identifier
LP-5 Foreach iterates directly over array of string literals, intermediate uses value variable to compute new string, intermediate then used to provide identifier
LP-6 Foreach iterates over array of string literals assigned to array variable, intermediate uses value variable to compute new string, intermediate then used to provide identifier
LP-7 Foreach iterates directly over array of string literals, intermediate uses key variable to compute new string, intermediate then used to provide identifier
LP-8 Foreach iterates over array of string literals assigned to array variable, intermediate uses key variable to compute new string, intermediate then used to provide identifier
LP-9 Foreach iterates directly over array of string literals, value variable used as part of expression directly in occurrence to compute identifier
LP-10 Foreach iterates over array of string literals assigned to array variable, value variable used as part of expression directly in occurrence to compute identifier
LP-11 Foreach iterates directly over array of string literals, key variable used as part of expression directly in occurrence to compute identifier
LP-12 Foreach iterates over array of string literals assigned to array variable, key variable used as part of expression directly in occurrence to compute identifier
LP-13 For iterates over numeric range, string literal and loop index variable used as part of expression directly in occurrence to compute identifier
LP-14 For iterates over numeric range, intermediate combines string literal with loop index variable, intermediate then used to provide identifier

done to save time). The result of running a recognizer on a
specific system is a summary by feature indicating how many
occurrences of this pattern can be resolved to a precise set
of names, the names derived for a solved occurrence, and the
occurrences that matched the general structure of the pattern but
could not be resolved. The overall result for a specific pattern
is then a map from the system name to these summaries, with
a total of 20 summaries per pattern. This is then serialized,
making it easy to load the results later for further analysis and
to generate the tables and figures in the paper. The numbers
shown in this paper in Section V, giving the results of the
patterns for the corpus, are directly based on these summaries.

IV. RESOLVING VARIABLE FEATURES

In this section we present common variable feature usage
patterns in PHP grouped into three categories: loop patterns,
assignment patterns, and flow patterns. For each of these
three categories we describe each pattern and show one or
more examples of code that matches patterns in that category.
Following this, we also discuss several anti-patterns which
indicate that a given use of a variable feature is truly dynamic.

A. Loop Patterns

One common usage pattern for variable features is to iterate
over an array of identifier names using a foreach loop, or,
less commonly, to derive identifier names based on a string and
a loop index variable in a for loop ($var1, $var2, etc). To
detect these cases, we have developed 14 loop patterns, listed
in Table III. Patterns LP-1 through LP-12 all involve foreach
loops, while patterns LP-13 and LP-14 use for loops.

All the patterns that match foreach loops are quite similar,
varying in three major ways. First, in some patterns an array of

1 // WordPress, /wp-includes/ID3/getid3.php, lines 345-358
2 foreach (array(’id3v2’=>’id3v2’, ...)
3 as $tag_name => $tag_key) {
4 ...
5 $tag_class = ’getid3_’.$tag_name;
6 $tag = new $tag_class($this);
7 ...
8 }

Fig. 3. Loop Matching Pattern LP-7.

scalar strings is given directly inside the foreach construct,
like what is seen in Figure 3. This is done in all the patterns
that specify the foreach iterates directly over an array of
string literals: LP-1, LP-3, LP-5, LP-7, LP-9, and LP-11. In
the other foreach patterns— LP-2, LP-4, LP-6, LP-8, LP-10,
and LP-12—the array is assigned into a variable first, called an
array variable in Table III, and the foreach iterates over that.
Second, since PHP arrays are actually key/value mappings, and
since the foreach can iterate over either just the values (see
Figure 2) or the key/value mappings (see Figure 3), in some of
the patterns (LP-1, LP-2, LP-5, LP-6, LP-9, LP-10) the value is
used in the identifier computation, while in the other foreach
patterns (LP-3, LP-4, LP-7, LP-8, LP-11, LP-12) the key is used
in the identifier computation. Third, in some of the patterns
(LP-1 through LP-4) the key or value is used directly, while in
others (LP-5 through LP-12) some computation is performed
first, either by saving this computation into an intermediate
variable that provides the identifier name (LP-5 through LP-8) or
by performing the computation directly inside the occurrence
of the variable feature (LP-9 through LP-12), with various
simplifications such as simulating common operations and
functions performed to attempt to reduce the expression to a
set of string literals, one for each possible name.

Two examples of patterns matching foreach loops are
shown in Figures 2 and 3. The first is an example of LP-2: an
array of string literals is assigned to variable $vars, which is
then used in a foreach loop, with the value at each iteration
assigned to $var and used to directly provide the identifier
to pass to array_flip. The second, with some parts of the
code elided, is an example of LP-7: an array with string literals
for both keys and values is given directly in the foreach loop,
and this key is used to compute a class name, $tag_class,
that is used in a new expression.

Patterns LP-13 and LP-14 instead match for loops, with
the identifier computed as a combination of string literals and
the loop index variable. The main difference between LP-13

1 // SquirrelMail,/src/options_highlight.php,lines 339-341
2 for ($i=0; $i < 14; $i++) {
3 ${"selected".$i} = ’’;
4 }

Fig. 4. Loop Matching Pattern LP-13.

TABLE IV. ASSIGNMENT PATTERNS.

Pattern ID Description

AP-1 String literals assigned into variable, variable used directly to provide
identifier

AP-2 String literals assigned into variable conditionally based on ternary
expression, variable used directly to provide identifier

AP-3 Array of string literals assigned into variable, array indexed into to
provide identifier

AP-4 String literals assigned into variable, variable used as part of expression
in occurrence to compute identifier

and LP-14 is that, in LP-13, the computation of the identifier
takes place directly in the variable feature occurrence, while in
LP-14 it is assigned to an intermediate variable first which is
then used, without further computation, as the identifier name.
Figure 4 shows an example matching pattern LP-13, with a
sequence of variables $selected0, $selected1, through
$selected13 assigned the empty string.

B. Assignment Patterns

Another common usage pattern for variable features is to
use one or more assignment statements to assign a string literal
into a variable that is then used to compute the identifier, either
directly, using only the value assigned into the variable, or as
part of an expression that returns a string. To detect these cases,
we have developed 4 assignment patterns, listed in Table IV.

Patterns AP-1 and AP-4 both match assignments of string
literals into single variables. In AP-1, this variable is used
directly in the variable feature to provide the identifier to be
used at runtime, while in AP-4 this variable is used as part of
a computation directly in the variable feature that yields the
identifier as a string. AP-2 handles the special case where a
ternary conditional expression is used to select between literal
values to assign into a variable, which is then used directly
to provide the identifier. Finally, AP-3 handles the case where
an array of string literals is assigned into a variable, and this
variable is then indexed into without being used in a for
or foreach statement in a way that would match the loop
patterns given above (i.e., in a way where the loop index
variable does not directly contribute to the name). At runtime,
the identifier will be given by one of the literals in the array.

All of the assignment patterns share two important features.
First, all require an explicit assignment of a string literal into

1 // WordPress,/wp-includes/class-wp-customize-setting.php,
2 // lines 334-361
3 switch($this->type) {
4 case ’theme_mod’ :
5 $function = ’get_theme_mod’;
6 break;
7 case ’option’ :
8 $function = ’get_option’;
9 break;

10 default :
11 ...
12 return ...
13 }
14 // Handle non-array value
15 if (empty($this->id_data[’keys’]))
16 return $function($this->id_data[’base’],$this->default);

Fig. 5. Assignment Matching Pattern AP-1.

TABLE V. FLOW PATTERNS.

Pattern ID Description

FP-1 Ternary used in expression in occurrence to compute identifier
FP-2 Conditional compares variable to string literal values, variable used

directly to find identifier
FP-3 Switch/case switches on variable with literal cases, variable used directly

to find identifier
FP-4 Conditional compares variable to string literal values, variable used as

part of expression in occurrence to compute identifier
FP-5 Switch/case switches on variable with literal cases, variable used as part

of expression in occurrence to compute identifier

the variable used in the variable feature occurrence on all
paths from the start of the script, function, or method to the
occurrence. Second, other assignments of string literals are
allowed, but there is no effort to detect when one assignment
kills another, meaning the analysis is essentially flow-insensitive
once we know all paths that reach the use in the variable feature
have a definite assignment. The control-flow graph construction
functionality in PHP AiR is used to enable this analysis.

Figure 5 shows an example matching pattern AP-1, with
some parts of the code elided. The variable feature is a
variable function call, shown on the last line with $function
used to provide the name of the function. Above this, a
switch statement includes two case which both assign a string
literal to variable $function. The default case includes a
return statement, so control that goes through the default
case will never reach the last line, allowing the analysis to
determine that all reaching paths have a definite assignment of a
string literal to $function. The result is that either function
get_theme_mod or get_option could be invoked.

C. Flow Patterns

The final usage pattern for variable features shown in this
paper is where non-looping control flow is used to either provide
the value for the identifier or, through comparisons, to indicate
which values are being used. To detect these cases, we have
developed 5 flow patterns, listed in Table V.

The first flow pattern, FP-1, matches cases where a ternary
conditional expression is given directly as the expression
used to compute the identifier, with this expression used to
select different string literals. FP-2 and FP-4 both match
cases using conditional statements. In FP-2, the identifier is
provided directly by a variable for an occurrence appearing
inside an if or elseif branch (PHP conditional statements
include a single if clause, zero or more elseif clauses,

1 // WordPress, /wp-includes/capabilities.php,
2 // lines 1054-1332
3 switch ($cap) {
4 ...
5 case ’delete_post’:
6 case ’delete_page’:
7 ...
8 $caps[] = $post_type->cap->$cap;
9 ...

10 }
11 ...
12 }

Fig. 6. Flow Matching Pattern FP-3.

TABLE VI. ANTI-PATTERNS.

Pattern ID Description

ANTI-1 Variable used in identifier computation is a function or method parameter
ANTI-2 Variable used in identifier computation is result of function or method call
ANTI-3 Variable used in identifier computation is global

and an optional else) where that same branch is selected by
comparing the variable to a literal string. FP-4 is the same,
except the variable is not used directly, but is instead used inside
a computation that yields a string literal. Finally, FP-3 and FP-5
both match scenarios using switch/case statements. In FP-3,
the identifier is provided by a variable that is also used as the
switch expression, with possible values of this variable given
using string literals for each case. FP-5 is the same except,
as with FP-4, this variable is used inside a computation that
yields a string literal. Both FP-3 and FP-5 account for possible
fall-through, working backwards from the point of use to see
which cases could reach that point.

Figure 6 shows an example matching pattern FP-3, with
some parts of the code elided. Here, variable $cap is used in
the switch, with the various cases indicating possible values.
Two cases, ’delete_post’ and ’delete_page’, then
reach the last line of code shown except for the closing brace,
where $cap is used to provide the name of a method called in
expression $post_type->cap->$cap. Based on the string
literals assigned to the cases, this method should be either
delete_post or delete_page.

D. Variable Feature Anti-Patterns

The patterns described above are not exhaustive: there are
uses that do not match any pattern, and some uses that cannot
be statically resolved at all but are truly dynamic. The variable
features in PHP are often used to support runtime configuration,
for instance by allowing additional fields representing user-
defined metadata to be added to objects representing blog
posts. In these cases the identifiers used at runtime are based
on database settings or configuration files, and vary across
installed systems and even over time for the same system.

To detect situations where this is the case, we have initially
defined three anti-patterns, listed in Table VI. Our use of
“anti” does not connote bad programming practice, but that
a matching occurrence likely cannot be resolved statically.
All three patterns represent cases where information used to
compute the identifiers for a given occurrence come in from
outside of the current script, function, or method. In ANTI-1, a
variable used in the computation is a parameter to the current
function or method; in ANTI-2, the variable receives a value
from a function or method call; and in ANTI-3, the variable is
declared to be a global variable using a global declaration.

V. EVALUATION

In this section we describe the results of our evaluation of
the patterns and anti-patterns described in Section IV. We also
discuss threats to the validity of our results.

A. Variable Feature Usage

Table VII summarizes occurrences of variable features
across the entire corpus. The first two columns show the name

of the system and the number of files with .php or .inc
extensions (used to represent include files). Following this there
are five column pairs containing statistics on the most commonly
used variable features: variable variables, function calls, method
calls, property fetches, and instantiations, respectively. Each pair
includes the number of files that contain the specific feature
as well as the number of uses across all the files in total.
The last three columns then present statistics for all uses of
variable features, including those not shown in the column pairs.
Included are the total number of files where a variable feature
occurs, the total number of occurrences, and the Gini coefficient
for the distribution of variable feature occurrences across those
files containing at least one. The Gini, a real number between 0
and 1, measures how evenly spread these features are through all
the files, with higher scores indicating that variable features tend
to occur in clusters. While the figures in Table VII show that
variable features occur in a small percentage of files (roughly
7.73%), our earlier work [1] showed that variable features often
occur in files that are included into other files, at least doubling
the chance of encountering one in a script being analyzed. We
also believe the fact that they are clustered makes resolution
more important for understanding and analyzing specific files
and subsystems where they occur in larger numbers.

B. Effectiveness of the Loop Patterns

Table VIII summarizes the results of running the loop
patterns listed in Table III. As with Table VII, the first
column shows the name of the system. The remaining columns
show how many occurrences of the loop patterns were either
resolved or unresolved for specific variable features—variable
variables, function calls, method calls, property fetches, and
instantiations—and, with the last two columns, across all
variable features, including those not shown. These counts
are summed across all 14 loop patterns, and focus just on those
cases where the pattern matched (e.g., where the foreach
variable is used directly to name an identifier, as in pattern
LP-1) and either could be resolved (e.g., again for LP-1, where
all the array values are literal strings and where the foreach
variable is not otherwise modified) or could not be resolved
(e.g., again for LP-1, but where the array values are not literal
strings or where the foreach variable may be modified before
it is used in a way we do not, or cannot, statically model).

The results show that uses of variable features with for
and foreach loops are very common in the corpus: 168 (40
resolved, 128 unresolved) of the 490 occurrences in CakePHP
are with for and foreach loops, as are 1,123 of the 2,501
occurrences in Moodle. This isn’t always the case, though. For
instance, in osCommerce only 14 of the 175 occurrences involve
for and foreach loops, while in Symfony this is only 23
of 268. The results also show that the loop patterns are more
effective at resolving names related to variable variables and
properties than to the other features. In CakePHP 13 of the 14
occurrences of variable variables that involve for or foreach
loops are resolved, and in CodeIgniter all 12 occurrences are
resolvable. The numbers for variable properties are not as
encouraging, but a significant number are still resolvable, even
with higher unresolved counts: 158 of 943 in Moodle, 24 of 62
in WordPress, and 23 of 144 in CakePHP. However, for function
calls, only 2 in the entire corpus can be resolved with loop
patterns, and for method calls only 20 can be resolved. At the
same time, loop patterns for variable functions and methods are

TABLE VII. PHP VARIABLE FEATURES.

System Files PHP Variable Features

Variables Function Calls Method Calls Property Fetches Instantiations All

Files Uses Files Uses Files Uses Files Uses Files Uses Files Uses Gini

CakePHP 671 5 14 0 0 15 25 56 327 42 110 92 490 0.60
CodeIgniter 198 5 12 7 15 11 25 26 82 15 23 42 157 0.46
DoctrineORM 763 0 0 2 3 7 13 3 85 15 29 25 131 0.70
Drupal 276 1 1 33 377 2 3 20 96 13 25 50 502 0.73
Gallery 505 3 7 3 7 6 14 26 96 13 19 47 155 0.52
Joomla 2,333 2 3 7 12 24 37 151 648 85 210 241 940 0.57
Kohana 482 3 7 4 12 7 14 7 17 13 14 30 69 0.42
Magento 8,248 11 32 13 36 129 174 138 488 199 309 428 1,043 0.46
MediaWiki 1,710 4 8 12 26 15 25 52 106 74 90 143 255 0.31
Moodle 7,515 16 36 68 200 67 109 357 1,624 209 371 631 2,501 0.54
osCommerce 698 24 119 1 2 0 0 13 23 17 29 52 175 0.49
PEAR 74 1 1 1 2 7 16 2 7 16 22 23 48 0.38
phpBB 740 15 61 4 27 4 5 5 12 25 37 51 148 0.48
phpMyAdmin 487 8 30 11 33 6 12 6 13 15 18 37 112 0.52
SilverStripe 572 2 2 14 20 41 240 50 165 56 154 120 607 0.68
Smarty 126 10 40 6 12 6 22 5 12 12 22 32 108 0.44
SquirrelMail 276 5 24 13 24 0 0 2 3 0 0 18 51 0.47
Symfony 3,083 0 0 29 57 21 93 14 53 28 36 94 268 0.56
WordPress 476 1 1 7 25 5 5 56 196 17 18 77 246 0.43
ZendFramework 2,391 2 4 52 219 58 84 44 98 71 99 213 548 0.49

TABLE VIII. RESULTS OF MATCHING LOOP PATTERNS LP-1 THROUGH LP-14.

System Resolved and Unresolved Variable Features, Loop Patterns LP-1 Through LP-14

Variables Function Calls Method Calls Property Fetches Instantiations All

Resolved Unresolved Resolved Unresolved Resolved Unresolved Resolved Unresolved Resolved Unresolved Resolved Unresolved

CakePHP 13 1 0 0 4 1 23 121 0 3 40 128
CodeIgniter 12 0 0 3 2 7 7 32 0 0 21 42
DoctrineORM 0 0 0 0 1 3 0 4 0 1 1 8
Drupal 1 0 0 36 0 1 11 26 0 1 12 64
Gallery 2 5 0 0 0 6 19 27 0 1 22 41
Joomla 1 0 0 1 0 2 4 145 0 6 5 156
Kohana 0 5 0 0 0 6 1 5 0 0 1 16
Magento 18 6 0 3 2 54 9 155 0 16 29 236
MediaWiki 4 2 0 3 0 3 17 36 0 2 21 46
Moodle 11 5 2 38 0 26 158 785 1 57 172 951
osCommerce 0 3 0 0 0 0 3 2 0 6 3 11
PEAR 1 0 0 1 6 7 0 5 0 2 7 15
phpBB 28 23 0 0 0 0 0 3 0 1 29 30
phpMyAdmin 1 4 0 3 0 0 0 9 0 0 1 16
SilverStripe 1 1 0 3 0 25 5 58 0 10 6 106
Smarty 8 30 0 0 0 0 0 0 0 0 8 30
SquirrelMail 6 14 0 4 0 0 0 0 0 0 6 18
Symfony 0 0 0 8 3 5 5 2 0 0 8 15
WordPress 0 1 0 0 0 0 24 38 1 1 25 40
ZendFramework 0 2 0 4 2 41 3 37 0 8 5 94

uncommon across much of the corpus. This intuitively makes
sense, as a developer is more likely to want to repeat similar
computations for a group of variables or object properties than
to repeatedly apply a collection of functions or methods to the
same values or variables.

C. Effectiveness of the Assignment Patterns

Table IX summarizes the results of running the assignment
patterns listed in Table IV. The table is formatted identically
to that for Table VIII, with unresolved representing those cases
where there is a definite assignment to a variable used to
compute the identifier in a variable feature occurrence but
where this assigned value is not a string literal, even after
applying simplifications like those discussed above.

The results show that uses of variable features relying on
names that are not controlled by a foreach or for loop
are also very common. The results also show that assignment
patterns are much more effective at resolving the names used by
variable function and method calls than were the loop patterns.
9 of the 14 variable function occurrences in CodeIgniter that

could be resolved are resolved, while all 7 in Gallery are
resolved and 20 of 35 in Magento are resolved. For variable
method calls, 144 of the 208 occurrences in SilverStripe are
resolved, 2 of the 3 in Drupal, and 6 of the 19 in MediaWiki.
Not all systems give such good results, though: only 21 of the
150 occurrences are resolved in Magento, and none of the 30
in Joomla are resolved.

D. Effectiveness of the Flow Patterns

Table X summarizes the results of running the flow patterns
listed in Table V. The table is formatted identically to that
for Table VIII, with unresolved representing those cases where
there is a matching control flow case (e.g., a variable is used
to compute the identifier in a variable feature occurrence, and
this variable is also used in a condition or switch) but it is
not possible to compute a string literal in the comparison or
for the cases. Note that the unresolved figures may be overly
pessimistic, since they also include occurrences where a variable
occurs in a condition or switch but the intent is not to directly
compare it to possible identifier values.

TABLE IX. RESULTS OF MATCHING ASSIGNMENT PATTERNS AP-1 THROUGH AP-4.

System Resolved and Unresolved Variable Features, Assignment Patterns AP-1 Through AP-4

Variables Function Calls Method Calls Property Fetches Instantiations All

Resolved Unresolved Resolved Unresolved Resolved Unresolved Resolved Unresolved Resolved Unresolved Resolved Unresolved

CakePHP 0 1 0 0 0 16 0 135 1 36 1 198
CodeIgniter 0 0 9 5 0 20 2 42 0 22 11 89
DoctrineORM 0 0 0 2 5 3 0 4 1 19 6 29
Drupal 0 0 3 359 2 1 0 51 1 22 6 433
Gallery 0 5 7 0 0 7 0 44 0 19 8 81
Joomla 0 2 4 8 0 30 0 471 10 107 14 641
Kohana 0 4 0 8 4 5 0 11 0 14 4 43
Magento 6 8 20 15 21 129 5 269 16 263 68 688
MediaWiki 1 0 1 23 6 13 0 43 2 74 10 153
Moodle 0 18 27 132 5 81 17 720 26 294 80 1,372
osCommerce 0 31 0 2 0 0 0 19 1 23 1 75
PEAR 0 0 1 1 0 10 0 2 2 16 3 29
phpBB 0 23 2 16 3 1 4 6 0 33 9 81
phpMyAdmin 0 14 3 10 7 4 0 6 0 17 10 55
SilverStripe 0 1 0 14 144 64 0 100 2 74 146 268
Smarty 0 6 0 10 0 5 0 4 0 10 0 35
SquirrelMail 0 5 1 5 0 0 0 2 0 0 1 12
Symfony 0 0 0 46 0 24 0 25 0 29 0 152
WordPress 0 1 5 9 0 5 3 72 0 13 8 101
ZendFramework 0 4 0 213 7 67 0 54 3 76 10 455

TABLE X. RESULTS OF MATCHING FLOW PATTERNS FP-1 THROUGH FP-5.

System Resolved and Unresolved Variable Features, Flow Patterns FP-1 Through FP-5

Variables Function Calls Method Calls Property Fetches Instantiations All

Resolved Unresolved Resolved Unresolved Resolved Unresolved Resolved Unresolved Resolved Unresolved Resolved Unresolved

CakePHP 0 0 0 0 2 7 10 141 0 11 14 163
CodeIgniter 0 0 0 4 0 10 0 39 0 1 0 54
DoctrineORM 0 0 0 0 0 0 0 6 0 2 0 8
Drupal 0 0 0 51 0 0 0 36 0 4 0 91
Gallery 0 2 0 0 2 7 3 42 0 0 6 60
Joomla 0 0 0 3 10 16 61 247 0 68 75 341
Kohana 0 4 0 0 0 2 2 4 0 1 2 11
Magento 2 0 0 5 6 82 14 261 2 48 24 397
MediaWiki 0 0 0 5 0 2 5 32 1 8 6 47
Moodle 1 4 0 107 2 57 28 643 0 45 31 906
osCommerce 0 53 0 0 0 0 0 6 0 12 0 71
PEAR 0 0 0 1 0 8 4 3 0 1 4 13
phpBB 4 9 0 3 1 1 0 4 0 6 5 26
phpMyAdmin 2 15 0 11 0 0 0 6 0 1 2 36
SilverStripe 0 0 0 9 0 47 0 66 0 34 0 172
Smarty 26 0 0 9 0 18 8 0 0 8 34 35
SquirrelMail 0 10 0 7 0 0 0 2 0 0 0 19
Symfony 0 0 0 13 0 11 0 9 0 8 0 43
WordPress 0 0 0 12 1 1 6 57 0 6 7 76
ZendFramework 2 0 0 48 6 40 0 32 0 37 8 158

The results show that uses of variable features that interact
with ternary conditional expressions, conditionals, and switch
statements are also fairly common, although not as much for
variable variables as for the other common variable features
(especially variable properties). In several cases resolution
works quite well: in Smarty, the Zend Framework, and Magento,
all the variable variables occurring inside these constructs are
resolved (although for all but the first the number is quite
small), as well as all the variable properties in Smarty, and
in Joomla 10 of the 26 variable functions can be resolved. In
many cases, though, occurrences of these patterns cannot be
resolved: none of the 107 variable functions in Moodle are
resolved, and neither are any of the 45 instantiations.

E. Overall Effectiveness

Table XI summarizes the results across all patterns. For each
variable feature, the Resolved column sums all resolved features,
while the Uses column contains a count of all occurrences of
that feature in the given system (and is the same number as was
shown in Table VII). Overall, except for certain outliers (e.g.,
osCommerce), variable variables are often used in static ways,
mainly to eliminate code duplication, and many of these cases
can be detected by our patterns. 40.8% of the variable variable
occurrences are currently resolved, and this reaches 60.5% if

we focus just on systems that require some version of PHP 5.
The overall percentage that are resolved is 13.3%, with a higher
percentage for variable methods (29.5%) and lower percentages
for variable functions (8.9%), property fetches (11.6%), and
object instantiations (6.2%). While certain systems show higher
rates of success than others, in many cases the unresolved
features are either truly dynamic or require more sophisticated
analysis techniques than those employed in Section IV.

F. Anti-Patterns

The challenge in resolving many of the variable feature
occurrences in the corpus leads to a natural question: are these
uses truly dynamic, or would a stronger analysis, not focused on
detecting usage patterns but just on resolving the identifiers to
sets of strings, be more effective? Table XII shows the results
of running the anti-patterns described in Table VI. Similar
to the above tables, the Detected column shows how many
occurrences of the anti-patterns were detected for that given
feature (or, for the second to last column, all features) in that
system, while the Resolved column shows how many of these
occurrences were actually resolved. Good anti-patterns will
have very low resolved counts, since the anti-pattern is trying
to detect cases where the feature is most likely used in a
dynamic way and thus cannot be resolved.

TABLE XI. OVERALL RESULTS OF MATCHING ALL PATTERNS.

System Resolved and Total Variable Features, All Patterns

Variables Function Calls Method Calls Property Fetches Instantiations All

Resolved Uses Resolved Uses Resolved Uses Resolved Uses Resolved Uses Resolved Uses

CakePHP 13 14 0 0 6 25 33 327 1 110 55 490
CodeIgniter 12 12 9 15 2 25 10 82 0 23 33 157
DoctrineORM 0 0 0 3 6 13 0 85 1 29 7 131
Drupal 1 1 4 377 2 3 11 96 1 25 19 502
Gallery 2 7 7 7 2 14 22 96 1 19 37 155
Joomla 1 3 4 12 10 37 65 648 11 210 95 940
Kohana 2 7 0 12 4 14 3 17 0 14 9 69
Magento 26 32 21 36 31 174 29 488 20 309 127 1,043
MediaWiki 5 8 1 26 11 25 22 106 9 90 48 255
Moodle 14 36 29 200 7 109 222 1,624 39 371 320 2,501
osCommerce 0 119 0 2 0 0 3 23 1 29 4 175
PEAR 1 1 2 2 6 16 4 7 2 22 15 48
phpBB 40 61 7 27 4 5 4 12 2 37 58 148
phpMyAdmin 3 30 3 33 7 12 0 13 0 18 13 112
SilverStripe 1 2 0 20 145 240 5 165 7 154 158 607
Smarty 34 40 0 12 2 22 8 12 0 22 44 108
SquirrelMail 7 24 1 24 0 0 0 3 0 0 8 51
Symfony 0 0 0 57 3 93 5 53 1 36 10 268
WordPress 0 1 10 25 1 5 34 196 1 18 46 246
ZendFramework 2 4 1 219 21 84 3 98 4 99 31 548

TABLE XII. PHP VARIABLE FEATURE ANTI-PATTERN RESULTS.

System Results of Anti-Pattern Detection Across the Corpus

Variables Function Calls Method Calls Property Fetches Instantiations All

Detected Resolved Detected Resolved Detected Resolved Detected Resolved Detected Unresolved Detected Resolved

CakePHP 0 0 0 0 23 2 203 14 29 0 257 18
CodeIgniter 0 0 10 1 19 0 46 0 19 0 94 1
DoctrineORM 0 0 4 0 16 6 41 0 25 0 87 6
Drupal 0 0 393 2 2 2 75 7 33 1 503 12
Gallery 0 0 7 5 13 1 61 6 10 0 100 12
Joomla 0 0 11 2 29 10 464 62 140 6 661 82
Kohana 0 0 6 0 16 4 15 1 12 0 55 5
Magento 2 0 32 16 138 24 403 13 325 16 904 69
MediaWiki 1 0 24 1 20 2 59 5 78 2 182 10
Moodle 12 1 201 28 86 3 1,090 114 262 14 1,747 161
osCommerce 84 0 2 0 0 0 3 0 18 0 109 0
PEAR 0 0 0 0 16 1 2 0 19 2 37 3
phpBB 2 0 26 1 4 3 5 0 31 0 70 4
phpMyAdmin 21 2 21 2 11 7 9 0 8 0 77 11
SilverStripe 0 0 22 0 385 144 121 0 109 1 658 145
Smarty 2 0 14 0 23 0 12 8 13 0 64 8
SquirrelMail 2 0 42 0 0 0 3 0 0 0 47 0
Symfony 0 0 28 0 147 2 45 0 22 0 245 2
WordPress 0 0 27 3 4 1 189 23 15 0 236 27
ZendFramework 2 0 100 0 57 12 62 0 80 1 345 13

The results indicate that the anti-patterns are quite good
at detecting scenarios that are difficult to resolve locally, e.g.,
where the values used to compute the identifier are provided
as function parameters or as global variables. In our opinion,
after manually inspecting several thousand occurrences, we
believe that many of these occurrences cannot be statically
resolved but are actually used to support dynamic features of the
system, such as the ability to add user-defined metadata as new
properties on specific instances of provided classes. However,
while in most cases very few of the detected anti-patterns are
also resolved, there are several where the number resolved is
above 10 (e.g., variable functions in Magento and Moodle, or
variable methods in Joomla, Magento, SilverStripe, and the
Zend Framework). More research needs to be conducted to
identify scenarios where both a pattern and anti-pattern match,
which hopefully will allow the patterns to be further improved.

G. Threats to Validity

There are several threats to the validity of the results
reported above. First, a different corpus or an individual system

not in the corpus could yield results that are quite different
from those reported here. To mitigate this risk we have chosen
a wide variety of systems from different application domains,
and have included both complete systems and commonly-used
application frameworks. This can be seen in the reported results,
which vary considerably across the different systems in the
corpus. Second, the list of patterns is most likely not complete.
While this is true, at some point an individual pattern of use in
a specific application may not be widely used enough outside
of this application to warrant inclusion in the patterns we
have developed, and after inspecting several thousand variable
feature occurrences we believe the most common patterns,
used broadly in the corpus, are included (and even at this
point, some are much more widely used than others). Finally, a
stronger analysis, not focused on finding or exploiting patterns,
may be able to resolve more occurrences to specific sets of
names. While true, an important goal of this research was to
identify these patterns and determine how often they are used,
something that should help to increase understanding of how
variable features in PHP are used in practice.

VI. RELATED WORK

Focusing just on PHP, Eshkevari et al. [6] studied runtime
type changes for variables in PHP code to see how often
the ability of a variable to take on multiple types is actually
use. Mulder [7] used runtime tracing to examine dynamic
method and function calls in PHP to detect which functions
and methods could actually be called and to generate static
variants of these calls which could more easily be analyzed. In
our own earlier work we focused on how static and dynamic
features are used in an earlier version of the corpus studied
in this paper [1] and on how the use of dynamic features
has changed over time in two of the systems in the current
corpus [8]. We also focused on another dynamic feature, the
file inclusion mechanism, demonstrating two algorithms that
were able to resolve a number of includes to either one file
or a small set of files statically [9], again evaluated over an
earlier version of the current corpus.

Looking beyond PHP, there are a number of studies that
apply static techniques to examine how language features are
used and to find patterns that can be exploited in program
analysis algorithms. Hackett and Aiken [10], as part of their
work on alias analysis, studied aliasing patterns in large
C systems programs, identifying nine patterns that account
for almost all aliasing encountered in their corpus. Ernst et
al. [11] investigated use of the C preprocessor, work that was
instrumental to further experiments in preprocessor-aware C
code analysis and transformation, such as that performed by
Garrido [12]. Liebig et al. also focused on the C preprocessor,
undertaking a targeted empirical study to uncover the use of
the preprocessor in encoding variations and variability [13].
Collberg et al. [14] performed an in-depth empirical analysis of
Java bytecode, computing a wide variety of metrics, including
object-oriented metrics (e.g., classes per package, fields per
class) and instruction-level metrics (e.g., instruction frequencies,
common sequences of instructions). Baxter et al. [15] looked
at a combination of Java bytecode and Java source (generated
from bytecode), where they focused on characterizing the
distributions for a number of metrics.

Other studies have either used a combination of static and
dynamic analysis techniques or have just used dynamic analysis.
Knuth [16] used a combination of both static and dynamic
techniques to examine real-world FORTRAN programs, gath-
ering statistics over FORTRAN source code and using both
profiling and sampling techniques to gather runtime information.
Richards et al. [17] used trace analysis over runtime traces
gathered with an instrumented browser to examine how the
dynamic features of JavaScript are used in practice, specifically
investigating whether the scenarios assumed by static analysis
tools (e.g., limited use of eval, limited deletion of fields,
uses of functions that match the provided function signatures)
are accurate. In a more focused study over a larger corpus,
Richards et al. [18] analyzed runtime traces to find uses of
eval; as part of this work, the authors categorized these uses
into a number of patterns. Meawad et al. [19] then used these
results to create a tool, Evalorizer, that can be used to remove
many uses of eval found in JavaScript code.

Morandat et al. [20] undertook an in-depth study of the R
language, using a combination of runtime tracing and static
analysis to examine a corpus of 3.9 million lines of R code
so they could determine how the features in R are actually

used. Furr et al. [21] profiled uses of dynamic Ruby features
by running existing Ruby code using provided test cases,
determining how the dynamic features of a program are used
in practice. They discovered that these features are generally
used in ways that are almost static, similarly to some of the
variable features shown in this paper (e.g., a number of the
loop patterns, like that shown in Figure 3), allowing them to
replace these dynamic features with static versions that are
then amenable to static type inference in a system such as
DRuby [22].

VII. CONCLUSIONS

PHP’s variable features are examples of dynamic language
features that are widely used and that make static analysis
and comprehension of PHP code challenging. In this paper we
presented 23 patterns that account for a number of common
usage scenarios for these features: 14 patterns using foreach
and for loops; 4 using one or more assignments into a
variable; and 5 that use conditional control flow, such as PHP’s
conditional statement and switch statement, in tandem with
a variable that is both included in the condition and is used as
part of the computation of the identifier.

We evaluated these patterns across a corpus made up of
20 open-source PHP systems consisting of 31, 624 PHP files
with 3, 725, 904 lines of PHP source. This evaluation showed
that these patterns are quite common in PHP programs; that in
some cases (such as with variable variables) many instances
of these patterns are essentially static; but that, in many cases,
uses of these variable features truly appear to be dynamic,
requiring techniques such as runtime tracing to approximate,
with any precision, the actual values that could be used. We also
evaluated a small collection of three anti-patterns, identifying
common scenarios that could make it hard to resolve the names
used in a given variable feature (e.g., the name is based on a
global variable), and showed that these patterns are generally
good at identifying cases that either were not covered by our
patterns or could not be resolved by them. We believe that
these patterns and anti-patterns can be used by program analysis
tools both to improve precision, in cases where the names can
be resolved, and to indicate where names most likely cannot
be resolved statically, requiring the use of dynamic analysis
techniques to discover runtime behavior.

In future work we plan to extend the collection of anti-
patterns to cover additional problematic cases. We would also
like to better understand those cases where an anti-pattern
detects a potential problem that is still resolvable to see if
that could provide insight that would allow us to improve the
existing patterns. Beyond this, it may also be possible to derive
a set of names by using regular expression matching in cases
where we have a partial string literal; this could prove especially
effective for class, function, and method names, where (with
the latter) inferred type information for the method target could
also be used. Finally, as part of our work on dynamic analysis
of PHP programs, we plan to investigate techniques that can
direct tests towards uses of these features, allowing us to profile
their execution and get a clearer picture of which values each
occurrence can take on and where these values come from.

REFERENCES

[1] M. Hills, P. Klint, and J. J. Vinju, “An Empirical Study of PHP Feature
Usage: A Static Analysis Perspective,” in Proceedings of ISSTA 2013.
ACM, 2013, pp. 325–335.

[2] P. Klint, T. van der Storm, and J. J. Vinju, “RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation,” in
Proceedings of SCAM 2009. IEEE, 2009, pp. 168–177.

[3] P. Klint, T. van der Storm, and J. Vinju, “EASY Meta-programming
with Rascal,” in Post-Proceedings of GTTSE’09, ser. LNCS. Springer,
2011, vol. 6491, pp. 222–289.

[4] “Count Lines of Code Tool,” http://cloc.sourceforge.net.
[5] M. Hills and P. Klint, “PHP AiR: Analyzing PHP Systems with Rascal,”

in Proceedings of CSMR-WCRE 2014. IEEE, 2014, pp. 454–457.
[6] L. M. Eshkevari, F. D. Santos, J. R. Cordy, and G. Antoniol, “Are PHP

Applications Ready for Hack?” in Proceedings of SANER 2015. IEEE,
2015, pp. 63–72.

[7] C. Mulder, “Reducing Dynamic Feature Usage in PHP Code,” Master’s
thesis, University of Amsterdam, 2013.

[8] M. Hills, “Evolution of Dynamic Feature Usage in PHP,” in Proceedings
of SANER 2015. IEEE, 2015, pp. 525–529.

[9] M. Hills, P. Klint, and J. J. Vinju, “Static, Lightweight Includes
Resolution for PHP,” in Proceedings of ASE 2014. ACM, 2014, pp.
503–514.

[10] B. Hackett and A. Aiken, “How is Aliasing Used in Systems Software?”
in Proceedings of FSE’06. ACM, 2006, pp. 69–80.

[11] M. D. Ernst, G. J. Badros, and D. Notkin, “An Empirical Analysis of C
Preprocessor Use,” IEEE Transactions on Software Engineering, vol. 28,
no. 12, pp. 1146–1170, 2002.

[12] A. Garrido, “Program Refactoring in the Presence of Preprocessor Di-
rectives,” Ph.D. dissertation, University of Illinois at Urbana-Champaign,
2005.

[13] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An
Analysis of the Variability in Forty Preprocessor-Based Software Product
Lines,” in Proceedings of ICSE’10. ACM, 2010, pp. 105–114.

[14] C. S. Collberg, G. Myles, and M. Stepp, “An empirical study of Java
bytecode programs,” Software: Practice and Experience, vol. 37, no. 6,
pp. 581–641, 2007.

[15] G. Baxter, M. R. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, and E. D. Tempero, “Understanding the Shape of Java
Software,” in Proceedings of OOPSLA’06. ACM, 2006, pp. 397–412.

[16] D. E. Knuth, “An Empirical Study of FORTRAN Programs,” Software:
Practice and Experience, vol. 1, no. 2, pp. 105–133, 1971.

[17] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An Analysis of the
Dynamic Behavior of JavaScript Programs,” in Proceedings of PLDI
2010. ACM, 2010, pp. 1–12.

[18] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The Eval That Men
Do - A Large-Scale Study of the Use of Eval in JavaScript Applications,”
in Proceedings of ECOOP 2011, ser. LNCS, vol. 6813. Springer, 2011,
pp. 52–78.

[19] F. Meawad, G. Richards, F. Morandat, and J. Vitek, “Eval Begone!: Semi-
Automated Removal of Eval from JavaScript Programs,” in Proceedings
of OOPSLA’12. ACM, 2012, pp. 607–620.

[20] F. Morandat, B. Hill, L. Osvald, and J. Vitek, “Evaluating the Design
of the R Language - Objects and Functions for Data Analysis,” in
Proceedings of ECOOP’12, ser. LNCS, vol. 7313. Springer, 2012, pp.
104–131.

[21] M. Furr, J. hoon (David) An, and J. S. Foster, “Profile-Guided Static
Typing for Dynamic Scripting Languages,” in Proceedings of OOPSLA
2009. ACM, 2009, pp. 283–300.

[22] M. Furr, J. An, J. S. Foster, and M. W. Hicks, “Static Type Inference
for Ruby,” in Proceedings of SAC’09. ACM, 2009, pp. 1859–1866.

http://cloc.sourceforge.net

