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Abstract
Deep data types are those that are constructed from other
data types, including, possibly, themselves. In this case, they
are said to be truly nested. Deep induction is an extension
of structural induction that traverses all of the structure in a
deep data type, propagating predicates on its primitive data
throughout the entire structure. Deep induction can be used
to prove properties of nested types, including truly nested
types, that cannot be proved via structural induction. In this
paper we show how to extend deep induction to GADTs that
are not truly nested GADTs. This opens the way to incor-
porating automatic generation of (deep) induction rules for
them into proof assistants. We also show that the techniques
developed in this paper do not suffice for extending deep
induction to truly nested GADTs, so more sophisticated tech-
niques are needed to derive deep induction rules for them.
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1 Introduction
Induction is one of the most important techniques available
for working with advanced data types, so it is both inevitable
and unsurprising that it plays an essential role in modern
proof assistants. In the proof assistant Coq [24], for example,

∗New address: Istituto Italiano di Tecnologia, Italy, enrico.ghiorzi@iit.it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’22, January 17–18, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9182-5/22/01. . . $15.00
https://doi.org/10.1145/3497775.3503680

functions and predicates over advanced types are defined in-
ductively, and almost all non-trivial proofs of their properties
are either proved by induction outright or rely on lemmas
that are. Every time a new inductive type is declared in Coq
an induction rule is automatically generated for it.

The inductive data types handled by Coq include (possibly
mutually inductive) polynomial algebraic data types (ADTs),
and the induction rules Coq generates for them are the ex-
pected ones for standard structural induction. However, as
discussed in [13], it has long been understood that these
rules are too weak to be genuinely useful for deep ADTs.1
The following data type of rose trees, here coded in Agda
and defined in terms of the standard type List of lists (see
Section 2), is a deep ADT:

data Rose : Set → Setwhere
empty : ∀{A : Set} → Rose A
node : ∀{A : Set} → A → List (Rose A) → Rose A

The induction rule Coq automatically generates for (the anal-
ogous Coq definition of) rose trees is

∀ (A : Set) (P : Rose A → Set) →
P empty →

(∀ (a : A) (ts : List (Rose A)) → P (node a ts)) →
∀ (x : Rose A) → P x

Unfortunately, this is neither the induction rule we intu-
itively expect, nor is it expressive enough to prove even
basic properties of rose trees that ought to be amenable to
inductive proof. What is needed here is an enhanced notion
of induction that, when specialized to rose trees, will prop-
agate the predicate P through the outer list structure and
to the rose trees sitting inside node’s list argument. More
generally, this enhanced notion of induction should traverse
all of the layers present in a data structure, propagating suit-
able predicates to all of the data it contains. With data types
becoming ever more advanced, and with deeply structured
types becoming increasingly ubiquitous in formalizations,
such an enhanced notion of induction is essential if proof
assistants are to be able to automatically generate genuinely
useful induction rules for data types that go beyond tradi-
tional ADTs. These include not just deep ADTs, but also
(truly2) nested types [3], generalized algebraic data types

1An ADT/nested type/GADT is deep if it is (possibly mutually inductively)
defined in terms of other ADTs/nested types/GADTs (including, possibly,
itself).
2A truly nested type is a nested type that is defined over itself. The data
type Bush in Section 2 provides a concrete example.
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(GADTs) [4, 14, 22, 27], more richly indexed families [5], and
deep variants of all of these. A summary of the various classes
of data types considered in this paper is given in Table 1.

Table 1. Data types in this paper

Data types Discussed Examples
in Sections

ADTs 1 List, Rose
Nested types 2 PTree
Truly nested types 2 Bush
GADTs 3 Eq, Seq
Truly nested GADTs 3 and 6 G in (12)

Deep induction [13] is a generalization of structural induc-
tion that fits this bill exactly. Whereas structural induction
rules induct over only the top-level structure of data, leaving
any data internal to the top-level structure untouched, deep
induction rules induct over all of the structured data present.
The key idea is to parameterize induction rules not just over
a predicate over the top-level data type being considered,
but also over additional custom predicates on the types of
primitive data they contain. These custom predicates are
then lifted to predicates on any internal structures contain-
ing these data, and the resulting predicates on these internal
structures are lifted to predicates on any internal structures
containing structures at the previous level, and so on, until
the internal structures at all levels of the data type definition,
including the top level, have been so processed. Satisfaction
of a predicate by the data at one level of a structure is then
conditioned upon satisfaction of the appropriate predicates
by all of the data at the preceding level.
Deep induction was shown in [13] to deliver induction

rules appropriate to nested types, including ADTs. For the
(deep) ADT of rose trees, for example, it gives the following
genuinely useful induction rule:

∀ (A : Set) (P : Rose A → Set) (Q : A → Set) →
P empty →

(∀ (a : A) (ts : List (Rose A)) → Q a →

List∧ (Rose A)P ts → P (node a ts)) →
∀ (x : Rose A) → Rose∧ AQ x → P x

(1)

Here, List∧ (resp., Rose∧) lifts its predicate argument P (resp.,
Q) on data of type Rose A (resp., A) to a predicate on data of
type List (Rose A) (resp., Rose A) asserting that P (resp., Q)
holds for every element of its list (resp., rose tree) argument.3
Deep induction was also shown in [13] to deliver the first-
ever induction rules — structural or otherwise — for the Bush
3Predicate liftings such as List∧ and Rose∧ can either be supplied as primi-
tives or generated automatically from their associated data type definitions
as described in Section 2. The predicate lifting for a container type like
List A or Rose A simply traverses containers of that type and applies its
predicate argument pointwise to the constituent data of type A. The ability
to define predicate liftings for more general data types will be critical to
deriving their deep induction rules in Section 5.

data type [3] and other truly nested types. Deep induction
for ADTs and (truly) nested types is reviewed in Section 2.

This paper shows how to extend deep induction to proper
GADTs, i.e., GADTs that are not nested types (and thus
are not ADTs). Typical applications of such GADTs include
generic programming, modeling programming languages via
higher-order abstract syntax, maintaining invariants in data
structures, and expressing constraints in embedded domain-
specific languages. They have also been used to implement
tagless interpreters [14, 18, 19] by trading the definition of
a universal value domain for a direct specification of the
property of being a value. Other applications are described
in, e.g., [17, 20]. A constructor for a GADT G may, like a
constructor for a nested type, take as arguments data whose
types involve instances of G other than the one being de-
fined. These can even include instances involving G itself.
But if G is a proper GADT, then at least one of its construc-
tors will also have a structured instance of G — albeit one
not involving G itself — as its codomain. For example, the
constructor pair for the GADT

data Seq : Set → Setwhere
const : ∀{A : Set} → A → SeqA
pair : ∀{AB : Set} → SeqA → SeqB → Seq (A × B)

(2)
of sequences4 only constructs sequences of data whose types
are pair-structured, rather than sequences of arbitrary type,
as does const. If one or more of the data constructors for a
GADT G return structured instances of G, then the GADT
will have two distinct, but equally natural, semantics: a func-
torial semantics interpreting it as a left Kan extension [15],
and a parametric semantics interpreting it as the interpre-
tation of its Church encoding [1, 26]. As detailed in [10],
a key difference in the two semantics is that the former
views GADTs as their functorial completions [12], and thus
as containing more data than just those expressible in syn-
tax. By contrast, the latter views them as what might be
called syntax-only GADTs. Fortunately, these two views of
GADTs coincide for those GADTs that are ADTs or (other,
including truly) nested types. However, both they and their
attendant properties differ greatly for proper GADTs. In fact,
the functorial and parametric semantics for proper GADTs
are sufficiently disparate that, by contrast with the seman-
tics customarily given for ADTs and nested types [2, 7, 11],
it is not at all clear how to define a functorial parametric
semantics for GADTs [10].
This observation seems, at first, to be a death knell for

the prospect of extending deep induction to GADTs. Indeed,
induction can be seen as unary parametricity, so GADTs
viewed as their functorial completions do not obviously sup-
port induction rules. This makes sense intuitively: induction
is a syntactic proof technique, so it may not be possible to
4The type of Seq is actually Set → Set1, but to aid readability we elide the
explicit tracking of Agda universe levels in this paper.

325



(Deep) Induction Rules for GADTs CPP ’22, January 17–18, 2022, Philadelphia, PA, USA

use it to prove properties of those elements of a GADT’s
functorial completion that are not expressible in syntax. All
is not lost, however. As we show below, the syntax-only
view of GADTs determined by their Church encodings does
support induction rules — including deep induction rules
— for GADTs. Indeed, this paper gives the first-ever deep
induction rules for proper GADTs. But it actually delivers far
more: it gives a general framework for deriving deep induc-
tion rules for GADTs that can be instantiated to particular
GADTs of interest. This framework can serve as a basis for
extending modern proof assistants’ automatic generation of
structural induction rules for ADTs to automatic generation
of deep induction rules for GADTs. In addition, as for ADTs
and nested types, the structural induction rule for any GADT
can be recovered from its deep induction rule by taking the
custom predicates in its deep induction rule to be constantly
True-valued (i.e., constantly ⊤-valued) predicates.

Significantly, deep induction rules for GADTs cannot be
derived by somehow extending the approach of [13] to syntax-
only GADTs. Indeed, the approach taken there makes cru-
cial use of the functoriality of data types’ interpretations
from [12], and functoriality is precisely what interpreting
GADTs as the interpretations of their Church encodings fails
to deliver; see [9] for a discussion of why Seq, e.g., is not
functorial. Our approach is to instead first give a predicate
lifting styled after those of [13], together with a (deep) induc-
tion rule, for the simplest — and arguably most important
— GADT, namely the equality GADT (4). We then derive the
deep induction rule for a more complex GADT G by i) using
the equality GADT to represent G as its so-called Henry Ford
encoding [4, 8, 16, 21, 22], and ii) using the predicate liftings
for the equality GADT and the other GADTs appearing in
the definition of G to appropriately thread the custom pred-
icates for the primitive types appearing in G throughout
G’s structure. This two-step process delivers deep induction
rules for a very general class of GADTs. To illustrate, we
introduce a series of increasingly complex GADTs as run-
ning examples in Section 3 and derive a deep induction rule
for each of them in Section 4. In particular, we derive the
deep induction rules for the equality data type in Section 4.1
and the Seq data type in (2) in Section 4.2. We present our
general framework for deriving (deep) induction rules for
GADTs in Section 5, and observe that the derivations in Sec-
tion 4 are all instances of it. In Section 6 we show that, by
contrast with truly nested types, which do have a functorial
semantics, syntax-only GADTs’ lack of functoriality means
that it is not clear how to extend induction — deep or other-
wise — to truly nested GADTs, i.e., to proper GADTs whose
recursive occurrences appear below themselves.5 This does

5Note carefully the distinction between a GADT that is not a nested type —
i.e., a proper GADT — and a proper GADT that is not a truly nested GADT.
In fact, truly nested types are not proper GADTs and truly nested GADTs
are not (truly) nested types. There is ample scope for confusion in light
of the original, and now well-established, use of the term “nested type” to

not appear to be much of a restriction, however, since truly
nested GADTs do not, to our knowledge, appear in practice
or in the literature. Section 7 comprises a case study in using
deep induction. All of the deep induction rules appearing in
this paper have been derived by instantiating our general
framework. Our Agda implementation of them is available
at https://cs.appstate.edu/~johannp/CPP22Code.html.
Additional Related Work Various techniques for deriv-

ing induction rules for data types that go beyond ADTs have
been studied. For example, Fu and Selinger [6] show, via
examples, how to derive induction rules for arbitrary nested
types. Unfortunately, however, their technique is rather ad
hoc, so is unclear how to generalize it to nested types other
than the specific ones studied there. Moreover, [6] actually
derives induction rules for data types related to the origi-
nal nested types rather than for the original nested types
themselves, and it is unclear whether or not the derived
rules are sufficiently expressive to prove all results about
the original nested types that we would expect to be prov-
able by induction. This latter point echoes the issue with
Coq-derived induction rule for rose trees raised in Section 1,
which has the unfortunate effect of forcing users to manually
write induction (and other) rules for such types for use in
that system. Tassi [23] derives induction rules for data type
definitions in Coq using unary parametricity. His technique
seems to be essentially equivalent to that of [12] for nested
types, although he does not permit true nesting. More re-
cently, Ullrich [25] has implemented a plugin in MetaCoq to
generate induction rules for nested types. This plugin is also
based on unary parametricity, and true nesting still is not
permitted. As far as we know no attempts have been made
to extend either implementation to truly nested types or to
proper GADTs or their deep variants. Other systems, includ-
ing Isabelle and Lean, also derive induction rules for data
types that go beyond ADTs. But we know of no work other
than that reported here that specifically addresses induction
rules for the (deep) GADTs considered in this paper.

2 Deep Induction for ADTs and Nested
Types

A structural induction rule for a data type allows us to prove
that if a predicate holds for every element inductively pro-
duced by the data type’s constructors then it holds for every
element of the data type. In this paper, we are interested in in-
duction rules for proof-relevant predicates. A proof-relevant
predicate on A : Set is a function P : A → Setmapping each
a : A to the set of proofs that P a holds. For example, the

refer to any type that allows non-variable instances in the domains of its
constructors, whether or not that type involves actual nesting [3].
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structural induction rule for the list type
data List : Set → Set where
nil : ∀{A : Set} → List A
cons : ∀{A : Set} → A → List A → List A

is
∀(A : Set)(P : List A → Set) →

P nil →(∀(a : A)(as : List A) → P as → P (cons a as)
)
→

∀(as : List A) → P as

As in Coq’s induction rule for rose trees, the data inside
a structure of type List is treated monolithically (i.e., is ig-
nored) by this structural induction rule. By contrast, the deep
induction rule for lists is parameterized over a custom predi-
cate Q on A. For List∧ as described in the introduction the
deep induction rule for lists is
∀(A : Set)(P : List A → Set)(Q : A → Set) →

P nil →(∀(a : A)(as : List A) → Q a → P as → P (cons a as)
)
→

∀(as : List A) → List∧ AQ as → P as

Structural induction can be extended to nested types, such
as the following type of perfect trees [3]:

data PTree : Set → Set where
pleaf : ∀{A : Set} → A → PTree A
pnode : ∀{A : Set} → PTree (A × A) → PTree A

Perfect trees can be thought of as lists constrained to have
lengths that are powers of 2. In the above code, the construc-
tor pnode uses data of type PTree (A × A) to construct data
of type PTree A. Thus, it is clear that the instances of PTree
at various indices cannot be defined independently, and that
the entire inductive family of types must therefore be de-
fined at once. This intertwinedness of the instances of nested
types is reflected in their structural induction rules, which,
as explained in [13], must necessarily involve polymorphic
predicates rather than the monomorphic predicates appear-
ing in structural induction rules for ADTs. The structural
induction rule for perfect trees, for example, is

∀(P : ∀(A : Set) → PTree A → Set) →(∀(A : Set)(a : A) → PA (pleaf a)
)
→(∀(A : Set)(pp : PTree (A × A)) →

P (A × A) pp → PA (pnode pp)
)
→

∀(A : Set)(p : PTree A) → PAp

The deep induction rule for perfect trees similarly uses
polymorphic predicates but otherwise follows the famil-
iar pattern. It is given by the first expression in Figure 1.
There, Pair∧ : ∀(A B : Set) → (A → Set) → (B → Set) →

A × B → Set lifts predicates QA on data of type A and QB on
data of type B to a predicate on pairs of type A × B in such
a way that Pair∧ ABQA QB (a, b) = QA a ×QB b. Similarly,
PTree∧ : ∀(A : Set) → (A → Set) → PTree A → Set lifts a
predicate Q on data of type A to a predicate on data of type
PTree A asserting that Q holds for every element of type A

contained in its perfect tree argument. A general definition
of liftings for a robust class of GADTs including all those
appearing in the literature is given in Section 5.

Using deep induction we can extend structural induction
to truly nested types, i.e., to nested types whose recursive
occurrences appear below themselves. The quintessential
example of such a type is that of bushes6[3]:

data Bush : Set → Set where
bnil : ∀{A : Set} → BushA
bcons : ∀{A : Set} → A → Bush (BushA) → BushA

Even defining a structural induction rule for bushes requires
that we be able to lift the rule’s polymorphic predicate argu-
ment toBush itself. This observation was, in fact, the original
motivation for the development of deep induction in [13].
The deep induction rule for bushes is given by the second
expression in Figure 1, where

Bush∧ : ∀(A : Set) → (A → Set) → BushA → Set

is the following lifting of a predicate Q on data of type A to
a predicate on data of type BushA asserting that Q holds for
every element of type A contained in its argument bush:

Bush∧ AQ bnil = ⊤

Bush∧ AQ (bcons a bb) =
Q a × Bush∧ (BushA) (Bush∧ AQ) bb

(3)

We note that, as for ADTs, the structural induction rule
for any (truly) nested type can be obtained as the special
case of its deep induction rule in which the custom predi-
cates are taken to be constantly ⊤-valued predicates. This
instantiation ensures that the resulting induction rule only
inspects the top-level structure of its argument, rather than
the contents of that structure, which is exactly what struc-
tural induction should do.
Under some circumstances deep induction can be mim-

icked by hand-threading applications of structural induc-
tion through the layers of data comprising a deep data type.
But this is not the case if, e.g., one or more of the custom
predicates in the data type’s deep induction rule is not the
characteristic function of an inductive data type.

3 (Deep) GADTs
While a data constructor for a nested type can take as ar-
guments data whose types involve instances of that type
at indices other than the one being defined, its return type
must still be at the (variable) type instance being defined.
For example, each of pleaf and pnode returns an element of
type PTree A regardless of the instances of PTree appearing
6To define truly nested types in Agda we must use the
NO_POSITIVITY_CHECK flag, and to define functions over them
we must use the TERMINATING flag. (Similar flags are required in Coq.)
Although as programmers we know from the metatheory in [12] that Bush
is well-defined and the functions we define over them terminate, the flags
are necessary because Agda fails to infer these facts. Analogous comments
apply at several places below.
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∀(P : ∀(A : Set) → (A → Set) → PTree A → Set) →
(∀(A : Set)(Q : A → Set)(a : A) → Q a → PAQ (pleaf a)

)
→(∀(A : Set)(Q : A → Set)(pp : PTree (A × A)) → P (A × A) (Pair∧ AAQ Q) pp → PAQ (pnode pp)

)
→

∀(A : Set)(Q : A → Set)(p : PTree A) → PTree∧ AQ p → PAQ p

∀(P : ∀(A : Set) → (A → Set) → BushA → Set) →
(∀(A : Set) (Q : A → Set) → PAQ bnil

)
→(∀(A : Set)(Q : A → Set)(a : A)(bb : Bush (BushA)) → Q a → P (BushA) (PAQ) bb → PAQ (bcons a bb)

)
→

∀(A : Set)(Q : A → Set)(b : BushA) → Bush∧ AQ b → PAQ b

Figure 1. Deep induction rules for perfect trees and bushes

in the types of its arguments. GADTs relax this restriction,
allowing their data constructors both to take as arguments
and return as results data whose types involve instances other
than the one being defined. That is, GADTs’ constructors’
return type instances can, like that of pair in (2), be struc-
tured. For every GADT in this paper, we require that the
instance of the return type for each of its data constructors
is a polynomial in that constructor’s type arguments.
GADTs are used in precisely those situations in which

different behaviors at different instances of data types are
desired. This is achieved by allowing the programmer to
give the type signatures of the GADT’s data constructors
independently, and then using pattern matching to force the
desired type refinement. For example, the equality GADT

data Equal : Set → Set → Set where
refl : ∀{A : Set} → Equal AA

(4)

is parameterized by two type indices, but it is only possible
to construct data elements of type Equal AB if A and B are
instantiated at the same type. If the types A and B are syntac-
tically identical then the type Equal AB contains the single
data element refl. It contains no data elements otherwise.

The importance of the equality GADT lies in the fact that
we can understand other GADTs in terms of it. For example,
the GADT Seq from (2) comprises constant sequences of
data of any type A and sequences obtained by pairing the
data in two already existing sequences. This GADT can be
rewritten as its Henry Ford encoding [4, 8, 16, 21, 22], which
makes critical use of the equality GADT, as follows:

data Seq : Set → Set where
const : ∀{A : Set} → A → SeqA
pair : ∀{A : Set} → ∀(BC : Set) → Equal A (B × C) →

SeqB → SeqC → SeqA
(5)

Here, the requirement that pair produce data at an instance
of Seq that is a product type is replaced with the requirement
that pair produce data at an instance of Seq that is equal to
a product type. As we will see in Section 4, this encoding in
terms of the equality GADT is key to deriving deep induction
rules for GADTs.

Although Seq does not at first glance appear to be a deep
GADT, when written as its Henry Ford encoding, it, like all
GADTs, can be regarded as “deep over Equal”. By contrast,
the GADT LTerm in Figure 2, which is inspired by [28], is

inherently deep. It encodes terms of a simply typed lambda
calculus. More robust variations on LTerm are, of course,
possible, but this variation is rich enough to illustrate all
essential aspects of deep GADTs — and later, in Section 4.3,
their deep induction rules — while still being small enough
to ensure clarity of exposition.

Types are either booleans, arrow types, or list types. They
are represented by the Henry Ford GADT LType in Figure 2.
Terms are either variables, abstractions, applications, or lists
of terms. They are similarly represented by the Henry Ford
GADT LTerm. The type parameter for LTerm tracks the types
of simply typed lambda calculus terms. For example, LTermA
is the type of simply typed lambda terms of type A. Variables
are tagged with their types by the data constructors var and
abs, whose LType arguments ensure that their type tags are
legal types. This ensures that all lambda terms produced by
var, abs, app, and list are well-typed. We will revisit these
GADTs in Sections 4 and 7.

4 (Deep) Induction for GADTs
The equality constraints engendered by GADTs’ data con-
structors makes deriving (deep) induction rules for them
more involved than for ADTs and other nested types. Nev-
ertheless, we show in this section how to do so. We first
illustrate the key components of our approach by deriving
deep induction rules for the three specific GADTs introduced
in Section 3. Then, in Section 5, we abstract these to a general
framework that can be applied to any GADT that is not a
truly nested GADT. As hinted above, the predicate lifting
for the equality GADT plays a central role in deriving both
structural and deep induction rules for more general GADTs.

4.1 (Deep) Induction for Equal
To define the (deep) induction rule for any GADT G we first
need to define a predicate lifting that maps a predicate on a
type A to a predicate on GA. Such a predicate lifting

Equal∧ : ∀(AB : Set) → (A → Set) → (B → Set) →
Equal AB → Set

for Equal is defined by

Equal∧ AAQ Q ′ refl = ∀(a : A) → Equal (Q a)(Q ′ a)

It does exactly what we expect: it takes two predicates on the
same type as input and is inhabited iff they are extensionally
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data LType : Set → Set where
bool : ∀{A : Set} → ∀(B : Set) → Equal ABool → LTypeA
arr : ∀{A : Set} → ∀(BC : Set) → Equal A (B → C) → LType B → LTypeC → LTypeA
list : ∀{A : Set} → ∀(B : Set) → Equal A (List B) → LType B → LTypeA

data LTerm : Set → Set where
var : ∀{A : Set} → String → LTypeA → LTermA
abs : ∀{A : Set} → ∀(BC : Set) → Equal A (B → C) → String → LType B → LTermC → LTermA
app : ∀{A : Set} → ∀(B : Set) → LTerm(B → A) → LTermB → LTermA
list : ∀{A : Set} → ∀(B : Set) → Equal A (List B) → List (LTermB) → LTermA

Figure 2. The LType and LTerm data types

equal. Next, we need to associate with each data constructor
c of G an induction hypothesis asserting that, if the custom
predicate arguments to a predicate P on G can be lifted to
G itself, then c respects P, i.e., c constructs data satisfying
the instance of P at those custom predicates. The following
induction hypothesis dIndRefl is thus associated with the
refl constructor for Equal:

λ(P : ∀(AB : Set) → (A → Set) → (B → Set) →
Equal AB → Set) →

∀(C : Set)(Q Q ′ : C → Set) → Equal∧ CCQ Q ′ refl →
PCCQ Q ′ refl

The deep induction rule for G now states that, if all of G’s
data constructors respect a predicate P, then P is satisfied by
every element ofG to which the custom predicate arguments
to P can be successfully lifted. The deep induction rule for
Equal is thus

∀(P : ∀(AB : Set) → (A → Set) → (B → Set) →
Equal AB → Set) → dIndRefl P →

∀(AB : Set)(QA : A → Set)(QB : B → Set)(e : Equal AB)
→ Equal∧ ABQA QB e → PABQA QB e

(6)
To prove that this rule is sound we must provide a witness

dIndEqual inhabiting the type in (6). By pattern matching,
we need only consider the case where A = B and e = refl, so
we can define dIndEqual by

dIndEqual P crefl A A QA Q ′
A refl liftE = crefl A QA Q ′

A liftE

To recover Equal’s structural induction rule

∀(Q : ∀(AB : Set) → Equal AB → Set) →(∀(C : Set) → Q CC refl
)
→

∀(AB : Set)(e : Equal AB) → Q AB e
(7)

we define a term indEqual of the type in (7) by indEqual Q
srefl A B refl = dIndEqual P srefl′ A B KA

⊤ KB
⊤ refl sliftE.

Here,
P : ∀(AB : Set) → (A → Set) → (B → Set) →

Equal AB→ Set

is defined by P A B QA QB e = Q A B e, KA
⊤ and KB

⊤ are the
constantly ⊤-valued predicates on A and B, respectively,

sliftE : Equal∧ A B KA
⊤ KB

⊤ refl is defined by

sliftE a =refl : Equal⊤⊤

for every a : A, and

srefl′ : ∀(C : Set)(Qc Q ′
c : C → Set) →

Equal∧ CCQc Q ′
c refl → Q CC refl

is defined by srefl′CQc Q ′
c liftE

′ = srefl C. The structural
induction rule for any GADT G that is not truly nested can
similarly be recovered from its deep induction rule by instan-
tiating every custom predicate by the appropriate constantly
⊤-valued predicate.

4.2 (Deep) Induction for Seq
To derive the deep induction rule for the GADT Seq we use
its Henry Ford encoding from (5). We first define its predicate
lifting

Seq∧ : ∀(A : Set) → (A → Set) → SeqA → Set

as in Figure 3. There, a : A, QB : B → Set, QC : C → Set,
e : Equal A (B × C), sB : SeqB, sC : SeqC, and ∃[x] F x is syn-
tactic sugar for the type of dependent pairs (x, b), where x : A,
b : F x, and F : A → Set. The lifting Seq∧ is derived as in Sec-
tion 5. Next, let dIndConst and dIndPair be the induction
hypotheses associated with the constructors const and pair,
respectively. These are given in Figure 3 as well. Then the
deep induction rule for Seq is given in the last two lines of
Figure 3.
To prove that this rule is sound we provide a witness

dIndSeq inhabiting the type in the last two lines of Figure 3
by

dIndSeq P cconst cpair A QA (const a) liftA
= cconst A QA a liftA

and

dIndSeq P cconst cpair AQA (pair BC e sB sC)
(QB,QC, liftE, liftB, liftC)

= cpair ABCQA QB QC sB sC e liftE pB pC
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Seq∧ AQA (const a) = QA a
Seq∧ AQA (pair BC e sB sC) = ∃[QB]∃[QC] Equal∧ A (B × C)QA (Pair∧ BCQBQC) e × Seq∧ BQB sB × Seq∧ CQC sC

dIndConst = λ(P : ∀(A : Set) → (A → Set) → SeqA → Set) →
∀(A : Set)(QA : A → Set)(a : A) → QA a → PAQA (const a)

dIndPair = λ(P : ∀(A : Set) → (A → Set) → SeqA → Set) →
∀(ABC : Set)(QA : A → Set)(QB : B → Set)(QC : C → Set)

(sB : SeqB)(sC : SeqC)(e : Equal A (B × C)) →
Equal∧A (B × C)QA (Pair∧ BCQBQC) e → PBQB sB →

PCQC sC → PAQA (pair BC e sB sC)

∀(P : ∀(A : Set) → (A → Set) → SeqA → Set)→ dIndConst P → dIndPair P →

∀(A : Set)(QA : A → Set)(sA : SeqA) → Seq∧ AQA sA → PAQA sA

Figure 3. Deep induction rule for Seq

In the first clause, a : A, QA : A → Set, and liftA : Seq∧ AQA
(const a) = QA a. In the second clause we also have

QB : B → Set
QC : C → Set
e : Equal A (B × C)
sB : SeqB
sC : SeqC
liftE : Equal∧ A (B × C)QA (Pair∧ BCQB QC) e
liftB : Seq∧ BQB sB
liftC : Seq∧ CQC sC

Together these give that

(QB,QC, liftE, liftB, liftC) : Seq∧ AQ (pair BC e sB sC)

We therefore have

pB = dIndSeq P cconst cpair BQB sB liftB : PBQB sB
pC = dIndSeq P cconst cpair CQC sC liftC : PCQC sC

4.3 (Deep) Induction for LTerm
To derive the deep induction rule for the GADT LTerm we
use its Henry Ford encoding from Figure 2. We first define
the predicate lifting

Arr∧ : ∀(AB : Set) → (A → Set) → (B → Set) →
(A → B) → Set

for arrow types following the general framework in Section 5,
since arrow types appear in LType and LTerm. It is given by

Arr∧ ABQA QB f = ∀(a : A) → QA a → QB (f a)

The predicate liftings

LType∧ : ∀(A : Set) → (A → Set) → LTypeA → Set

for LType and

LTerm∧ : ∀(A : Set) → (A → Set) → LTermA → Set

for LTerm are defined in Figure 4 following the general frame-
work in Section 5. There,

s : String
QA : A → Set
QB : B → Set
QC : C → Set
TA : LTypeA
TB : LType B
TC : LTypeC
tB : LTermB
tC : LTermC
tBA : LTerm (B → A)
ts : List (LTermB)

and KBool
⊤ is the constantly ⊤-valued predicate on Bool and

List∧ is the predicate lifting for lists from (1). Also,

e : Equal ABool in the first clause,
e : Equal A (B → C) in the second and fifth clauses,
e : Equal A (List B) in the third clause,
e : Equal A (List B) in the seventh clause.

With these liftings in hand we can define the induction
hypotheses dIndVar, dIndAbs, dIndApp, and dIndList asso-
ciated with LTerms’s data constructors. These are given in
Figure 5. The deep induction rule for LTerm is thus

∀(P : ∀(A : Set) → (A → Set) → LTermA → Set) →
dIndVar P → dIndAbs P → dIndApp P → dIndList P →

∀(A : Set)(QA : A → Set)(tA : LTermA) →
LTerm∧ AQA tA → PAQA tA

(8)
To prove this rule sound we define a witness dIndLTerm

inhabiting the type in (8) as in Figure 6. There,
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LType∧ AQA (bool B e) = ∃[QB] Equal∧ ABQA KBool⊤ e
LType∧ AQA (arr BC e TB TC) = ∃[QB]∃[Qc] Equal∧ A (B → C)QA (Arr∧ BCQBQC) e × LType∧ BQB TB × LType∧ CQC TC
LType∧ AQA (list B e TB) = ∃[QB] Equal∧ A (List B)QA (List∧ BQB) e × LType∧ BQB TB

LTerm∧ AQA (var s TA) = LType∧ AQA TA
LTerm∧ AQA (abs BC e s TB tC) = ∃[QB]∃[QC] Equal∧ A (B → C)QA (Arr∧ BCQBQC) e × LType∧ BQB TB × LTerm∧ CQC tC
LTerm∧ AQA (appB tBA tB) = ∃[QB] LTerm∧ (B → A) (Arr∧ BAQBQA) tBA × LTerm∧ BQB tB
LTerm∧ AQA (list B e ts) = ∃[QB] Equal∧ A (List B)QA (List∧ BQB) e × List∧ (LTermB) (LTerm∧ BQB) ts

Figure 4. Predicate liftings for LType and LTerm

dIndVar = λ(P : ∀(A : Set) → (A → Set) → LTermA → Set) →
∀(A : Set)(QA : A → Set)(s : String)(TA : LTypeA) → LType∧ AQA TA → PAQA (var s TA)

dIndAbs = λ(P : ∀(A : Set) → (A → Set) → LTermA → Set) →
∀(ABC : Set)(QA : A → Set)(QB : B → Set)(QC : C → Set)(e : Equal A (B → C))(s : String) →
(TB : LType B) → (tC : LTermC) → Equal∧ A (B → C)QA (Arr∧ BCQBQC) e →
LType∧ BQB TB → PCQC tC → PAQA (abs BC e s TB tC)

dIndApp = λ(P : ∀(A : Set) → (A → Set) → LTermA → Set) →
∀(AB : Set)(QA : A → Set)(QB : B → Set)(tBA : LTerm (B → A))(tB : LTermB) →
P (B → A) (Arr∧ BAQBQA) tBA → PBQB tB → PAQA (appB tBA tB)

dIndList = λ(P : ∀(A : Set) → (A → Set) → LTermA → Set) →
∀(AB : Set)(QA : A → Set)(QB : B → Set)(e : Equal A (List B))(ts : List (LTermB)) →
Equal∧ A (List B)QA (List∧ BQB) e → List∧ (LTermB)(PBQB) ts → PAQA (list B e ts)

Figure 5. Induction hypotheses for LTerm

dIndLTermP cvar cabs capp clist AQA (var s TA) liftA = cvar AQA s TA liftA
dIndLTermP cvar cabs capp clist AQA (abs BC e s TB tC) (QB,QC, liftE, liftTB , lifttC ) = cabs ABCQAQBQC e s TB tC liftE liftTB pC
dIndLTermP cvar cabs capp clist AQA (appB tBA tB) (QB, lifttBA , lifttB ) = cappABQAQB tBA tB pBA pB
dIndLTermP cvar cabs capp clist AQA (list B e ts) (QB, liftE′, liftList) = clist A BQAQB e ts liftE′ pList

where
pC = dIndLTermP cvar cabs capp clist CQC tC lifttC : PCQC tC
pB = dIndLTermP cvar cabs capp clist BQB tB lifttB : PBQB tB
pBA = dIndLTermP cvar cabs capp clist (B → A) (Arr∧ BAQBQA) tBA lifttBA : P (B → A) (Arr∧ BAQBQA) tBA
pList = liftListMap (LTermB) (LTerm∧ BQB) (PBQB) pts ts liftList : List∧ (LTermB) (PBQB) ts
pts = dIndLTermP cvar cabs capp clist BQB : PredMap (LTermB) (LTerm∧ BQB) (PBQB)

Figure 6. dIndLTerm

s : String
QA : A → Set
QB : B → Set
QC : C → Set
TA : LTypeA
TB : LType B
tB : LTermB
tC : LTermC
tBA : LTerm (B → A)
ts : List (LTermB)
liftA : LTerm∧ AQA (var s TA) = LType∧ AQA TA
liftE : Equal∧ A (B → C)QA (Arr∧ BCQB QC) e
liftTB : LType∧ BQB TB

lifttC : LTerm∧ CQC tC
lifttBA : LTerm∧ (B → A) (Arr∧ BAQB QA) tBA
lifttB : LTerm∧ BQB tB
liftE′ : Equal∧ A (List B)QA (List∧ BQB) e
liftList : List∧ (LTermB) (LTerm∧ BQB) ts

Moreover, in the definition of pts,

PredMap : ∀ (A : Set) → (A → Set) → (A → Set) → Set

is the type constructor producing the type of morphisms
between predicates defined by

PredMapAQ Q ′ = ∀ (a : A) → Q a → Q ′ a
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and
liftListMap : ∀ (A : Set) → (Q Q ′ : A → Set) →

PredMapAQ Q ′ →

PredMap (List A) (List∧ AQ) (List∧ AQ ′)

which takes a morphism f of predicates and produces a mor-
phism of lifted predicates, is defined by

liftListMapAQ Q ′mnil tt = tt

(since x : List∧ AQ nil must necessarily be the sole inhabi-
tant tt of ⊤), and by

liftListMapAQ Q ′m (cons a l′) (y, x′)
= (may, liftListMapAQ Q ′m l′ x′)

(since x : List∧ AQ (cons a l′)must be of the form x = (y, x′)
where y : Q a and x′ : List∧ AQ l′).

5 The General Framework
We can generalize the approach in Section 4 to a general
framework for deriving deep induction rules for GADTs that
are not truly nested GADTs. We will treat GADTs of the
form

data G : Setα → Set where

c : ∀{B : Set} → FGB → G(KB)
(9)

For brevity and clarity we indicate only one constructor c
in (9), even though a GADT can have any finite number
of them, each with a type of the same form as c’s. In (9),
F and each K in K are type constructors with signatures
(Setα → Set) → Setβ → Set and Setβ → Set, respectively.
If T is a type constructor with signature Setγ → Set then T
has arity γ . The overline notation denotes a finite list whose
length is exactly the arity of the type constructor being ap-
plied to it. The number of type constructors in K (resp., B) is
thus α (resp., β). In addition, the type constructor F must be
constructed inductively according to the following grammar:

FGB := F1 GB × F2 GB | F1 GB + F2 GB

| F1 B → F2 GB | G (F1 B) | HB | H (F1 GB)

This grammar is subject to the following restrictions. In the
third clause the type constructor F1 does not contain G. In
the fourth clause, none of the α-many type constructors in
F1 contains G. This prevents nesting, which would make
it impossible to give an induction rule for G; see Section 6
below. In the fifth and sixth clauses, H : Setγ → Set is the
syntactic reflection of some functor, and thus has an asso-
ciated map function. It is worth noting that the fifth clause
subsumes the cases in which FGB is a closed type or one of
the Bi, and that H can be the data type constructor for any
(truly) nested type. From the map function for H we can also
construct a map function

H∧Map : ∀(A : Set)(Q Q ′ : A → Set) →
PredMapAQ Q ′ →

PredMap (HA) (H∧ AQ) (H∧ AQ ′)

(10)

for H∧. A concrete way to define H∧Map is by induction
on the structure of the type H, but we omit such details
since they are not essential to the present discussion. A fur-
ther requirement that applies to all of the type constructors
appearing in the right-hand side of the above grammar, in-
cluding those in K, is that they must all admit predicate
liftings. This is not an overly restrictive condition, though:
all GADTs constructed from the above grammar admit pred-
icate liftings. (The fact that the domain of an arrow type is
independent of G is crucial for this.) In particular, the lifting
for each type constructor H is constructed using its map
function. A concrete way to define more general predicate
liftings is, again, by induction on the structure of the types
in a suitable calculus; this will ensure that the liftings satisfy
the crucial property needed to derive deep induction rules,
namely that of distributing over the type constructors. We
do not give a general definition of predicate liftings here,
since that would require us to first design a full type calcu-
lus, which is beyond the scope of the present paper. We can
however, define liftings for the type constructor F defined
by the grammar on page 9 by

• FGB = F1 GB × F2 GB then

F∧ GBPQB

= Pair∧ (F1 GB) (F2 GB) (F∧1 GBPQB) (F∧2 GBPQB)

• FGB = F1 GB + F2 GB then

F∧ GBPQB

= Pair∧ (F1 GB) (F2 GB) (F∧1 GBPQB) (F∧2 GBPQB)

• If FGB = F1 B → F2 GB then

F∧ GBPQB x
= ∀(z : F1 B) → F∧1 BQB z → F∧2 GBPQB (x z)

• If FGB = G (F1 B) and F1 does not contain G, then

F∧ GBPQB = P (F1 B) (F∧1 BQB)

for all P : ∀(A : Set) → (A → Set) → GA → Set.
• If FGB = HB and H does not contain G, then

F∧ GBPQB = H∧ QB

for all P : ∀(A : Set) → (A → Set) → GA → Set.
• If FGB = H (Fk GB) and H does not contain G, then

F∧ GBPQB = H∧ (Fk GB) (F∧k GBPQB)

for all P : ∀(A : Set) → (A → Set) → GA → Set.
We assume in the development below that G is a unary

type constructor, i.e., that α = 1 in (9). Extending the argu-
ment to GADTs of arbitrary arity presents no difficulty other
than heavier notation. In this case the type of G’s single data
constructor c can be rewritten as

c : ∀(B : Set) → Equal A (KB) → FGB → GA
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The predicate liftingG∧ : ∀(A : Set) → (A → Set) → GA →

Set for G is therefore
G∧ AQA (c B e x) =

∃[QB] Equal∧ A (KB)QA (K∧ BQB) e × F∧ GBG∧ QB x

whereQA : A → Set,QB : B → Set, e : Equal A (KB), and x :
FGB. If we have predicate liftings

F∧ : ∀(G : Setα → Set)(B : Set) →
(∀(A : Set) → (A → Set) → GA → Set) →
(B → Set) → FGB → Set

for F and

K∧ : ∀(B : Set) → (B → Set) → KB → Set

for K, then the induction hypothesis dIndC associated with
c is
dIndC = λ(P : ∀(A : Set) → (A → Set) → GA → Set) →
∀(A : Set) (B : Set) (QA : A → Set) (QB : B → Set)

(e : Equal A (KB)) (x : FGB) →
Equal∧ A (KB)QA (K∧ BQB) e →

F∧ GBPQB x → PAQA (c B e x)

and the induction rule for G is
∀(P : ∀(A : Set) → (A → Set) → GA → Set) →
dIndCP → ∀(A : Set)(QA : A → Set)(y : GA) →
G∧ AQA y → PAQA y

(11)
To prove that this rule is sound we define a witness dIndG

inhabiting this type by

dIndGP cc AQA (c B e x) (QB, liftE, liftF)
= cc ABQA QB e x liftE (p x liftF)

Here,
cc : dIndCP
e : Equal A (KB)
x : FGB
QA : A → Set
liftE : Equal∧ A (KB)QA (K∧ BQB) e
liftF : F∧ GBG∧ QB x

and QB : B → Set, so

(QB, liftE, liftF) : G∧ AQA(c B e x)

as expected. Finally, the morphism of predicates

p : PredMap (FGB)(F∧ GBG∧ QB)(F∧ GBPQB)

is defined by structural induction on F as follows:
• If FGB = F1 GB × F2 GB then

F∧ GBPQB

= Pair∧ (F1 GB) (F2 GB)(F∧1 GBPQB) (F∧2 GBPQB)

The induction hypothesis ensures morphisms of pred-
icates

p1 : PredMap (F1 GB) (F∧1 GBG∧ QBQ)(F∧1 GBPQB)

and

p2 : PredMap (F2 GB) (F∧2 GBG∧ QB)(F∧2 GBPQB)

For x1 : F1 GB, liftF1 : F∧1 GBG∧ QB x1, x2 : F2 GB and
liftF2 : F∧2 GBG∧ QB x2 we then define

p (x1, x2) (liftF1, liftF2) = (p1 x1 liftF1, p2 x2 liftF2)

• The case FGB = F1 GB + F2 GB is analogous.
• If FGB = F1 B → F2 GB then

F∧ GBPQB x
= ∀(z : F1 B) → F∧1 BQB z → F∧2 GBPQB (x z)

where x : FGB. The induction hypothesis ensures a
morphism of predicates

p2 : PredMap (F2 GB) (F∧2 GBG∧ QB) (F∧2 GBPQB)

We therefore define p x liftF : F∧ GBPQB x, where liftF
: F∧ GBG∧ QB x, to be

p x liftF z liftF1 = p2 (x z) (liftF z liftF1)

for z : F1 B and liftF1 : F∧1 BQB z. Note that F1 not con-
taining G is a necessary restriction since the proof
relies on F∧ GBG∧ QB x and F∧ GBPQB x having the
same domain F∧1 BQB z.

• If FGB = G (F1 B) and F1 does not contain G, then

F∧ GBPQB = P (F1 B) (F∧1 BQB)

for all P : ∀(A : Set) → (A → Set) → GA → Set. We
then define p = dIndGP cc (F1 B) (F∧1 BQB).

• If FGB = HB and H does not contain G, then

F∧ GBPQB = H∧ QB

for all P : ∀(A : Set) → (A → Set) → GA → Set. We
therefore define

p : PredMap (HB) (H∧ BQB) (H∧ BQB)

to be the identity morphism on predicates.
• If FGB = H (Fk GB) and H does not contain G, then

F∧ GBPQB = H∧ (Fk GB) (F∧k GBPQB)

for all P :∀(A : Set) → (A→Set) → GA → Set. Since
H is not a GADT, H∧ has a map function H∧Map as
in (10). The induction hypothesis ensures morphisms
of predicates

pk : PredMap (Fk GB)(F∧k GBG∧ QB)(F∧k GBPQB)

We therefore define

p = H∧Map (Fk GB) (F∧k GBG∧ QB) (F∧k GBPQB)pk

Observing that the above development essentially uses
the equality GADT and its predicate lifting in the discrete
category of types to extend the lifting in [13] — now special-
ized to the same category — to GADTs, we have established
the following theorem:
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Theorem 5.1. A GADT G of the form in (9) admits the deep
induction rule in (11).

6 Truly Nested GADTs Need Not Admit
Deep Induction Rules

In Sections 4 and 5 we derived deep induction rules for
GADTs that are not truly nested GADTs. Since both (truly)
nested types and GADTs without true nesting admit deep in-
duction rules, we might expect truly nested GADTs to admit
them as well. Unfortunately, however, the techniques devel-
oped in the previous sections do not extend to truly nested
GADTs. Indeed, while the induction rule for a data type
generally relies on (unary) parametricity of the model inter-
preting it, deep induction for a truly nested type or a truly
nested GADT crucially relies on this interpretation being
functorial. Whereas ADTs and nested types both admit func-
torial parametric semantics, proper GADTs admit parametric
semantics but do not admit functorial semantics. In this sec-
tion we show how the techniques developed in this paper
for deriving deep induction rules go wrong for truly nested
GADTs by analyzing the following very simple example:

data G : Set → Set where
c : ∀{A : Set} → G (GA) → G (A × A)

(12)

We acknowledge that G is semantically equivalent to the
empty data type, and thus has a trivial (deep) induction prin-
ciple. We could, of course, consider a more realistic coun-
terexample, but this would only add notational overhead for
no gain in conceptual clarity. Indeed, we need only exhibit a
single GADT whose deep induction rule cannot be obtained
using the techniques of this paper, and for which more ro-
bust techniques will therefore be needed if deep induction
rules are to be derived for them.

To see this, we first rewrite the constructor c’s type as

c : ∀ (B : Set) → Equal A (B × B) → G (GB) → GA

The predicate lifting

G∧ : ∀ (A : Set) → (A → Set) → GA → Set

for G is therefore

G∧ AQA (c B e x) =
∃ [QB] Equal∧ A (B × B)QA (Pair∧ BBQB QB) e

× G∧ (GB) (G∧ BQB) x

where QA : A → Set, QB : B → Set, e : Equal A (B × B), and
x : G (GB). The induction hypothesis dIndC for c is

λ (P : ∀ (A : Set) → (A → Set) → GA → Set) →
∀ (A B : Set) (QA : A → Set) (QB : B → Set)

(e : Equal A (B × B)) (x : G (GB)) →
Equal∧ A (B × B)QA (Pair∧ BBQB QB) e →

P (GB) (PBQB) x → PAQA (c B e x)

so the deep induction rule for G is
∀ (P : ∀ (A : Set) → (A → Set) → GA → Set) →
dIndCP → ∀ (A : Set) (Q : A → Set) (y : GA) →

G∧ AQ y → PAQ y

But if we now try to show that this rule is sound by con-
structing a witness dIndG inhabiting this type we run into
problems. We can define

dIndGP cc AQ (c B e x) (Q ′, liftE, liftG)
= cc ABQ Q ′ e x liftE p

where
cc : dIndCP
Q : A → Set
Q ′ : B → Set
e : Equal A (B × B)
x : G (GB)
liftG : G∧ (GB) (G∧BQ ′) x
liftE : Equal∧ A (B × B)Q (Pair∧ BBQ ′Q ′) e

but we still need to define p : P (GB) (PBQ ′) x. For this we
can use the induction rule and let

p = dIndGP cc (GB) (PBQ ′) x q

but we still need to define
q : G∧ (GB) (PBQ ′) x

If we had the map function
G∧Map : ∀ (A : Set) (Q Q ′ : A → Set) →

PredMapAQ Q ′ →

PredMap (GA) (G∧ AQ) (G∧ AQ ′)

for G∧ then we could define q as
G∧Map (GB) (G∧ BQ ′) (PBQ ′) (dIndGP cc BQ ′) x liftG

Unfortunately, however, we cannot define G∧Map. Indeed,
its definition would have to be

G∧MapAQ Q ′m (c B e x) (QB, liftE, liftG)
= (Q ′

B, liftE
′, liftG′)

for some
Q ′

B : B → Set
liftE′ : Equal∧ A (B × B)Q ′ (Pair∧ BBQ ′

B Q
′
B) e

liftG′ : G∧ (GB) (G∧ BQ ′
B) x

where
Q : A → Set
Q ′ : A → Set
QB : B → Set
m : PredMapAQ Q ′

e : Equal A (B × B)
x : G (GB)
liftE : Equal∧ A (B × B)Q (Pair∧ BBQB QB) e
liftG : G∧ (GB) (G∧ BQB) x

That is, we would need to produce a proof liftE′ of the (ex-
tensional) equality of the predicates Q ′ and Pair∧ BBQ ′

B Q
′
B

from just a proof liftE of the (extensional) equality of the
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predicates Q and Pair∧ BBQB QB and a morphism of predi-
catesm fromQ toQ ′

2. But this will not be possible in general:
the facts that Q is equal to Pair∧ BBQB QB and that there
is a morphism of predicates m from Q to Q ′ do not guaran-
tee that there exists a predicate Q ′

B such that Q ′ is equal to
Pair∧ BBQ ′

B Q
′
B.

At a deeper level, the fundamental issue is that the Equal
type does not have functorial semantics [10], so that having
morphisms A → A′ and B → B′ (for any type A,A′,B and
B′) and a proof that A is equal to A′ does not provide a proof
that B is equal to B′. And not being able to define

Equal∧Map : ∀(AB : Set)
(QA Q ′

A : A → Set)
(QB Q ′

B : B → Set) →
PredMapAQA Q ′

A →

PredMapBQB Q ′
B →

PredMap (Equal AB) (Equal∧ABQA QB)

(Equal∧ABQ ′
A Q

′
B)

of course makes it unclear how to define G∧Map for more
general G.

7 Case Study: Extracting Types of Lambda
Terms

In this section, we use deep induction for the LTerm GADT
from Figure 2 to infer the type from a lambda term. The fol-
lowing predicate either returns the type of its input lambda
term if that type can be inferred or indicates that the type
inference fails:

GetType : ∀ (A : Set) → LTermA → Set

GetType A t = Maybe (LTypeA)

Of course, since GetType is (trivially) defined by structural
induction, we could perform type inference using hand-
threaded applications of structural induction as observed
at the end of Section 2. Nevertheless, the example as given
nicely illustrates deep induction.

By construction every lambda term in LTerm is well-typed,
but that (necessarily unique) type cannot always be inferred.
The predicate GetType uses the standardMaybe data type
to represent failure of type inference. It is defined by:

data Maybe : Set → Set where
nothing : ∀{A : Set} → MaybeA
just : ∀{A : Set} → A → MaybeA

(13)

We want to show that GetType A t is satisfied by every ele-
ment t in LTermA, i.e., we want to prove:

getTypeProof : ∀ (A : Set) (t : LTermA) → GetType A t

This property can be proved with deep induction, which
is used to apply the induction hypothesis to the individ-
ual terms in the list of terms that the data constructor list
takes as an argument. Indeed, using the deep induction rule

dIndLTerm from Section 4.3 we can define getTypeProof by

getTypeProof A t
= dIndLTermP cvar cabs capp clist AK⊤ t (LTerm∧KTA t)

where t : LTermA, P is the polymorphic predicate

λ (A : Set) (Q : A → Set) (t : LTermA) → Maybe (LTypeA)

and K⊤ is the constantly ⊤-valued predicate on A, and

LTerm∧KT : ∀ (A : Set) (t : LTermA) → LTerm∧ AK⊤ t

is a term, to be defined below, witnessing that K⊤ can be
lifted to all terms. We also need the applications to P of each
of the induction hypotheses from Section 4.3. These are given
in Figure 7. In the first clause, cvar returns just TA. In the
second clause, cabs returns nothing if its final argument is
nothing and

cabs ABCQA QB QC e s TB tC liftE liftTB (just TC)
= just (arr BC e TB TC)

otherwise. In the third clause,

cappABQA QB tBA tA (just (arr BA refl TB TA))mb
= just TA

and capp returns nothing otherwise. In the fourth clause, we
must use List∧ (LTermB) (GetType B) ts to extract the type
of the head of ts (from which we can deduce the type of the
list). When ts = nil we define

clist A BQ Q ′ e nil liftE liftts = nothing

where liftE : Equal∧ A (List B)Q (List∧ BQ ′) e, and liftts :
List∧ (LTermB) (GetType B) ts. When ts = cons t ts′ the type
of liftts becomes

List∧ (LTermB) (GetType B) (cons t ts′)
= GetType B t × List∧ (LTermB) (GetType B) ts′

= Maybe (LType B) × List∧ (LTermB) (GetType B) ts′

We pattern match on the first component of the pair to define

clist A BQ Q ′ e (cons t ts′) liftE (nothing, liftts′) = nothing

clistABQQ ′e (const ts′) liftE (justT′, liftts′)= just(listBeT′)

Here e : Equal A (List B), T′ : LType B, and

liftts′ : List∧ (LTermB) (GetType B) ts′

To finish defining getTypeProof we still need a proof

LTerm∧KT : ∀ (A : Set) (t : LTermA) → LTerm∧ AK⊤ t

Since LTerm∧ is defined in terms of LType∧ and Arr∧, and
since LType∧ is also defined in terms of List∧, we need analo-
gous functions LType∧KT, Arr∧KT and List∧KT, respectively,
for each of these liftings as well. We only give the definition
of LTerm∧KT here since LType∧KT, Arr∧KT, and List∧KT are
defined analogously. We have:

• If s : String and T : LTypeA we define

LTerm∧KTA (var s T) = LType∧KTAT
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cvar : ∀ (A : Set) (QA : A → Set) (s : String) (TA : LTypeA) → LType∧ AQA TA → Maybe (LTypeA)
cabs : ∀ (ABC : Set) (QA : A → Set) (QB : B → Set) (QC : C → Set)

(e : Equal A (B → C)) (s : String) (TB : LType B) (tC : LTermC) →
Equal∧ A (B → C)QA (Arr∧ BCQBQC) e → LType∧ BQB TB → Maybe (LTypeC) → Maybe (LTypeA)

capp : ∀ (AB : Set) (QA : A → Set) (QB : B → Set) (tBA : LTerm (B → A)) (tB : LTermB) →
Maybe (LType (B → A)) → Maybe (LType B) → Maybe (LTypeA)

clist : ∀ (AB : Set) (QA : A → Set) (QB : B → Set) (e : Equal A (List B)) (ts : List (LTermB)) →
Equal∧ A (List B)QA (List∧ BQB) e → List∧ (LTermB) (GetType B) ts → Maybe (LTypeA)

Figure 7. Applied induction hypotheses for LTerm

• If e : Equal A (B → C), s : String, T : LType B, and t′ :
LTermCweneed to define LTerm∧KTA (abs BC e s T t′)
of type

LTerm∧ AK⊤ (abs BC e s T t′)
= ∃[QB][QC]Equal∧A (B→C)K⊤(Arr∧BCQBQC)e

× LType∧ BQB T × LTerm∧ CQC t′

whereK⊤ : A → Set,QB : B → Set, andQC : C → Set.
The only reasonable choice is to let bothQB andQC be
K⊤, which means we need proofs of Equal∧ A (B → C)
K⊤ (Arr∧ BCK⊤ K⊤) e, LType∧ BK⊤ T and LTerm∧ C
K⊤ t′. We take LType∧KTBT and LTerm∧KTC t′ for
the latter two proofs. For the former we note that,
since we are working with proof-relevant predicates,
the lifting Arr∧ BCK⊤ K⊤ of K⊤ to arrow types is not
identical to K⊤ on arrow types but rather (extension-
ally) isomorphic. We discuss this issue in more detail at
the end of the section, but for now we simply assume
a proof

Equal∧ArrKT
: Equal∧ A (B → C)K⊤ (Arr∧ BCK⊤ K⊤) e

and define
LTerm∧KTA (abs BC e s T t′)

= (K⊤,K⊤, Equal∧ArrKT,
LType∧KTBT, LTerm∧KTC t′)

• If t1 : LTerm (B → A) and t2 : LTermB then, by the
same reasoning as in the previous case, we need to
define

LTerm∧KTA (appB t1 t2)
: LTerm∧ (B → A) (Arr∧ BAK⊤ K⊤) t1 ×

LTerm∧ BK⊤ t2

We define the second component of the pair to be
LTerm∧KTB t2. We define the first component from a
proof of LTerm∧ (B → A)K⊤ t1 and the function

LTerm∧EqualMap
: ∀ (A : Set) (Q Q ′ : A → Set) →

Equal∧ AAQ Q ′ refl →
PredMap (LTermA) (LTerm∧ AQ) (LTerm∧ AQ ′)

that takes two (extensionally) equal predicates with the
same carrier and produces a morphism of predicates
between their liftings. We define LTerm∧EqualMap

straightforwardly by pattern matching on the first two
arguments to PredMap in its return type, using tran-
sitivity and symmetry of the type constructor Equal,
together with the two analogously defined functions
LType∧EqualMap and Arr∧EqualMap in the case the
first argument to PredMap is constructed using var
and app, respectively. If LK⊤

: LTerm∧ (B → A)K⊤ t1
is the proof LK⊤

=LTerm∧KT (B→A) t1 and LTerm∧Arr
: LTerm∧ (B → A) (Arr∧ BAK⊤ K⊤) t1 is the proof
LTerm∧Arr = LTerm∧EqualMapK⊤ (Arr∧ BAK⊤ K⊤)

Equal∧ArrKT t1 LK⊤

then we define
LTerm∧KTA (appB t1 t2)

= (K⊤, LTerm∧Arr, LTerm∧KTB t2)

• If e : Equal A (List B) and ts : List (LTermB) then, as
above, we need to define

LTerm∧KTA (list B e ts)
: Equal∧ A (List B)K⊤ (List∧ BK⊤) e×

List∧ (LTermB) (LTerm∧ BK⊤) ts

As in that case we assume a proof

Equal∧ListKT : Equal∧ A (List B)K⊤ (List∧ BK⊤) e

for the first component. We can define the second com-
ponent using liftListMap from Section 4.3 to map a
morphism PredMap (LTermB) (K⊤) (LTerm∧ BK⊤) of
predicates to a morphism PredMap (List (LTermB))
(List∧ (LTermB)K⊤)(List∧ (LTermB)(LTerm∧BK⊤)) of
lifted predicates. Taking

mK⊤
: PredMap (LTermB) (K⊤) (LTerm∧ BK⊤)

to be the proof

mK⊤
t′ tt = LTerm∧KTB t′

where t′ : LTermB and tt is the single element of K⊤ t′,
and taking

LList∧LTerm∧KT : List∧ (LTermB) (LTerm∧ BK⊤) ts

to be the proof
LList∧LTerm∧KT

= liftListMap (LTermB)K⊤ (LTerm∧ BK⊤)mK⊤
ts

(List∧KT (LTermB) ts)

we define
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LTerm∧KTA (list B e ts)
= (K⊤, Equal∧ListKT, LList∧LTerm∧KT)

The above techniques can be used to define a function
G∧KT : ∀ (A : Set) (x : GA) → G∧ AK⊤ x for any GADT G
as defined in Section 5. To provide a proof of G∧ AK⊤ x for
every term x : GA, we need to know that, if G has a con-
structor c : H (FGB) → G (KB), then H cannot construct a
GADT so the generalization H∧Map of listLiftMap in the
final bullet point above is guaranteed to exist. We also need
to know that the lifting of K⊤ to types constructed by any
nested type constructor F is extensionally equal to K⊤ on
the types it constructs. For example, we might need a proof
that Pair∧ ABK⊤ K⊤ is equal to K⊤ on A × B. Given a pair
(a, b) : A × B, we have that

Pair∧ ABK⊤ K⊤(a, b) = K⊤ a × K⊤ b = ⊤ × ⊤

whereas K⊤ (a, b) = ⊤. While these types are not equal, they
are clearly isomorphic. Similar isomorphisms between F∧ AK⊤

and K⊤ hold for all other nested type constructors F as well.
These isomorphisms can either be proved on an as-needed
basis or, since F∧ AK⊤ = K⊤ is the unary analogue of the
Identity Extension Lemma, be obtained at the meta-level as
a consequence of unary parametricity. At the object level,
our Agda code simply postulates each isomorphism needed
since an Agda implementation of full parametricity for some
relevant calculus is beyond the scope of the present paper.

8 Conclusion
This paper extends (deep) induction to GADTs that are not
truly nested GADTs. It also shows that truly nested GADTs
do not obviously admit (deep) induction rules. Our devel-
opment is implemented in Agda, as is our case study from
Section 7. Our development opens the way to incorporating
automatic generation of (deep) induction rules for them into
proof assistants.
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