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Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL, US

Abstract

Many C programs assume the use of implicit domain-specific information. A common example is units of
measurement, where values can have both a standard C type and an associated unit. However, since there
is no way in the C language to represent this additional information, violations of domain-specific policies,
such as unit safety violations, can be difficult to detect. In this paper we present a static analysis, based
on the use of an abstract C semantics defined using rewriting logic, for the detection of unit violations in C
programs. In contrast to typed approaches, the analysis makes use of annotations present in C comments
on function headers and in function bodies, leaving the C language unchanged. Initial evaluation results
show that performance scales well, and that errors can be detected without imposing a heavy annotation
burden.
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1 Introduction

Many programs make use of domain-specific information. A common example,

often occurring in scientific and engineering applications, is the use of units of mea-

surement. Units are associated with specific values or variables; unit rules then

determine how operations in the language (addition, multiplication, etc) change

and combine units, and also determine when this is safe. In many languages, in-

cluding C, this information on units is implicit: instead of having a program-level

representation, values are assumed by the programmer to have specific units, which
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1 typedef struct {

2 double atomicWeight;

3 double atomicNumber;

4 } Element;

5

6 //@ pre(UNITS): unit(material->atomicWeight) = kg

7 //@ pre(UNITS): unit(material->atomicNumber) = noUnit

8 //@ post(UNITS): unit(@result) = m ^ 2 kg ^ -1

9 double radiationLength(Element * material) {

10 double A = material->atomicWeight;

11 double Z = material->atomicNumber;

12 double L = log( 184.15 / pow(Z, 1.0/3.0) );

13 double Lp = log( 1194.0 / pow(Z, 2.0/3.0) );

14 return ( 4.0 * alpha * re * re) * ( NA / A ) *

15 ( Z * Z * L + Z * Lp );

16 }

17

18 //@ pre(UNITS): unit(material->atomicWeight) = kg

19 //@ pre(UNITS): unit(material->atomicNumber) = noUnit

20 //@ pre(UNITS): unit(density) = kg m ^ -3

21 //@ pre(UNITS): unit(thick) = m

22 //@ pre(UNITS): unit(initEnergy) = kg m ^ 2 s ^ -2

23 double finalEnergy(Element * material, double density,

24 double thick, double initEnergy) {

25 double X0 = radiationLength(material);

26 return initEnergy / exp ( thick / X0 );

27 }

Fig. 1. Electron Energy Example, in C

may be documented informally in source comments. Unfortunately, the implicit na-

ture of this information means that it cannot be used to automatically ensure that

unit manipulations are safe, i.e., that operators are always applied to operands with

compatible units. The burden to ensure this falls directly on the programmer. This

leaves open the possibility that serious domain-specific errors will go undetected.

The possibility of serious errors is not just theoretical. On September 30, 1999,

NASA’s Mars Climate Orbiter spacecraft crashed into Mars’ atmosphere due to a

software navigation error, caused by one team using English units while another

used metric units in a key Orbiter operation [3]. Roughly 15 years before this, the

space shuttle Discovery flipped over mid-flight in an attempt to point a mirror at

a spot 10,023 feet above sea level; the software interpreted this figure as 10,023

nautical miles, or roughly 60,900,905 feet [28].

Checking by hand may be an option for small programs, but does not scale to

large programs. Even in small programs, some calculations can be very complex

and can depend on non-local information, like the contents of global variables and

the results of function calls, making manual checking challenging. For instance, a
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portion of a program used to calculate the final energy of an electron 4 is shown

in Figure 1. Without a method to record expected units and check for correctness,

it is not obvious whether the code is, or is not, unit-safe. In fact, line 26 will

report a unit error: the unit returned by the radiationLength calculation will be

meter2kilogram−1, and thick has unit meter, so thick divided by X0 will have

unit meter−1 kilogram. However, exp expects a unitless argument, meaning either

the annotations are incorrect or radiationLength is not being used correctly.

Many approaches have been proposed to enforce unit safety in programs, a num-

ber of which are discussed in Section 2. In this paper, we propose a new solution

for the C language, CPF[UNITS]. CPF[UNITS], based on the CPF framework [17],

is a significant extension of the ideas introduced in the proof-of-concept C-UNITS

system [30]. CPF[UNITS] allows unit-specific annotations to be added to C pro-

grams in the form of function preconditions, function postconditions, assertions,

and assumptions. These annotations are then checked for validity using a combi-

nation of the abstract rewriting logic semantics of C, part of CPF, and the UNITS

policy, a collection of unit-specific semantics for certain language features and the

combination of an annotation language and annotation semantics. Hence the name

CPF[UNITS], for CPF parameterized by the UNITS policy.

The remainder of this paper is organized as follows. We first present related work

in Section 2, including the earlier C-UNITS system and approaches based on types.

We then provide introductory details on the abstract rewriting logic semantics of C

in Section 3, assuming familiarity with term rewriting and a basic familiarity with

equational or rewriting logic. An introduction to units of measurement in presented

in Section 4, followed by details of the CPF[UNITS] unit safety checker in Section 5.

Section 6 presents initial evaluation results, with Section 7 presenting possible future

work and concluding. Our website provides downloads of all tools and examples

described in this paper, along with a web-based interface for experimentation [1].

2 Related Work

Related work on unit safety tends to fall into one of three categories: library-based

solutions, where libraries which manipulate units are added to a language; language

and type system extensions, where new language syntax or typing rules are added to

support unit checking in a type checking context; and annotation-based solutions,

where user-provided annotations assist in unit checking.

Library-based solutions have been proposed for several languages, including

Ada [16,24], Eiffel [20], and C++ [8]. The Mission Data Systems team at NASA’s

JPL developed a significant library, written in C++, which includes several hun-

dred classes representing typical units, like MeterSecond, with appropriately typed

methods for arithmetic operations. An obvious disadvantage of such an explicit

approach is that the units supported by the library are fixed: adding new units

requires extending the library with new classes and potentially adding or modifying

existing methods to ensure the new classes are properly supported.

4 This example was borrowed from Jiang and Su’s work on Osprey [19], which in turn borrowed it from
Brown’s work on SIUNITS [8].
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Solutions based around language and type system extensions work by introduc-

ing units into the type system and potentially into the language syntax, allowing

expressions to be checked for unit correctness by a compiler or interpreter using

extended type checking algorithms. MetaGen [6], an extension of the MixGen [5]

extension of Java, provides language features which allow the specification of dimen-

sion and unit information for object-oriented programs. Other approaches making

use of language and type system extensions have targeted ML [22,21], Pascal [14,18],

and Ada [15].

A newer tool, Osprey [19], also uses a typed approach to checking unit safety,

allowing type annotations in C programs (such as $meter int) using a modified

version of CQUAL [13]. These annotations can then be checked using a combi-

nation of several tools, including the annotation processor, a constraint solver, a

union/find engine, and a Gaussian elimination engine (the latter two used to reduce

the number of different constraints and properly handle the Osprey representation

of unit types as matrices). One limitation of Osprey is that there is no way to

express relationships between the units of function parameters and return values,

something possible with a richer annotation language:

//@ post(UNITS): unit(@result)^2 = unit(x)

double sqrt(double x) { ... }

Instead, this type of relationship has to be added by hand-editing files generated

during processing. Osprey also checks dimensions (i.e., length), not units (i.e.,

meters or feet), instead converting all units in a single dimension into a canonical

unit. This can mask potential errors: for instance, it is not an error to pass a

variable declared with unit meter to a function expecting feet. On the other hand,

Osprey includes functionality to check explicit conversions for correctness, catching

common conversion errors such as using the wrong conversion factor.

Annotation-based systems, including JML [9], Spec# [7], and Frama-C [2], have

been applied to many problem domains, but not specifically to units. Systems for

unit safety based on annotations include the C-UNITS system [30], which used con-

cepts about abstract semantics and annotations that first appeared in the context

of BC, a small calculator language [10]. CPF[UNITS] was inspired by the work on

C-UNITS, and takes a similar approach, with a focus on using abstract semantics

and annotations. However, CPF[UNITS] has extended this approach in three sig-

nificant ways. First, CPF[UNITS] has been designed to be modular: the abstract

semantics of C have been completely redefined using concepts developed over the

last several years as part of the rewriting logic semantics project [26]. The seman-

tics are divided into core modules, shared by all CPF policies, and units modules,

specific to CPF[UNITS]. This allows improvements in the core modules to be shared

by all policies, simplifies the unit checking logic, and greatly improves the ease with

which the semantics can be understood and modified. Second, CPF[UNITS] has

been designed to cover a much larger portion of C. C-UNITS was designed as a pro-

totype, and left out a number of important C features, with minimal or no support

for structures, pointers, casts, switch/case statements, gotos, or recursive function

calls. Support for expressions was also limited, with the main focus on commonly-

used expressions, and more complex memory scenarios (structures with pointers,
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k( lookup(X)

lvp(L, U)

〉 env〈[X, L, U]〉

Fig. 2. Sample C Semantic Rule, in K

arrays of pointers, etc) were ignored. CPF[UNITS] supports all these features, and

makes use of a more advanced parser to handle a larger class of C programs. Finally,

CPF[UNITS] has been designed to be more scalable. While C-UNITS requires a

complete program for analysis, CPF[UNITS] analyzes individual functions, leading

to smaller individual verification tasks.

The technique used by CPF[UNITS], like most (if not all) static analyses, could

be framed in terms of abstract interpretation [12], where the domain of interpreta-

tion is the algebra of units of measurement. However, CPF[UNITS] makes intensive

use of recently developed rewriting logic language definitional techniques based on

representations of abstract syntax trees as continuations; establishing the relation-

ships between rewriting logic semantics and abstract interpretation is an interesting

subject in and of itself, but it goes beyond our purposes in this paper.

3 Abstract Rewriting Logic Semantics of C

The abstract semantics of C is defined using Maude [11], a high-performance lan-

guage and engine for rewriting logic. The current program is represented as a

“soup” (multiset) of nested terms representing the current computation, environ-

ment (mapping names to abstract values and other information), analysis results,

bookkeeping information, and analysis-specific information. The most important

piece of information is the Computation, named k, which is a first-order representa-

tion of the current computation, made up of a list of instructions separated by ->.

The Computation can be seen as a stack, with the current instruction at the left

and the remainder of the computation at the right. This methodology is described

in more detail in papers about the rewriting logic semantics project [25,26]. To

simplify the presentation of the rules in the CPF semantics, we use K notation [29],

which includes a number of simplifying conventions.

Figures 2 and 3 show an example of a semantic rule included in the abstract C

semantics used in the CPF[UNITS] tool (see Section 5), first in K notation, then in

Maude. The rule represents a memory lookup operation. Here, if identifier X is being

looked up, and the environment contains an item named X with location L and unit

value U, a location value pair lvp containing L and U, lvp(L,U), is returned in place

of the lookup operation, while the environment remains unchanged 5 . The K version

uses three K conventions: > is used in place of ) to represent “and everything else”,

expanded into -> K in the Maude version; < > is used for set matching (“everything

5 This is slightly simplified from the actual semantics, where the environment is made up of 5-tuples instead
of triples, but is otherwise the same.

eq k(lookup(X) -> K) env(Env [X,L,u(U)])

= k(val(lvp(L,u(U))) -> K) env(Env [X,L,u(U)]) .

Fig. 3. Sample C Semantic Rule, in Maude
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op _^_ : Unit Rat -> Unit .

op __ : Unit Unit -> Unit [assoc comm] .

eq U ^ 0 = noUnit .

eq U ^ 1 = U .

eq U U = U ^ 2 .

eq U (U ^ Q) = U ^ (Q + 1) .

eq (U ^ Q) (U ^ P) = U ^ (Q + P) .

eq (U U’) ^ Q = (U ^ Q) (U’ ^ Q) .

eq (U ^ Q) ^ P = U ^ (Q * P) .

ops noUnit any fail cons : -> Unit .

ops meter m feet f : -> Unit .

Fig. 4. Units of Measurement, in Maude

else to either side”), which requires Env to represent “everything else” in Maude;

and replacement is represented by underlining the portion of the term that has

changed, allowing unchanged portions of the term to be mentioned without the

need to be repeated. K also does not need the wrapper u(), which is used to wrap

units and turn them into values.

4 Units of Measurement

In the International System of Units (SI), there are seven base dimensions, including

length, mass, and time [4]. Each base dimension includes a standard base unit, such

as meters for length or seconds for time. Other units can be defined for each

dimension in terms of the base unit – feet or centimeters for length, for instance.

Units can also be combined to form derived units, such as area (meters squared, or

meter meter) and velocity (meters per second).

Technically, the algebraic structure of units forms an Abelian group. This pro-

vides several important properties which need to be modeled during unit checking.

First, as mentioned above, units can be combined to form new units – for any two

units A and B, AB is also a unit (AB is the product of units A and B). Units

are also associative (given C is also a unit, (AB)C is the same as A(BC)), com-

mutative (AB is the same as BA), and have inverses and identities. Generally,

products of the same unit are represented with exponents, i.e. AA is the same as

the more commonly used A2, but both forms are acceptable and should be usable.

Our equational definition of the units domain is shown in Figure 4. The first two

operands (defined with op) specify that a unit can have a rational exponent and

that the product of two units is a new unit. The following seven equations (defined

with eq) are used to simplify units, putting them into a canonical form, with P and

Q representing rational numbers. The next two operand lists define some actual

units: meters and feet, along with short forms, plus special units: noUnit, any,

fail, and cons. noUnit represents the unit of values that have none, like the result

of a bitwise computation. any means a value can be considered to be of any unit,

which is similar to cons, the unit given to constants (cons is used internally as

the default unit of constants, while any can be used in annotations). Finally, fail
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represents a unit failure, and is represented as a unit so it can be easily propagated.

Additional equations, not shown here, are also provided to allow for canonical forms

of predefined units, for instance ensuring that m and meter are recognized as the

same unit.

5 CPF[UNITS]: Checking Unit Safety of C Programs

In this section we present CPF[UNITS], a tool for checking the unit safety of C

programs. In CPF[UNITS], users specify units on C objects 6 that hold numerical

values by providing annotations in comments in the source code. Annotations indi-

cate function preconditions and postconditions, assertions, and assumptions. The

annotated code is converted into a formal representation based on a Maude-defined

abstract C semantics, and then checked function by function, ensuring that the size

of the verification task does not (except in some pathological conditions, such as

with deeply nested conditionals where each branch makes different changes to units)

grow too large. The use of conditionals and looping constructs can cause multiple

units to be associated with a single object 7 . Techniques to handle this, while still

maintaining precision, are discussed below.

CPF includes logic to add annotations to C programs, parse these programs,

generate verification tasks, and process most C statements. The portions of CPF

not specific to the UNITS policy are described below at a high level; additional

coverage, including detailed information about the CPF, a sample not-null policy,

and a high-level introduction to the units policy can be found in a companion

technical report [17].

5.1 Code Annotations

In CPF[UNITS], code annotations are included directly in the C source code as

comments, starting either with /*@ (for block comments) or //@ (for line comments).

Examples of annotations can be found in Figure 1. Note that both functions, such

as radiationLength and finalEnergy, and function prototypes can be annotated,

allowing annotations to easily be added to library functions. @result is a special

token used to refer to the return value of the function. In general, a function can

have multiple, or no, preconditions or postconditions.

5.2 Generating Verification Tasks

The CPF[UNITS] semantics assume that one verification task will be generated for

each function. The tasks are generated using a combination of a Perl script for

processing annotations and a modified version of the CIL tool for C [27], which

provides parsing, analysis, and code transformation capabilities. After parsing the

program, CIL first performs a CPF-specific three-address transform, moving expres-

sion computations out of function calls and return statements. CIL then performs a

6 In C, an object is a memory region that can be read from or written to.
7 Recursive calls do not require similar treatment; since functions are checked individually, call sites are
handled without descending into the called function.
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Fig. 5. CPF Framework Execution Model

CPF-specific inlining step, where function call sites are replaced by the function pre-

conditions and postconditions of the called function, with preconditions becoming

asserts and postconditions becoming assumes. The preconditions and postcondi-

tions for each function are then moved into the function body, with preconditions

becoming assumptions at the start of the body and postconditions placed before

each return statement as assertions. The latter operation is safe because the trans-

form moves any computation out of the return statement, ensuring that a return

will not also modify units referenced in the postcondition. Finally, CIL also gen-

erates the verification tasks as part of a CPF-specific pretty-printing step; instead

of printing out modified C code, which is the standard CIL behavior, verification

tasks for each function, given in Maude using the CPF abstract C syntax, are gener-

ated. Figure 5 illustrates the process of checking annotated code using CPF. More

information about this process can be found in the CPF technical report [17].

5.3 Checking Unit Safety

Once the verification tasks for each function have been generated, each task is

checked using Maude. The executable nature of rewriting logic specifications is

leveraged to symbolically execute programs using an abstract rewriting logic seman-

tics. This semantics is made up of the CPF core semantics and, for unit safety, the

unit-specific semantics included in the UNITS policy. The CPF semantics includes

an abstract syntax of C and semantics for C statements, high-level definitions of

concepts such as “value” and “annotation language”, and a number of hooks which

allow policy-specific behavior to be added. CPF[UNITS] extends this with seman-

tics for declarations, assertions, assumptions, and expressions, a definition of the

UNITS annotation language used in annotations, and a policy-specific concept of

unit values. Here, we focus on those parts specific to CPF[UNITS], with the CPF

semantics described here at a high level of detail; as mentioned above, more detail

about CPF is available in a technical report [17] and on the CPF website [1].

5.3.1 CPF: Shared Semantics

The bulk of the shared CPF semantics is focused on the semantics of C statements,

defined over an abstract semantics for C language constructs. In CPF, statements

are executed in an environment, which provides information on the names, values,

and types of C objects which will be used in a statement’s constituent expressions. In
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1 int x,y,z;

2 //@ assume(UNITS): unit(x) = unit(y) = m

3 if (b) {

4 y = 3; //@ assume(UNITS): unit(y) = f

5 x = y;

6 }

7 z = x + y;

Fig. 6. Path-Sensitive Unit Assignment, in C

some cases, such as with conditionals that make different changes to the environment

on different paths, it is possible for a statement to start with one environment but

return multiple environments as the result of execution 8 . Part of the program

state is thus a set of environments, with the framework executing each statement

once in each environment, and gathering the resulting environments together as

the environment set to use for the following statement(s). An example where this

could occur is shown in Figure 6, where the unit assigned to both x and y starts

off as m, but can be either m or f for both at the end of the if. If, instead of

using environment sets, sets of values were associated with each object, a false

positive would be generated on line 7, since x and y could both either be f or m,

leading to an invalid combination of one of each. One disadvantage to this use of

environment sets is that the analysis can be potentially more expensive, especially

in certain pathological cases where the environment keeps splitting (deeply nested

conditionals, for instance). In practice this does not appear to happen often, since

units do not often change once they are initially assigned; as a precaution, CPF

allows the use of a high-water mark on the size of the environment set, which when

crossed causes some environments (selected randomly) in the set to be discarded

and a warning message to be issued.

CPF defines semantics for all C statements, such as conditionals and gotos, and

also includes semantics to “break down” expressions into their constituent pieces:

E + E’ into evaluations of E and E’, for instance. The policy-specific semantics

specifies the abstract values to which E and E’ can evaluate.

5.3.2 CPF[UNITS]: Abstract Values

The CPF[UNITS] values are a combination of unit values and values representing

C pointers, structures, unions, arrays, and enums (treated as constants). The unit

values are those defined in the theory of units shown in Figure 4, augmented with

C-specific unit values that include simple C expressions, such as constant integers

in the exponent. Pointers are represented as locations; dereferencing accesses the

actual value at that location, such as a unit, a structure, or another pointer (for

multiple levels of indirection). Arrays have a similar representation, which allows

them to be used like pointers, but limits them to containing only a single value,

so all array elements are considered to have the same unit. Structures and unions

contain the name of the structure or union type (anonymous structures and unions

are given names by CIL) and a set of field/location pairs to indicate where the

8 This makes our analysis path-sensitive, although we make no attempt to track which conditions led to
which path.
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op _^_ : Unit CInt -> Unit .

op u : Unit -> Value .

op ptr : Location -> Value .

op arr : Location -> Value .

op struct : Identifier SFieldSet -> Value .

op union : Identifier SFieldSet -> Value .

Fig. 7. CPF[UNITS] Values, in Maude

value of each field is stored. Function pointers are represented with a special value,

with alias analysis used to determine which function is invoked by an indirect call

through the pointer; warnings are issued if it is not possible to determine a unique

function at a call site. A subset of the value definitions used by the CPF[UNITS]

policy is shown in Figure 7.

5.3.3 CPF[UNITS]: C Declarations

The CPF[UNITS] rules for handling declarations provide an initial symbolic repre-

sentation of memory for the global variables, formal parameters, and local variables

of a function. Different allocators are used for each C object type, allocating initial

values appropriate to the object. For instance, the allocator for scalars initially

associates a “fresh” unit, unique to that declaration, with the scalar, while the

allocator for pointers associates a reference to a new memory location. Declara-

tions for structure and union variables allocate field/location maps based on the

fields contained in the structure or union declaration. Allocation is recursive; struc-

ture allocation also allocates the fields of the structure, while allocation of arrays

and pointers allocates the base type of the array or pointer as well, with unions

currently represented like structures (i.e., we do not attempt to just allocate one

location shared by all fields in the union). One challenging but common case to

represent is structures which contain pointers to other structures. It is not possible

to allocate the entire memory representation up front, since this could be (in theory,

at least) infinite. Pointers inside structures are instead created with an allocation

trigger, which will allocate the pointer’s target on the first attempt to access it. This

allows the memory representation to grow sensibly, modeling just what is needed

to perform unit checking.

After processing all declarations in the function body/verification task (CIL

moves all declarations to the top of a function, using renaming to model shadowing),

initial values are given to local variables using a combination of assertions (from

annotations) and assignments. For instance, an assertion may indicate that variable

x has unit meter; a declaration like int y = x; would then associate meter with

y as well. Initial units for formal parameters and global variables are based just

on the function preconditions. If a precondition or assignment does not indicate

the initial unit of a variable, it keeps its assigned fresh (unique) unit, which will

allow detection of errors from misuse of the variable in expressions. After all initial

assignments are complete, a locking process locks certain memory locations to make

sure they cannot be changed in ways that are not reflected in the annotations. For

instance, it is not possible to write a new unit through a pointer given as a formal
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[1] U * U’ = U U’

[2] U + U’ = mergeUnits(U,U’) -> checkForFail("+")

[3] U > U’ = mergeUnits(U,U’) -> checkForFail(">") -> discard -> noUnit

[4] (lvp(L,V) = V’) = V’ -> assign(L)

[5] (lvp(L,U) += U’) = mergeUnits(U,U’) -> checkForFail("=") -> assign(L)

[6] *(lvp(L,ptr(L’))) = llookup(L’)

[7] lvp(L,struct(X’, (sfield(X,L’) _))) . X = llookup(L’)

Fig. 8. CPF[UNITS] Expression Rules, in K

parameter. This ensures that changes visible outside the function but not included

in the preconditions and postconditions are prevented, allowing checking to be truly

modular 9 . Finally, a “checkpoint” is taken, saving the original assigned values

before any changes are made in the function body. This allows these original values

to be accessed later during unit checking, such as when checking the assertions

added to represent the function postconditions.

5.3.4 CPF[UNITS]: C Expressions

To evaluate expressions in CPF[UNITS] the semantic rules need to properly modify,

combine, and propagate abstract values representing units and C objects (pointers,

structures, etc). Expressions, along with assert statements, are also the point where

unit safety violations are discovered, so semantics for expressions which can produce

failures need to ensure that the failures are properly handled. Figure 8 includes

rules for a representative set of expressions, illustrating how abstract values are

propagated and failures are detected.

The first rule models the multiplication operation. Here, given two unit values U

and U’, the result is their product, U U’. The second rule, for addition, is structured

similarly to the first, but must also check that the combination of the units is correct.

This is done by merging the units with mergeUnits. In merging, if one unit is any or

cons, both of which can be treated as being of any unit, the other unit is returned.

Otherwise, the two units must match, with no automatic conversions between units

performed. If the units do not match, or one of the units is fail, fail is returned

to indicate a unit safety violation. This enforces the unit rule for addition – the

units of both operands must be the same. To detect the failure and issue a warning,

checkForFail is used, which will print an error message if the result unit is fail.

The third rule handles the greater-than relational operation. Here, the rule is the

same as for addition: to compare two values they must have the same unit. Beyond

9 It is possible to override this locking behavior using annotations, but this will generate a warning message
to alert the user to the potential unsoundness created by doing so. We are working on incorporating alias
analysis results into the locking process to ease this restriction.
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Unit U ::= unit(E) | unit(E) ∧ Q | BU | U U

UnitExp UE ::= U | U = UE | UE and UE | UE or UE |
UE implies UE | not UE

Fig. 9. Units Annotation Language

this, the returned unit is noUnit, since it does not make sense to assign a unit to the

result of the comparison. The fourth rule is used for assignment. Here, the lvalue

evaluates to an lvp, or location-value pair, with the location and current value of

the object being assigned into. The value of the right-hand expression is assigned

over the current value to the same location. While this works for units, it also works

for other C entities, such as the representations for pointers and structures. The

fifth rule, for the += operand, is a combination of the rules for + and assignment,

performing both the check for failure and the assignment to the location of the

lvalue. In this case, the values should be units, since it is necessary to compare

them to verify the operation is safe; a different rule would be needed for pointer

arithmetic. In both the fourth and fifth rule, parens have been added to clearly

distinguish the K = from the C assignment =.

Finally, rules six and seven show how some aspects of pointers and structures

are handled. A pointer is represented as a location – a pointer to location L has

the value ptr(L). On dereference, the location held in the pointer is looked up to

retrieve its value. A structure is represented as a tuple containing the name of the

structure type and the aforementioned finite map from field names to locations; the

unneeded part of the finite map is represented as . When field X is looked up in a

structure, like S.X, the location of X is retrieved using the map and then looked up

to bring back the value assigned to the field.

5.3.5 CPF[UNITS]: Annotation Language, Asserts, and Assumes

The unit annotation language is shown in Figure 9. Unit includes an operation,

unit, to check the unit of an expression; unit exponents, where Q can be a rational

number; basic units, such as meters or kilograms; and unit products, specifying a

new unit. UnitExp includes units, tests for unit equality, and a number of logical

connectives. Logical operators have their standard precedences, not reflected in the

simplified grammar shown here.

The unit annotation language can be used inside annotations tagged as UNITS

annotations. These annotations are changed into custom assert and assume state-

ments, with policy-specific handling. CPF[UNITS] will check the asserts and

assumes by first determining the units of any expressions, based on the current

environment. assumes are then treated like unit assignments, with assignment go-

ing from right to left – unit(x) = meter assigns the unit meter to variable x, while

unit(x) = unit(y) assigns the unit of y to x. By comparison, asserts are treated

as logical checks, with unit comparisons performed using a combination of the units

theory from Figure 4, to determine when units are equal, and the concept of unit

compatibility used during unit merging when checking expressions. Unannotated
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Total Time Average Per Function

Test LOC x100 x400 x4000 x100 x400 x4000

straight 25 6.39 23.00 229.80 0.06 0.06 0.06

ann 27 8.62 31.27 307.54 0.09 0.08 0.08

nosplit 69 12.71 46.08 467.89 0.13 0.12 0.12

split 69 27.40 106.55 1095.34 0.27 0.27 0.27
Times in seconds. All times averaged over three runs of each test. LOC (lines of code) are per function,

with 100, 400, or 4000 identical functions in a source file.

Fig. 10. CPF[UNITS] Performance

functions and objects are treated conservatively, with functions given default an-

notations and objects assigned fresh units (described above in Section 5.3.3) that

allow incorrect uses to be detected.

5.4 Running CPF[UNITS]

As an example of the use of CPF[UNITS], Figure 1 shows a portion of a C program

that uses units. As mentioned in Section 1, it is not obvious that this code contains

a unit error. By adding the annotations shown in the figure, CPF[UNITS] can check

the program for unit errors. This gives the following output:

Function finalEnergy: ERROR on line 26(1): Assert failed!

This message shows that the code actually has a unit error, in this case on line

26. The potential cause of this error was explained in Section 1. Any assertion

failures are similarly reported to the user, with additional information provided

where this is possible. For instance, errors triggered by addition operations will

report the line number and the fact that the error is caused by an invalid addition.

6 Evaluation

Evaluation was performed using two sets of experiments. All tests were performed

on the same computer, a Pentium 4 3.40 GHz with 2 GB RAM running Gentoo

Linux and Maude 2.3. In the first, the focus was on performance, ensuring that using

a per-function analysis would scale well as desired. The results are shown in Figure

10. Here, each test performs a series of numerical calculations: straight includes

straight-line code; ann includes the same code as straight with a number of added

unit annotations; nosplit includes a number of nested conditionals that change

units on variables uniformly, leaving just one environment; and split includes

nested conditionals that change variable units non-uniformly in different branches,

yielding eight different environments in which statements will need to be evaluated.

LOC gives the lines of code count, derived using the CCCC tool [23], for each

function, with the same function repeated 100, 400, or 4000 times.

As shown in Figure 10, performance scales almost linearly: quadrupling the

number of functions to check roughly quadruples the total processing time. Per-
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Test Prep Time Check Time LOC Functions Annotations Errors FP

ex18.c 0.083 0.754 18 3 10 3 0

fe.c 0.113 0.796 19 2(3) 9 1 0

coil.c 0.113 59.870 299 4(3) 14 3 3

projectile.c 0.122 0.882 31 5(2) 16 0 0

projectile-bad.c 0.121 0.866 31 5(2) 16 1 0

big0.c 0.273 5.223 2705 1 0 0 0

big1.c 0.998 22.853 11705 1 0 0 0

big2.c 33.144 381.367 96611 1 0 0 0

Times in seconds. All times averaged over three runs of each test. Function count includes annotated

prototypes in parens. FP represents False Positives.

Fig. 11. CPF[UNITS] Unit Error Detection

function processing time is small, making CPF[UNITS] a realistic option for check-

ing individual functions during development, something not possible in some other

solutions (such as C-UNITS) that require the entire program be checked at once.

Splitting environments increases the execution time, but not prohibitively: with

eight environments, the time per function to process split is roughly double, not

eight times, that to process nosplit, which has just one environment. Finally, pro-

cessing annotations in the units annotation language seems to add little overhead;

annotations are treated as statements during processing, so in some sense just add

additional “hidden” lines of code.

The second set of experiments compares against some of the same examples used

by Osprey, some of which were originally from C-UNITS, with the results shown in

Figure 11. fe.c is the example shown in Figure 1; coil.c is part of an electrical in-

ductance calculator; projectile.c calculates the launch angle for a projectile; and

projectile-bad.c does the same, but with an intentionally-introduced unit error.

big0.c, big1.c, and big2.c include a repeated series of arithmetic operations and

are designed to test the size of function that CPF[UNITS] can handle, with big2.c

included as an especially unrealistic example.

Overall, Figure 11 shows that the annotation burden is not heavy: assumptions

on variable declarations are sometimes needed, while preconditions and postcondi-

tions are often needed, with the number of annotations needed by Osprey being

similar (although those used by Osprey are generally smaller). big0.c, big1.c,

and big2.c require no annotations, while coil.c requires 14, including on func-

tion prototypes. fe.c requires 9 annotations, with ex18.c requiring 10. The

projectile.c example is particularly interesting: the use of a more flexible an-

notation language allows a more general version of the program to be checked than

in some other systems (as discussed in Section 2), maintaining unit polymorphism,

while projectile-bad.c includes an error not caught by Osprey, since the error

involves using a variable with a different unit (pounds versus kilograms) in the same

dimension. Overall, only 16 annotations are needed across 5 functions and 2 proto-

types in both projectile.c and projectile-bad.c. coil.c shows a disadvantage

of the CPF[UNITS] approach: one of the goto statements never stabilizes, meaning

the units keep changing with each iteration. This raises an error in the program,

which in this case appears to be a false positive.
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7 Future Work and Conclusions

This paper presented CPF[UNITS], a static analysis tool based on an abstract

rewriting logic semantics of C, designed for checking the unit safety of C programs.

This tool provides a modular, scalable method of detecting unit violations. Unlike

many type or library based approaches, CPF[UNITS] requires no changes to the base

language, and can support relationships between the units of formal parameters,

local variables, and function return values via annotations. Finally, the use of a

modular framework, the C Policy Framework, and an underlying abstract semantics

in rewriting logic allow for the rapid testing of new features and extensions, such as

extensions to the annotation language.

There are several areas where CPF[UNITS] could be extended. First, some C

code cannot yet be safely analyzed. This includes code that uses features that

are not type-safe, such as pointer arithmetic and unions, as well as code that uses

ambiguous function pointers. Extending the CPF[UNITS] definition, while using

additional analysis information from CIL, should make it possible to safely handle

more of these cases. Second, a number of conservative assumptions around aliasing

and global variables preserve correctness but can generate warnings; additional

analysis information from CIL should also be useful in these cases, to sharpen

the analysis capabilities without losing correctness. Third, annotations on global

variables and structure definitions would allow assumptions about units associated

with globals or instances of structures to be stated once, instead of stating them in

functions which use them; these are currently being added. Fourth, error messages

are being improved. Finally, there are some useful annotations that cannot yet

be properly handled, including unit annotations that depend on variables in the

exponent (such as saying that, given an integer n, variable x has unit metern).

Extending the capabilities of the annotation language would increase the power of

CPF[UNITS], allowing it to handle more complex cases.
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