
Enabling Go Program Analysis in Rascal
Luke Swearngan, Mark Hills

Appalachian State University, Boone, NC, USA
swearnganjl@appstate.edu, hillsma@appstate.edu

Abstract—In this paper, we present early work on the founda-
tion of a program analysis framework for the Go programming
language. This framework, named Go AiR (Analysis in Rascal),
currently provides support for extracting abstract syntax trees
from Go source code, working with multiple Go projects and
multiple versions of a single Go project (based on Git version
history), and code exploration through the use of Rascal features
for working with representations of source code. We discuss the
structure of the framework, describe the mapping from Go to
Rascal and how this was tested, present sample code showing
how the framework can be used to explore Go source code, and
discuss future extensions to the framework to support program
analysis and verification.

Index Terms—Go, static analysis, analysis frameworks

I. INTRODUCTION

The Go programming language was first released in late
2009. The language was designed by researchers at Google with
the goal of creating a statically typed, fast, and understandable
language that could support the kinds of networked and
multiprocessing applications that were becoming increasingly
common. Since its release, it has been used as the primary
language in a number of well-known applications, including
Docker (container management), Kubernetes (cluster manage-
ment), Hugo (static site generation), and Terraform (cloud
infrastructure provisioning). As of July 2023, it is the 13th
most popular language on the Tiobe Index [1], which measures
interest in programming languages, and the 14th most popular
in the RedMonk programming language rankings [2], which
uses a ranking formula that aggregates GitHub and Stack
Overflow data. In GitHub’s Octoverse 2022 report [3], it is in
5th place in the list of languages with the fastest growth.

Go is well known for it’s message-passing model of
concurrency. This model, based on earlier work on language
calculii such as Hoare’s Communicating Sequential Processes
(CSP) [4] and Milner’s Calculus of Communicating Systems
(CCS) [5] and the π-calculus [6], [7], uses channels to allow
for message exchange between different threads, known as
goroutines in Go. Channels can be either synchronous or
asynchronous—synchronous channels allow for one message to
be sent at a time, with the sender waiting for a receiver to read
the message from the channel, while asynchronous channels
include buffers that do not require the sender to wait (if the
buffer still has room for another message) or the receiver to
wait (if messages are present in the buffer to read).

In this paper, we present early work on the foundation of a
program analysis framework for the Go programming language.
This framework, written in the Rascal meta-programming
language [8], [9], is named Go AiR, i.e., Go Analysis in

Rascal. Rascal provides a number of features that make it
well-suited for program analysis, including a rich collection of
built-in types such as tuples, sets, maps, and relations; powerful
pattern-matching capabilities over Rascal terms; a language-
level notion of fixpoint computation; and extensibility through
libraries written in Java. Go AiR currently provides support for
extracting and serializing abstract syntax trees from Go source
code, working with multiple Go projects and multiple versions
of a single Go project (based on Git version history), and code
exploration through the use of Rascal features for working
with representations of source code. Our goal is that this
framework can provide a foundation for future work on static
analysis and verification of Go code, either through analysis
algorithms written directly in Rascal or by using existing
links [10] to formal systems, such as rewriting logic [11]–
[13], a logic of concurrency, and the K framework [14], [15], a
framework for the formal definition of programming languages
and programming language tools.

The rest of this paper is organized as follows. In Section II,
we describe how the ASTs provided by the Go language
are mapped to AST constructors and datatypes in Rascal.
Section III then discusses the actual AST extraction process
as part of an overview of the Go AiR framework. Following
this, Section IV focuses on how we have tested the AST
extraction process to ensure it is generating ASTs which can be
loaded into Rascal. After this, Section V presents an extended
example of using the framework to identify specific concurrency
features (in this case, channel creation) in Go source code,
comparing with results found in earlier work [16]. Section VI
then discusses earlier work related to the work presented in
this paper. Finally, Section VII concludes and discusses our
future goals for this framework. Both Go AiR [17] and the
AST extraction tool, go2rascal [18], are available on GitHub.

II. MAPPING GO TO RASCAL

Go includes standard libraries for parsing Go source code
and representing the resulting abstract syntax trees (ASTs).
These include the go/token library, which defines the lexical
tokens in the language (e.g., literals, keywords); the go/ast
library, which defines Go structures (structs) to represent AST
nodes; and the go/parser library, which includes functions
that parse Go code and return the matching ASTs.

When a Go source file is parsed, the parser returns a value
of type File. This is the top-level node in the generated
AST, and represents the contents of the entire file. Figure 1
shows a simple Hello, World program in Go. In this case, the
File value would include the package name (main) and two

package main
import ” fmt ”
func main () {

fmt . P r i n t l n (” Hel lo , World ! ”)
}

Fig. 1. Hello World, in Go.

declarations: an import declaration for the fmt package, and
a function declaration for the main function. AST values also
include position information, which allows each node to be
mapped back to the underlying construct in the source code.

As a simple example of mapping from Go to Rascal, the AST
structs for a unary expression, a selector expression (which
selects a field from a value), and an identifier expression are
shown in Figure 2. These are defined in the go/ast library
in file ast.go. In Go, the name of the structure comes before
struct (e.g., UnaryExpr), then the fields are listed between
the braces, with the field name (e.g., X) followed by the field
type (e.g., Expr). A UnaryExp includes the operand (X), the
operator being used (Op), and the location of this operator
in the source file (OpPos). A SelectorExp includes the
expression (X) that yields a value which should have a field
named Sel. Sel is of type *Ident (i.e., pointer to Ident).
Ident includes the identifier name (Name) as a string.

An example that uses these AST types is &opts.verbose,
which is a use of the address of operator & on a selector
expression, opts.verbose, meaning the expression should
return the address of the field verbose in value opts. opts
itself is an identifier expression, as is verbose. The Rascal
AST representation of this is:

unaryExpr(selectorExpr(ident("opts"),
"verbose"),and())

This uses the Expr (expression) datatype and the ident,
unaryExpr, and selectorExpr constructors, shown in
Figure 3. The ident constructor includes a field name of type
str (string), while both unaryExpr and selectorExpr

UnaryExpr s t r u c t {
OpPos t o k e n . Pos
Op t o k e n . Token
X Expr

}
S e l e c t o r E x p r s t r u c t {

X Expr
S e l * I d e n t

}
I d e n t s t r u c t {

NamePos t o k e n . Pos
Name s t r i n g
Obj * O b j e c t

}

Fig. 2. Structs for Unary and Selector Expressions and Identifiers, in Go.

d a t a Expr (l o c a t = | unknown : / / / |)
= i d e n t (s t r name)
| unaryExpr (Expr expr , Op o p e r a t o r)
| s e l e c t o r E x p r (Expr expr , s t r s e l e c t o r)
. . .

Fig. 3. AST Constructors for Unary and Selector Expressions, in Rascal.

have fields of type Expr to hold the operand and selector
target, respectively. unaryExpr includes a field operator
of type Op, which includes constructors for all the Go operators
(including and()), while selectorExpr also includes a
str field to hold the field name. Note that the Expr datatype
also defines a field named at, available on all values of this
type, that holds a source location pointing back to the location
of the construct in the original source file. Since these can be
quite long, we omit them here for conciseness.

Figure 4 shows a more complex example. In Go, a range
statement is used to iterate over an array, a slice (a data
structure similar to an array, but without a fixed length, and with
convenience functions for operations like append), a map, or a
channel (used to communicate between goroutines). The Key
and Value expressions indicate where to store the key and
value (for a map), the index and value (for an array or slice), or
just the value (for a channel) with each iteration, while X is the
expression that yields the value being iterated over and Body
is the body of the loop. Tok provides the assignment operator
used in the statement. The Rascal version of the AST node is
shown in Figure 5. Since both the key and value in the range
expression can be nil, each are represented using an option
type OptionExpr with two constructors, someExpr, when
an expression is present, and noExpr, when the expression
is nil. Also included are the assignment operator used in
the statement (field assignOp of type AssignOp), the
expression that yields the values being iterated over (field
rangeExpr), and the statement representing the body of the
loop (field body). Similarly to Expr, each Stmt also has a
field named at that contains a source location.

In total, the abstract syntax in Rascal currently contains 21
different data types and 128 constructors, including several
constructors used to help determine situations where there is
no mapping on the Rascal side for a Go AST. This is to help

RangeStmt s t r u c t {
For t o k e n . Pos
Key , Value Expr
TokPos t o k e n . Pos
Tok t o k e n . Token
Range t o k e n . Pos
X Expr
Body * BlockStmt

}

Fig. 4. Struct for a Range Statement, in Go.

d a t a Stmt (l o c a t = | unknown : / / / |)
= r a n g e S t m t (Opt ionExpr keyOpt ,

Opt ionExpr va lOpt , AssignOp ass ignOp ,
Expr rangeExpr , Stmt body)

Fig. 5. AST Constructor for Range Statement, in Rascal.

detect situations in the future where the Go language adds a
new language construct and the Rascal AST definition needs
to be extended, but has also been useful to help debugging
during the construction of the existing mapping. Although
the correctness of the mapping is currently being checked by
hand, we have started to explore testing techniques that would
provide a way to check this in an automated fashion.

III. EXTRACTING GO ASTS

An overview of Go AiR, focused on AST extraction, code
querying, and analysis, is shown in Figure 6. To start, a user
of Go AiR can load either a single Go file or a directory
containing a system made up of multiple files. In either case,
Go AiR invokes the Go Parser/AST Printer (go2rascal) on
each Go source file. go2rascal parses a Go source file and
returns a string containing the Rascal AST term for the source
file. The AST is structured based on the Rascal AST definition
for Go included in Go AiR. By default, source locations are
included with the AST nodes, linking the nodes back to the
associated constructs in the parsed Go file. If Go AiR loaded a
single Go file, the resulting type is File, which is the Rascal
equivalent of the File struct in the Go AST. If Go AiR instead
loaded a system, the resulting type is System, which is a
collection of multiple Files, indexed by each file’s location.

If multiple systems are being analyzed, Go AiR can also load
all the systems provided in a directory. Each system in parsed,
loaded, and serialized to disk for later analysis. Similarly, the
different tagged versions of a single system, based on Git tags,
can be individually loaded and serialized. These options allow
exploration across different systems, as well as exploration
across different versions of the same system. Serialization
allows the parsing cost to only be incurred once, since loading
the serialized ASTs is much faster.

Once loaded, Rascal code can be used to interactively explore
the ASTs or extract empirical information from Go programs.
A common use of this, based on our experience using similar
tools such as PHP AiR [19], it to iteratively narrow queries
to find specific uses of different features in the code—for
instance, to find function calls, then calls of specific functions,
then calls of specific functions with specific parameters. An
example of this is shown in Section V. This helps with the
other planned use, which is program analysis and verification.
The expectation is that program analysis tasks are scripted
for reproducibility, and to allow them to be used as part of
other analysis tasks or code explorations. Although we plan to
provide some core analyses (e.g., def/use information, control
flow graph construction), these are still work in progress. The
results of these program analysis tasks and explorations can

be printed to the console, saved to file, or used to generate
visualizations (e.g., by emitting a dot file for GraphViz).

IV. TESTING AST EXTRACTION

To test the process of mapping Go ASTs into Rascal, we
used a corpus of 854 Go systems, based on a corpus used in
earlier work on the use of channel-based concurrency constructs
in Go [16]. The systems chosen for the corpus were, at
the time (August 2018), the 900 most popular Go projects
on GitHub (measured by how many people had starred the
project), minus projects that the authors determined were not
human-made, and minus several projects which are no longer
available. Included are such well-known projects as Docker,
Kubernetes, Hugo, Terraform (all mentioned in Section I),
CockroachDB (a distributed SQL database), and ngrok (a
reverse proxy). We opted to use this corpus because of the
diversity of systems included and because it had been used
in earlier published research. We are using the version of
each system current as of October 20, 2022, which is when
the underlying repositories were cloned from GitHub. Overall,
the corpus includes 482,039 Go source files with a total of
126,175,477 non-blank, non-comment lines of Go source code,
as counted by cloc [20]. Since some of the projects include
library code in their repositories, some code files may be
duplicated between projects.

Each system in the corpus was parsed and loaded into Go
AiR, with the resulting System serialized to disk. We then
searched through all systems to identify any files that did
not parse, which are represented by an alternate errorFile
constructor for the File type. A total of 193 files in the corpus,
across 15 different systems, were not able to be parsed and
loaded into Rascal. After investigating, the following causes
were identified:

• In 2017-talks and zygomys, a number of files are missing
a starting package specification, and (in zygomys) some
files have code replaced with an ellipses (assumedly as a
placeholder), making them invalid;

• gotraining seems to include files meant to be used as
templates but that are not valid Go code;

• amazon-ecs-agent and dep includes files with only a
comment but with no code, which cannot be parsed as
Go program files;

• buffalo and gotests include completely empty files which
also cannot be parsed as Go program files;

• cockroach, ginkgo, gitkube, golang-go, gotests (also
above), pulumi, subnet, tools, and vgo include test files
that are supposed to cause parse errors.

In summary, all files that could not be loaded contain some
sort of either intentional or inadvertent parse error in the file.

V. AN EXTENDED EXAMPLE

To explore how channel-based concurrency features are used
in Go, you can script an analysis, using Rascal and Go AiR, to
first identify where, and how often, these features occur. The
Gocurrency tool [16] does this directly in Go, using visitors
over Go ASTs (similar to what we described in Section II).

Go System

Go System
ASTs (Rascal)

Go Parser/AST
Printer (Go)

Go AiR
(Rascal)

Interactive Querying/
Empirical Analysis

(Rascal)

Program Analysis
(Rascal)

Result
Reports
(LaTeX,
dot, etc)

Serialized Go
ASTs

Go File

Fig. 6. Overview: Go Analysis in Rascal (AiR).

Here, we show how to use Go AiR to script one part of that
analysis. Using Go AiR allows us to built such code queries
in an iterative, exploratory fashion while taking advantage
of Rascal features such as functions, relations, and advanced
pattern matching operations.

A channel in Go is used to allow goroutines—functions
that run in lightweight threads—to communicate. A channel is
created by calling the make function, passing in the type of
channel to create and an optional channel size. If a size is given,
this denotes the size of the send/receive buffer: channels can
send as long as the buffer is not full, and can receive as long as
the buffer is not empty, but otherwise must wait. If no size is
given, no buffer is present, making all calls synchronous. For
instance, make(chan bool, 10) would create a buffered
channel for sending and receiving values of type bool, with a
buffer size of 10, while make(chan error) would create
an unbuffered channel for sending and receiving error values.

Figure 7 shows several iterations of developing a query
to find make calls that create channels (make can also be
used to create other types of values, such as slices). In Step
1, we find all calls to make, regardless of the type of value
being created. To do this, we find/match (the := operator)
all occurrences of the callExpr node, which represents
function calls (/c:callExpr binds c to the result and
matches regardless of depth in the tree). The function name
is given as the literal identifier make. The second and third
parameters of callExpr are ignored using _. We return a
relation from the location of a call (c.at) to the call itself (just
c) (the angle brackets represent a tuple, while the | indicates
this is a comprehension, with results on the left based on the
values from the right, which finds each match in turn). In
this example, this search is done over the ASTs for Docker
Community Edition [21], one of the projects analyzed using
Gocurrency. This first query returns 9,564 potential calls.

Next, we want to narrow the results to only include channel
creation. To do this, we need to include a channel type as

part of the pattern. This is shown in Step 2. The channel type
is given as an argument to the call to make, so we provide
this as the first parameter in the list of parameters for the call
expression. chanType(_,_) matches any channel type: the
first parameter is the type of value transmitted over the channel,
while the second is the direction (send, receive, or bidirectional).
_* then matches 0 or more additional list parameters. The
query now returns 1,139 channel creation calls. If we replace
_* with Expr e, this requires a second parameter for the
make call, which would be the capacity. This gives us 441
calls. If we instead remove _* completely (i.e., capacity is not
included), we instead get 698 calls.

Finally, we can create a function with the proper logic that
returns the information we need: the location of the calls to
make that create channels, plus the type of channel and the
capacity, if given. The code for this is shown in Step 3. We
create a new data type, Capacity, that lets us represent
two options: either the capacity is given as an expression
(capacityProvided), in which case we want to record the
expression used to indicate the capacity, or no capacity is given
(capacityNotProvided). We then define a relation over
triples: the call location, the channel type, and the capacity.
We give this relation type the name ChannelMakes using
alias, then use this as the return type of the function we
declare. The function accepts a System, then identifies both
calls in this System where a capacity is provided and calls
where no capacity is provided. The function returns the union
of both results. Given docker, this again returns the 1,139
results we saw above.

To compare directly with the results computed by Gocur-
rency, we can remove any results included in test, tests, or
vendor folders, which include test code (test and tests)
and library code (vendors). Doing this, we get a total of
482 channel creation calls. Gocurrency instead computes 424
total calls. This discrepancy seems to be caused by Gocurrency
missing channel creation calls that occur nested inside object

/ / S t ep 1 : F ind c a l l s t o make
c a l l s = { < c . a t , c > | / c : c a l l E x p r (i d e n t (” make ”) , ,) := d oc ke r } ;

/ / S t ep 2 : F ind c a l l s t o make a c h a n n e l
c a l l s = { < c . a t , c > | / c : c a l l E x p r (i d e n t (” make ”) ,

[chanType (,) , *] ,) := d oc ke r } ;

/ / S t ep 3 : A f u n c t i o n t o f i n d a l l c h a n n e l d e c l a r a t i o n s
p u b l i c d a t a C a p a c i t y = c a p a c i t y N o t P r o v i d e d () | c a p a c i t y P r o v i d e d (Expr e) ;
a l i a s ChannelMakes = r e l [l o c c a l l L o c a t i o n , Expr channelType , C a p a c i t y cap] ;
p u b l i c ChannelMakes f indChanne lMakes (System p t) {

c a l l s W i t h C a p a c i t y = { < c . a t , c t , c a p a c i t y P r o v i d e d (cap) >
| / c : c a l l E x p r (i d e n t (” make ”) , [c t : chanType (,) , Expr cap] ,) := p t } ;

c a l l s W i t h o u t C a p a c i t y = { < c . a t , c t , c a p a c i t y N o t P r o v i d e d () >
| / c : c a l l E x p r (i d e n t (” make ”) , [c t : chanType (,)] ,) := p t } ;

r e t u r n c a l l s W i t h C a p a c i t y + c a l l s W i t h o u t C a p a c i t y ;
}

Fig. 7. Finding Channel Creation Calls, in Rascal.

creation expressions, where the new channels are assigned to
fields of the object being created.

VI. RELATED WORK

As Go has become more widely used, it has attracted
attention from the research community. Most of this work has
focused on techniques for analyzing and verifying properties
of Go programs. Lange et al [22] presented a framework
for verification of Go programs making use of message-
passing concurrency with channels. This framework models
the communication between goroutines as behavioral types,
which are then analyzed by the framework. An extension of this
work [23] covered a larger part of the Go language, providing
more precise results for a larger range of programs. Chajed et
al. [24] described Perennial, a system for verifying concurrent
programs. Perennial extends Iris [25], a concurrent separation
logic formalized in the Coq proof assistant. A subset of Go,
dubbed Goose, is supported by Perennial, but, while this subset
does include support for goroutines, it does not include support
for channels or for the concurrency features found in the sync
package. Gabet and Yoshida [26] also used behavioral types,
in this case to analyze a mixture of both message-passing and
shared-memory concurrency features. Wolf et al. [27] described
Gobra, a verification tool based on separation logic [28] that
allows users to add program annotations, such as pre- and post-
conditions, and that can then verify properties such as memory
safety for a significant subset of Go, including for programs
that use concurrency and the heap. Gobra transforms annotated
programs into an existing intermediate language, Viper [29],
which can then be verified using existing verification tools.

Liu et al. [30] used a constraint solver to detect blocking bugs,
and then proposed patches that can be used to fix these bugs.
Dilley and Lange [31] used Promela to model the concurrency
features of a subset of Go named MiniGo, then used the Spin
model checker to detect concurrency errors. An extension of
this, also by Dilley and Lange [32], used bounded model
checking to verify behavioral types that model concurrency

features in Go, including traditional features such as mutexes.
Other work includes that of Stadtmüller et al. [33] on modeling
Go concurrency using an extended regular expression notation
and automata; the work of Ng and Yoshida [34], which models
concurrency in Go using session types; the work of Midtgaard
et al. [35], which focuses on analyzing Go programs where
goroutines communicate using synchronous message passing;
and the work of Zhang et al. [36], which provides a static
analysis to detect errors in both channel and WaitGroup
usage. Sulzmann and Stadtmüller [37], [38] instrumented code
to generate a runtime trace that is analyzed to detect potential
bugs in the use of message-passing concurrency. Dilley and
Lange [16] explored the use of message-passing concurrency
features in Go, such as channel creation, the sending and
receiving of messages, and the use of the select construct,
which includes different cases for the different concurrent
operations that could occur, and which chooses a specific case
non-deterministically when multiple cases could execute.

The goal of Go AiR is to provide what we hope is a more
open and extensible foundation for the analysis of Go programs.
This could include the creation of analyses directly in Rascal,
similar to PHP AiR [19] (for PHP), Clair [39] (for C), Ada
AiR [40] (for Ada), and Lua AiR [41] (for Lua), but could
also use Rascal to bridge to different analysis and verification
tools. This is discussed more in Section VII.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced Go AiR, a new analysis
framework for Go written using the Rascal meta-programming
language. Although still in early stages, we believe it is possible
to already use Go AiR as a basis for code exploration and
analysis. We have tested the process of mapping Go ASTs
into Rascal on approximately 125 million lines of Go source
code across 854 popular projects from GitHub, and provide
functionality to easily work with multiple Go projects as well
as multiple tagged versions of the same project, based on Git
commit history. Support for representing errors in translating

ASTs from Go to Rascal, built directly into Go AiR, should
make it easier to find and fix incompatibilities caused by
evolution of Go and the Go AST libraries.

Going forward, we plan to continue adding new features to
Go AiR. This includes the creation of core analyses, including
control flow graph construction, that are needed by other
analyses. Beyond this, the main focus will be on concurrency
analysis, both because of Go’s novel concurrency features and
because Go is often used for developing concurrent, networked
software systems. As part of this work, we are developing
a formal definition of a core version of Go, with channel-
based concurrency, in Maude [42], which will allow us to take
advantage of existing support (including model checking and
state space exploration) for analyzing and verifying concurrent
systems using rewriting logic. This will incorporate earlier
developed support for working with Maude definitions from
Rascal [10], which includes the ability to extend language
definitions with Rascal source location information, allowing
results from Maude to be linked back to the original Go source
code. This core will be built to focus first on the most-used
aspects of concurrency in Go. Longer-term, this will be used
as part of modeling the behaviors of, and interactions between,
IoT and cloud-based systems written using Go.

REFERENCES

[1] TIOBE, “TIOBE Index.” [Online]. Available: https://www.tiobe.com/
tiobe-index/

[2] RedMonk, “The RedMonk Programming Language Rankings: January
2023.” [Online]. Available: https://redmonk.com/sogrady/2023/05/16/
language-rankings-1-23/

[3] GitHub, “The state of open source software,” 2022. [Online]. Available:
https://octoverse.github.com/2022/top-programming-languages

[4] C. A. R. Hoare, “Communicating Sequential Processes,” Commun. ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[5] R. Milner, Communication and Concurrency, ser. PHI Series in Computer
Science. Prentice Hall, 1989.

[6] R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile Processes,
I,” Inf. Comput., vol. 100, no. 1, pp. 1–40, 1992.

[7] ——, “A Calculus of Mobile Processes, II,” Inf. Comput., vol. 100, no. 1,
pp. 41–77, 1992.

[8] P. Klint, T. van der Storm, and J. Vinju, “EASY Meta-programming with
Rascal,” in Post-Proceedings of GTTSE’09, ser. LNCS. Springer, 2011,
vol. 6491, pp. 222–289.

[9] P. Klint, T. van der Storm, and J. J. Vinju, “RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation,” in Proceedings
of SCAM 2009. IEEE, 2009, pp. 168–177.

[10] M. Hills, P. Klint, and J. J. Vinju, “RLSRunner: Linking Rascal with K
for Program Analysis,” in Proceedings of SLE’11, ser. LNCS, vol. 6940.
Springer, 2011, pp. 344–353.

[11] J. Meseguer, “Conditional rewriting logic as a unified model of con-
currency,” Theoretical Computer Science, vol. 96, no. 1, pp. 73–155,
1992.

[12] J. Meseguer and G. Roşu, “The rewriting logic semantics project,”
Theoretical Computer Science, vol. 373, no. 3, pp. 213–237, 2007.

[13] J. Meseguer and G. Rosu, “The rewriting logic semantics project: A
progress report,” Inf. Comput., vol. 231, pp. 38–69, 2013.

[14] M. Hills, T. F. Şerbănuţă, and G. Roşu, “A Rewrite Framework for
Language Definitions and for Generation of Efficient Interpreters,” in
Proceedings of WRLA’06, ser. ENTCS, vol. 176, no. 4. Elsevier, 2007,
pp. 215–231.

[15] G. Rosu and T. Serbanuta, “An overview of the K semantic framework,”
J. Log. Algebraic Methods Program., vol. 79, no. 6, pp. 397–434, 2010.
[Online]. Available: https://doi.org/10.1016/j.jlap.2010.03.012

[16] N. Dilley and J. Lange, “An Empirical Study of Messaging Passing
Concurrency in Go Projects,” in Proceedings of SANER 2019, 2019, pp.
377–387.

[17] “Go AiR (Analysis in Rascal).” [Online]. Available: https://github.com/
PLSE-Lab/go-analysis

[18] “Go2Rascal.” [Online]. Available: https://github.com/PLSE-Lab/go2rascal
[19] M. Hills, P. Klint, and J. J. Vinu, “Enabling PHP Software Engineering

Research in Rascal,” Science of Computer Programming, vol. 134, pp.
37–46, 2017.

[20] “Count Lines of Code Tool.” [Online]. Available: https://github.com/
AlDanial/cloc

[21] “Docker Community Edition.” [Online]. Available: https://github.com/
docker/docker-ce/tree/44a430f4c43e61c95d4e9e9fd6a0573fa113a119

[22] J. Lange, N. Ng, B. Toninho, and N. Yoshida, “Fencing off Go: Liveness
and Safety for Channel-Based Programming,” in Proceedings of POPL
2017. ACM, 2017, p. 748–761.

[23] ——, “A Static Verification Framework for Message Passing in Go
Using Behavioural Types,” in Proceedings of ICSE 2018. ACM, 2018,
p. 1137–1148.

[24] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zeldovich, “Verifying
Concurrent, Crash-Safe Systems with Perennial,” in Proceedings of SOSP
2019. ACM, 2019, p. 243–258.

[25] R. Krebbers, R. Jung, A. Bizjak, J.-H. Jourdan, D. Dreyer, and
L. Birkedal, “The Essence of Higher-Order Concurrent Separation Logic,”
in Proceedings of ESOP 2017. Springer, 2017, pp. 696–723.

[26] J. Gabet and N. Yoshida, “Static Race Detection and Mutex Safety and
Liveness for Go Programs,” in Proceedings of ECOOP 2020, ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 166. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 4:1–4:30.

[27] F. A. Wolf, L. Arquint, M. Clochard, W. Oortwijn, J. C. Pereira,
and P. Müller, “Gobra: Modular Specification and Verification of Go
Programs,” in Proceedings of CAV 2021. Springer International
Publishing, 2021, pp. 367–379.

[28] J. Reynolds, “Separation Logic: A Logic for Shared Mutable Data
Structures,” in Proceedings of LICS 2002, 2002, pp. 55–74.

[29] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A Verification
Infrastructure for Permission-Based Reasoning,” in Proceedings of
VMCAI 2016. Springer Berlin Heidelberg, 2016, pp. 41–62.

[30] Z. Liu, S. Zhu, B. Qin, H. Chen, and L. Song, “Automatically Detecting
and Fixing Concurrency Bugs in Go Software Systems,” in Proceedings
of ASPLOS 2021. ACM, 2021, p. 616–629.

[31] N. Dilley and J. Lange, “Bounded verification of message-passing
concurrency in Go using Promela and Spin,” Electronic Proceedings in
Theoretical Computer Science, vol. 314, pp. 34–45, apr 2020.

[32] ——, “Automated Verification of Go Programs via Bounded Model
Checking,” in Proceedings of ASE 2021, 2021, pp. 1016–1027.

[33] K. Stadtmüller, M. Sulzmann, and P. Thiemann, “Static Trace-Based
Deadlock Analysis for Synchronous Mini-Go,” in Proceedings of ASPLOS
2016. Springer International Publishing, 2016, pp. 116–136.

[34] N. Ng and N. Yoshida, “Static Deadlock Detection for Concurrent Go by
Global Session Graph Synthesis,” in Proceedings of CC 2016. ACM,
2016, p. 174–184.

[35] J. Midtgaard, F. Nielson, and H. R. Nielson, “Process-Local Static
Analysis of Synchronous Processes,” in Proceedings of SAS 2018.
Springer International Publishing, 2018, pp. 284–305.

[36] D. Zhang, P. Qi, and Y. Zhang, “GoDetector: Detecting Concurrent Bug
in Go,” IEEE Access, vol. 9, pp. 136 302–136 312, 2021.

[37] M. Sulzmann and K. Stadtmüller, “Trace-Based Run-Time Analysis of
Message-Passing Go Programs,” in Proceedings of HVC 2017. Springer
International Publishing, 2017, pp. 83–98.

[38] M. Sulzmann and K. Stadtmüller, “Two-Phase Dynamic Analysis of
Message-Passing Go Programs Based on Vector Clocks,” in Proceedings
of PPDP 2018. ACM, 2018.

[39] M. T. W. Schuts, R. T. A. Aarssen, P. M. Tielemans, and J. J. Vinju,
“Large-scale semi-automated migration of legacy C/C++ test code,” Softw.
Pract. Exp., vol. 52, no. 7, pp. 1543–1580, 2022.

[40] “Ada AiR (Analysis in Rascal).” [Online]. Available: https://github.com/
cwi-swat/ada-air

[41] P. Klint, L. Roosendaal, and R. van Rozen, “Game Developers Need Lua
AiR - Static Analysis of Lua Using Interface Models,” in Proceedings of
the 11th International Conference on Entertainment Computing (ICEC
2012), ser. LNCS, vol. 7522. Springer, 2012, pp. 530–535.

[42] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. L. Talcott, Eds., All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, ser. LNCS, vol. 4350. Springer, 2007.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23/
https://redmonk.com/sogrady/2023/05/16/language-rankings-1-23/
https://octoverse.github.com/2022/top-programming-languages
https://doi.org/10.1016/j.jlap.2010.03.012
https://github.com/PLSE-Lab/go-analysis
https://github.com/PLSE-Lab/go-analysis
https://github.com/PLSE-Lab/go2rascal
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://github.com/docker/docker-ce/tree/44a430f4c43e61c95d4e9e9fd6a0573fa113a119
https://github.com/docker/docker-ce/tree/44a430f4c43e61c95d4e9e9fd6a0573fa113a119
https://github.com/cwi-swat/ada-air
https://github.com/cwi-swat/ada-air

	Introduction
	Mapping Go to Rascal
	Extracting Go ASTs
	Testing AST Extraction
	An Extended Example
	Related Work
	Conclusions and Future Work
	References

