
Interleaving Data and Effects

Patricia Johann
Appalachian State University

cs.appstate.edu/∼johannp

Joint work with Bob Atkey, Neil Ghani, and Bart Jacobs

Haskell Symposium 2014

Programs, Data, and Effects

• Programming languages provide a wide array of constructs for storing

and manipulating data

– built-in data types (Bool, Int, Float,...)

– lists

– trees

– arrays

Programs, Data, and Effects

• Programming languages provide a wide array of constructs for storing

and manipulating data

– built-in data types (Bool, Int, Float,...)

– lists

– trees

– arrays

• Often these data types are pure, i.e., do not incorporate effects

Programs, Data, and Effects

• Programming languages provide a wide array of constructs for storing

and manipulating data

– built-in data types (Bool, Int, Float,...)

– lists

– trees

– arrays

• Often these data types are pure, i.e., do not incorporate effects

• However, sometimes data types not only to incorporate effects, but

also to interleave them with pure data

Programs, Data, and Effects

• Programming languages provide a wide array of constructs for storing

and manipulating data

– built-in data types (Bool, Int, Float,...)

– lists

– trees

– arrays

• Often these data types are pure, i.e., do not incorporate effects

• However, sometimes data types not only to incorporate effects, but

also to interleave them with pure data

• Unfortunately, this is not always reflected in the types themselves

Scenario I: (Implicitly) Interleaved Non-termination

• Effects are implicitly built into every Haskell type: every Haskell type

allows the possiblity of non-termination while inspecting a pure value

of that type

Scenario I: (Implicitly) Interleaved Non-termination

• Effects are implicitly built into every Haskell type: every Haskell type

allows the possiblity of non-termination while inspecting a pure value

of that type

• So not only is non-termination present in a type like [a], but because

non-termination is possible at every Haskell type — including the

element type a — it’s actually interleaved throughout the entire type!

Scenario I: (Implicitly) Interleaved Non-termination

• Effects are implicitly built into every Haskell type: every Haskell type

allows the possiblity of non-termination while inspecting a pure value

of that type

• So not only is non-termination present in a type like [a], but because

non-termination is possible at every Haskell type — including the

element type a — it’s actually interleaved throughout the entire type!

• In particular, because of Haskell’s lazy semantics, Haskell data struc-

tures can be infinite, as well as finite.

– [a] is the type of finite and infinite lists of elements of type a.

Scenario I: (Implicitly) Interleaved Non-termination

• Effects are implicitly built into every Haskell type: every Haskell type

allows the possiblity of non-termination while inspecting a pure value

of that type

• So not only is non-termination present in a type like [a], but because

non-termination is possible at every Haskell type — including the

element type a — it’s actually interleaved throughout the entire type!

• In particular, because of Haskell’s lazy semantics, Haskell data struc-

tures can be infinite, as well as finite.

– [a] is the type of finite and infinite lists of elements of type a.

• But neither the presence of non-termination effects, nor their inter-

leaving, is evident from the types themselves.

Scenario II: (Implicitly) Interleaved IO Effects

• The type of the Haskell library function

hGetContents :: Handle → IO [Char]

suggests that it reads all the available data from the file referenced by

Handle as an IO action and yields the list of characters as pure data

Scenario II: (Implicitly) Interleaved IO Effects

• The type of the Haskell library function

hGetContents :: Handle → IO [Char]

suggests that it reads all the available data from the file referenced by

Handle as an IO action and yields the list of characters as pure data

• The standard implementation does not read data from the handle until

the list is accessed by the program, so the effect of reading from the

file handle is implicitly interleaved with computation on the (pure) list

Scenario II: (Implicitly) Interleaved IO Effects

• The type of the Haskell library function

hGetContents :: Handle → IO [Char]

suggests that it reads all the available data from the file referenced by

Handle as an IO action and yields the list of characters as pure data

• The standard implementation does not read data from the handle until

the list is accessed by the program, so the effect of reading from the

file handle is implicitly interleaved with computation on the (pure) list

• This interleaving is not reflected in the type of hGetContents, so

– IO errors that occur during reading are reported by throwing excep-

tions from pure code — possibly long after the call to hGetContents

– The handle is implicitly closed when the end of the file is reached,

but if the end of file is never reached the handle will never be closed

– Since the programmer cannot always predict when reads will occur,

it is not safe for them to close the file handle

Question I:

How can we make the interleaving
of data and effects explicit in

types?

Inductive Data Types with Effects

• The type of lists interleaved with possible non-termination can be given

as

data List ′
lazy a newtypeList lazy a =

= Nillazy

| Conslazy a (Listlazy a)

Listlazy (List ′
lazy

a)⊥

Inductive Data Types with Effects

• The type of lists interleaved with possible non-termination can be given

as

data List ′
lazy a newtypeList lazy a =

= Nillazy

| Conslazy a (Listlazy a)

Listlazy (List ′
lazy

a)⊥

• The type of lists interleaved with IO operations can be given as

dataList ′
io

newtypeListio =

= Nilio

| Consio Char Listio

Listio (IO List ′
io
)

Question II:

How can we program effectively
with, and reason effectively about,

such “effectful” data types?

Structure of This Talk

• Recall: Standard initial algebra techniques

Structure of This Talk

• Recall: Standard initial algebra techniques

• Argue: Straightforward application of initial algebra techniques is at

the wrong level of abstraction for effectful data types

Structure of This Talk

• Recall: Standard initial algebra techniques

• Argue: Straightforward application of initial algebra techniques is at

the wrong level of abstraction for effectful data types

• Instead: Separate pure and effectful parts using f-and-m-algebras

Structure of This Talk

• Recall: Standard initial algebra techniques

• Argue: Straightforward application of initial algebra techniques is at

the wrong level of abstraction for effectful data types

• Instead: Separate pure and effectful parts using f-and-m-algebras

– f-algebras for a functor f describe the pure parts of an effectful

data type

Structure of This Talk

• Recall: Standard initial algebra techniques

• Argue: Straightforward application of initial algebra techniques is at

the wrong level of abstraction for effectful data types

• Instead: Separate pure and effectful parts using f-and-m-algebras

– f-algebras for a functor f describe the pure parts of an effectful

data type

– m-Eilenberg-Moore algebras for a monad m describe the effects

Structure of This Talk

• Recall: Standard initial algebra techniques

• Argue: Straightforward application of initial algebra techniques is at

the wrong level of abstraction for effectful data types

• Instead: Separate pure and effectful parts using f-and-m-algebras

– f-algebras for a functor f describe the pure parts of an effectful

data type

– m-Eilenberg-Moore algebras for a monad m describe the effects

• Represent: Effectful data types as initial f-and-m-algebras

Structure of This Talk

• Recall: Standard initial algebra techniques

• Argue: Straightforward application of initial algebra techniques is at

the wrong level of abstraction for effectful data types

• Instead: Separate pure and effectful parts using f-and-m-algebras

– f-algebras for a functor f describe the pure parts of an effectful

data type

– m-Eilenberg-Moore algebras for a monad m describe the effects

• Represent: Effectful data types as initial f-and-m-algebras

• Show: Initial f-and-m-algebra techniques are at the right level of ab-

straction for effectful data types

Structure of This Talk

• Recall: Standard initial algebra techniques

• Argue: Straightforward application of initial algebra techniques is at

the wrong level of abstraction for effectful data types

• Instead: Separate pure and effectful parts using f-and-m-algebras

– f-algebras for a functor f describe the pure parts of an effectful

data type

– m-Eilenberg-Moore algebras for a monad m describe the effects

• Represent: Effectful data types as initial f-and-m-algebras

• Show: Initial f-and-m-algebra techniques are at the right level of ab-

straction for effectful data types

• Revisit: Motivating examples with initial f-and-m-algebra techniques

Initial Algebras for Pure Data Types (I)

• Model the individual “layers” of a data type using a functor

(f, fmap :: (a→ b)→ f a→ f b)

Here, fmap is assumed to preserve identities and composition

Initial Algebras for Pure Data Types (I)

• Model the individual “layers” of a data type using a functor

(f, fmap :: (a→ b)→ f a→ f b)

Here, fmap is assumed to preserve identities and composition

• Describe how to reduce each “layer” in an inductive data structure to

a value using an f-algebra

(a, k :: f a→ a)

Initial Algebras for Pure Data Types (I)

• Model the individual “layers” of a data type using a functor

(f, fmap :: (a→ b)→ f a→ f b)

Here, fmap is assumed to preserve identities and composition

• Describe how to reduce each “layer” in an inductive data structure to

a value using an f-algebra

(a, k :: f a→ a)

• Characterize the data type as the carrier µf of the initial f-algebra

(µf, in : f(µf)→ µf)

Initial Algebras for Pure Data Types (II)

• An f-algebra homomorphism from an f-algebra (a, ka) to an f-algebra

(b, kb) is a function h :: a→ b such that

f a
fmap h

//

ka

��

f b

kb

��

a h
// b

Initial Algebras for Pure Data Types (II)

• An f-algebra homomorphism from an f-algebra (a, ka) to an f-algebra

(b, kb) is a function h :: a→ b such that

f a
fmap h

//

ka

��

f b

kb

��

a h
// b

• For every f-algebra (a, k), there is a unique f-algebra homomorphism

from the initial f-algebra (µf, in) to (a, k)

f(µf)
fmap (|k|)

//

in

��

f a

k

��
µf

(|k|)
// a

Initial Algebras for Pure Data Types (II)

• An f-algebra homomorphism from an f-algebra (a, ka) to an f-algebra

(b, kb) is a function h :: a→ b such that

f a
fmap h

//

ka

��

f b

kb

��

a h
// b

• For every f-algebra (a, k), there is a unique f-algebra homomorphism

from the initial f-algebra (µf, in) to (a, k)

f(µf)
fmap (|k|)

//

in

��

f a

k

��
µf

(|k|)
// a

• We denote the unique function from µf to a by (|k|)

Example I — Initial Algebras for Lists

• The functor ListF a describes the individual “layers” of a list

data ListF a x

= Nil

| Cons a x

fmap :: (x→ y)→ ListF a x→ ListF a y

fmap g Nil = Nil

fmap g (Cons a xs) = Cons a (g xs)

Example I — Initial Algebras for Lists

• The functor ListF a describes the individual “layers” of a list

data ListF a x

= Nil

| Cons a x

fmap :: (x→ y)→ ListF a x→ ListF a y

fmap g Nil = Nil

fmap g (Cons a xs) = Cons a (g xs)

• The type [a] of finite lists is the carrier of the initial (ListF a)-algebra

with

in :: ListF a [a]→ [a]

in Nil = []

in (Cons a xs) = a : xs

Example I — Initial Algebras for Lists

• The functor ListF a describes the individual “layers” of a list

data ListF a x

= Nil

| Cons a x

fmap :: (x→ y)→ ListF a x→ ListF a y

fmap g Nil = Nil

fmap g (Cons a xs) = Cons a (g xs)

• The type [a] of finite lists is the carrier of the initial (ListF a)-algebra

with

in :: ListF a [a]→ [a]

in Nil = []

in (Cons a xs) = a : xs

• The fold for [a] is

(| − |) :: (ListF a b→ b)→ [a]→ b

(|k|) [] = k Nil

(|k|) (a : xs) = k (Cons a ((|k|) xs))

Example II — Initial Algebras Generically

• The carrier of the initial f-algebra for a functor (f, fmap) can be

implemented as

dataMu f = In {unIn :: f (Mu f)}

Example II — Initial Algebras Generically

• The carrier of the initial f-algebra for a functor (f, fmap) can be

implemented as

dataMu f = In {unIn :: f (Mu f)}

• The type Mu f is the carrier of the initial f-algebra with

in :: f (Mu f)→Mu f

in = In

Example II — Initial Algebras Generically

• The carrier of the initial f-algebra for a functor (f, fmap) can be

implemented as

dataMu f = In {unIn :: f (Mu f)}

• The type Mu f is the carrier of the initial f-algebra with

in :: f (Mu f)→Mu f

in = In

• The fold for Mu f can be defined as

(| − |) :: Functor f ⇒ (f a→ a)→Mu f → a

(|k|) = k ◦ fmap (|k|) ◦ unIn

What Have We Gained?

• Definitional principles for defining functions on data types

– fold operators for expressing recursive functions

– definition by pattern matching

What Have We Gained?

• Definitional principles for defining functions on data types

– fold operators for expressing recursive functions

– definition by pattern matching

• Proof principles for reasoning about such functions

– induction rules

– fold fusion rules

What Have We Gained?

• Definitional principles for defining functions on data types

– fold operators for expressing recursive functions

– definition by pattern matching

• Proof principles for reasoning about such functions

– fold fusion rules

– induction rules

• Other tools for structured programming and reasoning — e.g., intro-

duction and elimination rules, computation (i.e., β, from weak initial-

ity) rules and extensionality (i.e., η, from uniqueness) rules for folds;

build combinators; fold/build rules...

What Have We Gained?

• Definitional principles for defining functions on data types

– fold operators for expressing recursive functions

– definition by pattern matching

• Proof principles for reasoning about such functions

– fold fusion rules

– induction rules

• Other tools for structured programming and reasoning — e.g., intro-

duction and elimination rules, computation (i.e., β, from weak initial-

ity) rules and extensionality (i.e., η, from uniqueness) rules for folds;

build combinators; fold/build rules...

Above all, initial algebra semantics gives a principled approach to pro-

gramming with data types that is generic over data types

Exploiting Initiality

Proof Principle 1 Let (a, k) be an f-algebra and g : µf → a be a function.

The equation

(|k|) = g

holds iff g is an f-algebra homomorphism, i.e., iff

g ◦ in = k ◦ fmap g

f(µf)
fmap g

//

in

��

f a

k

��
µf

g
// a

Representing append

• Assume (µ(ListF a), in) exists

Representing append

• Assume (µ(ListF a), in) exists

• We can define append in terms of fold as

append :: µ(ListF a)→ µ(ListF a)→ µ(ListF a)

append xs ys = (|k|) xs

where k Nil = ys

k (Cons a xs) = in (Cons a xs)

Representing append

• Assume (µ(ListF a), in) exists

• We can define append in terms of fold as

append :: µ(ListF a)→ µ(ListF a)→ µ(ListF a)

append xs ys = (|k|) xs

where k Nil = ys

k (Cons a xs) = in (Cons a xs)

• Unfolding this definition gives these equational properties of append

append (in Nil) ys = ys

append (in (Cons a xs)) ys = in (Cons a (append xs ys))

Associativity of append (I)

Theorem: For all xs, ys, zs :: µ(ListF a),

append xs (append ys zs) = append (append xs ys) zs

Associativity of append (I)

Theorem: For all xs, ys, zs :: µ(ListF a),

append xs (append ys zs) = append (append xs ys) zs

Proof:

1. Instantiate Proof Principle 1 and prove the equation

(|k|) xs = append (append xs ys) zs

Associativity of append (I)

Theorem: For all xs, ys, zs :: µ(ListF a),

append xs (append ys zs) = append (append xs ys) zs

Proof:

1. Instantiate Proof Principle 1 and prove the equation

(|k|) xs = append (append xs ys) zs

i.e.,

(|k|) = g

where

g = λxs. append (append xs ys) zs

k Nil = append ys zs

k (Cons a xs) = in (Cons a xs)

Associativity of append (II)

2. It suffices to prove that

g ◦ in = k ◦ fmap g

i.e., that for all x :: ListF a (µ(ListF a)),

= append (append (in x) ys) zs

= k (fmap (λxs. append (append xs ys) zs) x)

Associativity of append (II)

2. It suffices to prove that

g ◦ in = k ◦ fmap g

i.e., that for all x :: ListF a (µ(ListF a)),

= append (append (in x) ys) zs

= k (fmap (λxs. append (append xs ys) zs) x)

3. Use case analysis according as x = Nil or x = Cons a xs

Associativity of append (II)

2. It suffices to prove that

g ◦ in = k ◦ fmap g

i.e., that for all x :: ListF a (µ(ListF a)),

= append (append (in x) ys) zs

= k (fmap (λxs. append (append xs ys) zs) x)

3. Use case analysis according as x = Nil or x = Cons a xs

4. For each case, we directly use the equational properties of append and

the definitions of g and fmap for ListF a

Associativity of append (II)

2. It suffices to prove that

g ◦ in = k ◦ fmap g

i.e., that for all x :: ListF a (µ(ListF a)),

= append (append (in x) ys) zs

= k (fmap (λxs. append (append xs ys) zs) x)

3. Use case analysis according as x = Nil or x = Cons a xs

4. For each case, we directly use the equational properties of append and

the definitions of g and fmap for ListF a

The proof is straightforward, easy, and short (9 lines)

Monads for Effects

• Model an effect using a monad

(m, fmapm, returnm, joinm)

where

fmapm :: (a→ b)→ m a→ m b

returnm :: a→ m a

joinm :: m (m a)→ m a

Monads for Effects

• Model an effect using a monad

(m, fmapm, returnm, joinm)

where

fmapm :: (a→ b)→ m a→ m b

returnm :: a→ m a

joinm :: m (m a)→ m a

• The monad laws must be satisfied

Monads for Effects

• Model an effect using a monad

(m, fmapm, returnm, joinm)

where

fmapm :: (a→ b)→ m a→ m b

returnm :: a→ m a

joinm :: m (m a)→ m a

• The monad laws must be satisfied

• The naturality laws for returnm and joinm must be satisfied

Monads for Effects

• Model an effect using a monad

(m, fmapm, returnm, joinm)

where

fmapm :: (a→ b)→ m a→ m b

returnm :: a→ m a

joinm :: m (m a)→ m a

• The monad laws must be satisfied

• The naturality laws for returnm and joinm must be satisfied

• Examples are the non-termination monad (−)⊥, the IO monad, the

error monad, the continuations monad, etc.

Monad Morphisms

A monad morphism from

(m1, fmapm1
, returnm1

, joinm1
)

to

(m2, fmapm2
, returnm2

, joinm2
)

is a function h :: m1 a→ m2 a that preserves fmaps, returns, and joins

h ◦ fmapm1
g = fmapm2

g ◦ h

h ◦ returnm1
= returnm2

h ◦ joinm1
= joinm2

◦ h ◦ fmapm1
h

Effectful Lists

• A common generalization of Listio and Listlazy a is

dataList ′ m a newtype List m a =

= Nilm

| Consm a (List m a)

List (m (List ′ m a))

Effectful Lists

• A common generalization of Listio and Listlazy a is

dataList ′ m a newtype List m a =

= Nilm

| Consm a (List m a)

List (m (List ′ m a))

• A further generalization replaces list constructors with an arbitrary

functor f that describes the data to be interleaved with the effects of

the monad m:

data MuFM ′ f m newtypeMuFM f m =

= In (f (MuFM f m)) Mu (m (MuFM ′ f m))

Effectful Lists

• A common generalization of Listio and Listlazy a is

dataList ′ m a newtype List m a =

= Nilm

| Consm a (List m a)

List (m (List ′ m a))

• A further generalization replaces list constructors with an arbitrary

functor f that describes the data to be interleaved with the effects of

the monad m:

data MuFM ′ f m newtypeMuFM f m =

= In (f (MuFM f m)) Mu (m (MuFM ′ f m))

• MuFM represents a pure inductive type described by f interleaved

with effects given by m

An Append Function for Effectful Lists

• Assume (µ(ListF a ◦m), in) exists

An Append Function for Effectful Lists

• Assume (µ(ListF a ◦m), in) exists

• List m a is isomorphic to m (µ(ListF a ◦m))

An Append Function for Effectful Lists

• Assume (µ(ListF a ◦m), in) exists

• List m a is isomorphic to m (µ(ListF a ◦m))

• We can define eAppend by

eAppend :: m (µ(ListF a ◦m))→ m (µ(ListF a ◦m))→ m (µ(ListF a ◦m))

eAppend xs ys = joinm (fmapm (|k|) xs)

where k Nil = ys

k (Cons a xs) = returnm (in (Cons a (joinm xs)))

An Append Function for Effectful Lists

• Assume (µ(ListF a ◦m), in) exists

• List m a is isomorphic to m (µ(ListF a ◦m))

• We can define eAppend by

eAppend :: m (µ(ListF a ◦m))→ m (µ(ListF a ◦m))→ m (µ(ListF a ◦m))

eAppend xs ys = joinm (fmapm (|k|) xs)

where k Nil = ys

k (Cons a xs) = returnm (in (Cons a (joinm xs)))

• This is similar to the definition of append , but we have had to insert

uses of the monadic structure returnm , joinm and fmapm because the

initial f-algebra is unaware of the presence of effects

Equational Properties of eAppend

• Unfolding the definitions gives these equational properties of eAppend

eAppend (returnm (in Nil)) ys = ys

eAppend (returnm (in (Cons a xs))) ys

= returnm (in (Cons a (eAppend xs ys)))

Equational Properties of eAppend

• Unfolding the definitions gives these equational properties of eAppend

eAppend (returnm (in Nil)) ys = ys

eAppend (returnm (in (Cons a xs))) ys

= returnm (in (Cons a (eAppend xs ys)))

• Deriving these properties takes more work than in the pure case be-

cause we have to shuffle the returnm , joinm , and fmapm around in

order to apply the monad laws

Equational Properties of eAppend

• Unfolding the definitions gives these equational properties of eAppend

eAppend (returnm (in Nil)) ys = ys

eAppend (returnm (in (Cons a xs))) ys

= returnm (in (Cons a (eAppend xs ys)))

• Deriving these properties takes more work than in the pure case be-

cause we have to shuffle the returnm , joinm , and fmapm around in

order to apply the monad laws

• Whenever we use initial f-algebras to define functions on data types

with interleaved effects, we will repeat this kind of work over again

Equational Properties of eAppend

• Unfolding the definitions gives these equational properties of eAppend

eAppend (returnm (in Nil)) ys = ys

eAppend (returnm (in (Cons a xs))) ys

= returnm (in (Cons a (eAppend xs ys)))

• Deriving these properties takes more work than in the pure case be-

cause we have to shuffle the returnm , joinm , and fmapm around in

order to apply the monad laws

• Whenever we use initial f-algebras to define functions on data types

with interleaved effects, we will repeat this kind of work over again

• When we try to prove associativity of eAppend we will be unable to

directly use these properties as we did in the uneffectful proof because

we are forced to unfold the definition of eAppend to apply PP1

Associativity of eAppend (I)

Theorem: For all xs, ys, zs :: m (µ(ListF a ◦m)),

eAppend xs (eAppend ys zs) = eAppend (eAppend xs ys) zs

Associativity of eAppend (I)

Theorem: For all xs, ys, zs :: m (µ(ListF a ◦m)),

eAppend xs (eAppend ys zs) = eAppend (eAppend xs ys) zs

Proof:

1. Unfold the definition of eAppend to rewrite LHS to

joinm (fmapm ((|keAppend ys zs |)) xs)

Here, kl is the instance of the function k defined in the body of

eAppend with the free variable ys replaced by l.

Associativity of eAppend (I)

Theorem: For all xs, ys, zs :: m (µ(ListF a ◦m)),

eAppend xs (eAppend ys zs) = eAppend (eAppend xs ys) zs

Proof:

1. Unfold the definition of eAppend to rewrite LHS to

joinm (fmapm ((|keAppend ys zs |)) xs)

Here, kl is the instance of the function k defined in the body of

eAppend with the free variable ys replaced by l.

2. Use the definition of eAppend (thrice!), plus naturality of joinm, the

third monad law, and the fact that fmapm preserves composition to

rewrite RHS to

joinm (fmapm ((λl. eAppend l zs) ◦ (|kys|)) xs)

Associativity of eAppend (II)

3. Instantiate Proof Principle 1 and prove the equation

(|keAppend ys zs|) = (λl. eAppend l zs) ◦ (|kys|)

Associativity of eAppend (II)

3. Instantiate Proof Principle 1 and prove the equation

(|keAppend ys zs|) = (λl. eAppend l zs) ◦ (|kys|)

4. It suffices to prove that for all x :: ListF a (m (µ(ListF a ◦m)))

eAppend ((|kys|) (in x)) zs

= keAppend xs ys (fmapListF a (fmapm ((λl. eAppend l zs) ◦ (|kys|))) x)

Associativity of eAppend (II)

3. Instantiate Proof Principle 1 and prove the equation

(|keAppend ys zs|) = (λl. eAppend l zs) ◦ (|kys|)

4. It suffices to prove that for all x :: ListF a (m (µ(ListF a ◦m)))

eAppend ((|kys|) (in x)) zs

= keAppend xs ys (fmapListF a (fmapm ((λl. eAppend l zs) ◦ (|kys|))) x)

5. Use case analysis according as x = Nil or x = Cons a xs

Associativity of eAppend (II)

3. Instantiate Proof Principle 1 and prove the equation

(|keAppend ys zs|) = (λl. eAppend l zs) ◦ (|kys|)

4. It suffices to prove that for all x :: ListF a (m (µ(ListF a ◦m)))

eAppend ((|kys|) (in x)) zs

= keAppend xs ys (fmapListF a (fmapm ((λl. eAppend l zs) ◦ (|kys|))) x)

5. Use case analysis according as x = Nil or x = Cons a xs

6. For each case, use the definitions of eAppend , fmapListF a , and the

instances of k; the fact that (|h|) is a (ListF a ◦m)-algebra homomor-

phism for all h; the naturality of joinm; the fact that fmapm preserves

composition; and the third monad law

Associativity of eAppend (II)

3. Instantiate Proof Principle 1 and prove the equation

(|keAppend ys zs|) = (λl. eAppend l zs) ◦ (|kys|)

4. It suffices to prove that for all x :: ListF a (m (µ(ListF a ◦m)))

eAppend ((|kys|) (in x)) zs

= keAppend xs ys (fmapListF a (fmapm ((λl. eAppend l zs) ◦ (|kys|))) x)

5. Use case analysis according as x = Nil or x = Cons a xs

6. For each case, use the definitions of eAppend , fmapListF a , and the

instances of k; the fact that (|h|) is a (ListF a ◦m)-algebra homomor-

phism for all h; the naturality of joinm; the fact that fmapm preserves

composition; and the third monad law

The proof is upwards of 25 (complicated) lines long!

Problems and Alternatives

• Problems:

1. Requires non-trivial rewriting in order to apply Proof Principle 1

Problems and Alternatives

• Problems:

1. Requires non-trivial rewriting in order to apply Proof Principle 1

2. Requires multiple unfoldings of the definition of eAppend to pro-

ceed, forcing calculations to be repeated, preventing equational

properties from being used, breaking abstraction layers, ...

Problems and Alternatives

• Problems:

1. Requires non-trivial rewriting in order to apply Proof Principle 1

2. Requires multiple unfoldings of the definition of eAppend to pro-

ceed, forcing calculations to be repeated, preventing equational

properties from being used, breaking abstraction layers, ...

• Alternatives:

1. Use eAppend xs ys = extend ((|kys|) xs), where extend is the (argument-

flipped) bind operation for m for quicker reduction to Proof Prin-

ciple 1

Problems and Alternatives

• Problems:

1. Requires non-trivial rewriting in order to apply Proof Principle 1

2. Requires multiple unfoldings of the definition of eAppend to pro-

ceed, forcing calculations to be repeated, preventing equational

properties from being used, breaking abstraction layers, ...

• Alternatives:

1. Use eAppend xs ys = extend ((|kys|) xs), where extend is the (argument-

flipped) bind operation for m for quicker reduction to Proof Prin-

ciple 1

2. Use fold fusion to prove the goal in bullet point 3 to save effort

Problems and Alternatives

• Problems:

1. Requires non-trivial rewriting in order to apply Proof Principle 1

2. Requires multiple unfoldings of the definition of eAppend to pro-

ceed, forcing calculations to be repeated, preventing equational

properties from being used, breaking abstraction layers, ...

• Alternatives:

1. Use eAppend xs ys = extend ((|kys|) xs), where extend is the (argument-

flipped) bind operation for m for quicker reduction to Proof Prin-

ciple 1

2. Use fold fusion to prove the goal in bullet point 3 to save effort

• But we still have to unfold the definition of eAppend and reason using

the monad laws, and the pure and effectful parts of the proof still aren’t

separated. Most importantly, we still cannot reuse the reasoning from

the proof for the pure case!

Separating Data and Effects

• Use f-and-m-algebras, i.e., f-algebras that are simultaneously m-

Eilenberg-Moore algebras

Separating Data and Effects

• Use f-and-m-algebras, i.e., f-algebras that are simultaneously m-

Eilenberg-Moore algebras

• An m-Eilenberg-Moore algebra for a type a describes how to properly

incorporate the effects of the monad m into values of type a

Separating Data and Effects

• Use f-and-m-algebras, i.e., f-algebras that are simultaneously m-

Eilenberg-Moore algebras

• An m-Eilenberg-Moore algebra for a type a describes how to properly

incorporate the effects of the monad m into values of type a

• The f-algebra part handles the pure parts of the structure

Separating Data and Effects

• Use f-and-m-algebras, i.e., f-algebras that are simultaneously m-

Eilenberg-Moore algebras

• An m-Eilenberg-Moore algebra for a type a describes how to properly

incorporate the effects of the monad m into values of type a

• The f-algebra part handles the pure parts of the structure

• The m-Eilenberg-Moore-algebra part handles the effectful parts, ac-

counting for

– the correct preservation of potential lack of effects (through the

preservation of return)

– the potential merging of effects present between layers of the pure

datatype (through the preservation of join)

m-Eilenberg-Moore Algebras

• An m-Eilenberg-Moore algebra is a pair

(a, l :: m a→ a)

such that l preserves the return and join monad structure

a
returnm

//

id
""F

F

F

F

F

F

F

F

m a

l

��
a

m (m a)
joinm

//

fmapm l

��

m a

l

��
m a i

// a

m-Eilenberg-Moore Algebras

• An m-Eilenberg-Moore algebra is a pair

(a, l :: m a→ a)

such that l preserves the return and join monad structure

a
returnm

//

id
""F

F

F

F

F

F

F

F

m a

l

��
a

m (m a)
joinm

//

fmapm l

��

m a

l

��
m a i

// a

• An m-Eilenberg-Moore algebra homomorphism is an m-algebra homo-

morphism

f-and-m-Algebras

• An f-and-m-algebra is a triple

(a, k, l)

where

k :: f a→ a

l :: m a→ a

and l is an m-Eilenberg-Moore algebra

f-and-m-Algebras

• An f-and-m-algebra is a triple

(a, k, l)

where

k :: f a→ a

l :: m a→ a

and l is an m-Eilenberg-Moore algebra

• An f-and-m-algebra homomorphism from (a, ka, la) to (b, kb, lb) is a

function h :: a→ b that is simultaneously an f-algebra homomorphism

and an m-algebra homomorphism

h ◦ ka = kb ◦ fmapf h

h ◦ la = lb ◦ fmapm h

Initial f-and-m-Algebras

• We write (µ(f |m), inf, inm) for the initial f-and-m-algebra

Initial f-and-m-Algebras

• We write (µ(f |m), inf, inm) for the initial f-and-m-algebra

• For every f-and-m-algebra (a, k, l) there is a unique f-and-m-algebra

homomorphism from the initial f-and-m-algebra (µ(f |m), inf, inm) to

(a, k, l)

f(µ(f |m))
fmapf (|k|l|)

//

inf

��

f a

k

��

m(µ(f |m))
fmapm (|k|l|)

//

inm

��

m a

l

��

µ(f |m)
(|k|l|)

// a µ(f |m)
(|k|l|)

// a

Initial f-and-m-Algebras

• We write (µ(f |m), inf, inm) for the initial f-and-m-algebra

• For every f-and-m-algebra (a, k, l) there is a unique f-and-m-algebra

homomorphism from the initial f-and-m-algebra (µ(f |m), inf, inm) to

(a, k, l)

f(µ(f |m))
fmapf (|k|l|)

//

inf

��

f a

k

��

m(µ(f |m))
fmapm (|k|l|)

//

inm

��

m a

l

��

µ(f |m)
(|k|l|)

// a µ(f |m)
(|k|l|)

// a

• We denote the unique function from µ(f |m) to a by (|k|l|)

A Proof Principle for Effectful Data Types

• Proof Principle 2 Let (a, k, l) be an f-and-m-algebra and g : µ(f |m)→

a be a function. The equation

(|k|l|) = g

holds iff g is simultaneously an f-algebra homomorphism and an m-

algebra homomorphism

A Proof Principle for Effectful Data Types

• Proof Principle 2 Let (a, k, l) be an f-and-m-algebra and g : µ(f |m)→

a be a function. The equation

(|k|l|) = g

holds iff g is simultaneously an f-algebra homomorphism and an m-

algebra homomorphism, i.e., iff

g ◦ inf = k ◦ fmapf g

and

g ◦ inm = l ◦ fmapm g

A Proof Principle for Effectful Data Types

• Proof Principle 2 Let (a, k, l) be an f-and-m-algebra and g : µ(f |m)→

a be a function. The equation

(|k|l|) = g

holds iff g is simultaneously an f-algebra homomorphism and an m-

algebra homomorphism, i.e., iff

g ◦ inf = k ◦ fmapf g

and

g ◦ inm = l ◦ fmapm g

• Proof Principle 2 cleanly splits the pure and effectful proof obligations!

Representing List m a

• Our data type

dataList ′ m a newtype List m a =

= Nilm

| Consm a (List m a)

List (m (List ′ m a))

can be represented as the carrier µ(ListF a|m) of the initial (ListF a)-

and-m-algebra

Representing List m a

• Our data type

dataList ′ m a newtype List m a =

= Nilm

| Consm a (List m a)

List (m (List ′ m a))

can be represented as the carrier µ(ListF a|m) of the initial (ListF a)-

and-m-algebra with

inListF a :: ListF a (List m a)→ List m a

inListF a Nil = List (returnm Nilm)

inListF a (Cons a xs) = List (returnm (Consm a xs))

Representing List m a

• Our data type

dataList ′ m a newtype List m a =

= Nilm

| Consm a (List m a)

List (m (List ′ m a))

can be represented as the carrier µ(ListF a|m) of the initial (ListF a)-

and-m-algebra with

inListF a :: ListF a (List m a)→ List m a

inListF a Nil = List (returnm Nilm)

inListF a (Cons a xs) = List (returnm (Consm a xs))

and

inm :: m (List m a)→ List m a

inm ml = List (do {List x← ml ; x})

Representing List m a

• Our data type

dataList ′ m a newtype List m a =

= Nilm

| Consm a (List m a)

List (m (List ′ m a))

can be represented as the carrier µ(ListF a|m) of the initial (ListF a)-

and-m-algebra with

inListF a :: ListF a (List m a)→ List m a

inListF a Nil = List (returnm Nilm)

inListF a (Cons a xs) = List (returnm (Consm a xs))

and

inm :: m (List m a)→ List m a

inm ml = List (do {List x← ml ; x})

• If not for the List constructor, inm would be join

A fold for List m a

The fold for µ (ListF a|m) is defined as a pair of mutually recursive func-

tions, following the structure of the declaration of List m a:

(| − | − |) :: (ListF a b→ b)→ (m b→ b)→ List m a→ b

(|k|l|) = loop

where loop :: List m a→ b

loop (List x) = l (fmapm loop ′ x)

loop ′ :: List ′ m a→ b

loop ′ Nilm = k Nil

loop ′ (Consm a xs) = k (Cons a (loop xs))

Representing eAppend (Again)

• Assume (µ(ListF a|m), inListF a, inm) exists

Representing eAppend (Again)

• Assume (µ(ListF a|m), inListF a, inm) exists

• We can define eAppend by:

eAppend :: µ(ListF a|m)→ µ(ListF a|m)→ µ(ListF a|m)

eAppend xs ys = (|k|inm|) xs

where k Nil = ys

k (Cons a xs) = inListF a (Cons a xs)

Representing eAppend (Again)

• Assume (µ(ListF a|m), inListF a, inm) exists

• We can define eAppend by:

eAppend :: µ(ListF a|m)→ µ(ListF a|m)→ µ(ListF a|m)

eAppend xs ys = (|k|inm|) xs

where k Nil = ys

k (Cons a xs) = inListF a (Cons a xs)

• This is identical to the definition of pure append , except that

– inm is an additional argument to the fold

Representing eAppend (Again)

• Assume (µ(ListF a|m), inListF a, inm) exists

• We can define eAppend by:

eAppend :: µ(ListF a|m)→ µ(ListF a|m)→ µ(ListF a|m)

eAppend xs ys = (|k|inm|) xs

where k Nil = ys

k (Cons a xs) = inListF a (Cons a xs)

• This is identical to the definition of pure append , except that

– inm is an additional argument to the fold

– inListF a :: ListF a (List m a)→ List m a (not ListF a [a]→ [a])

Representing eAppend (Again)

• Assume (µ(ListF a|m), inListF a, inm) exists

• We can define eAppend by:

eAppend :: µ(ListF a|m)→ µ(ListF a|m)→ µ(ListF a|m)

eAppend xs ys = (|k|inm|) xs

where k Nil = ys

k (Cons a xs) = inListF a (Cons a xs)

• This is identical to the definition of pure append , except that

– inm is an additional argument to the fold

– inListF a :: ListF a (List m a)→ List m a (not ListF a [a]→ [a])

• In particular, the pure function k is — except for types — identical to

the local function in append

Equational Properties of eAppend (Again)

• Unfolding the definitions and using the fact that (|k|inm|) is an f-and-

m-algebra homomorphism gives these equational properties, which are

identical — except for types — to the ones for append

eAppend (inListF a Nil) ys = ys

eAppend (inListF a (Cons a xs)) ys = inListF a (Cons a (eAppend xs ys))

Equational Properties of eAppend (Again)

• Unfolding the definitions and using the fact that (|k|inm|) is an f-and-

m-algebra homomorphism gives these equational properties, which are

identical — except for types — to the ones for append

eAppend (inListF a Nil) ys = ys

eAppend (inListF a (Cons a xs)) ys = inListF a (Cons a (eAppend xs ys))

• Moreover, for any fixed ys, λxs. eAppend xs ys is an m-Eilenberg-

Moore homomorphism. So for all x :: m (µ(ListF a|m))

eAppend (inm x) ys = inm (fmapm (λxs. eAppend xs ys) x)

Equational Properties of eAppend (Again)

• Unfolding the definitions and using the fact that (|k|inm|) is an f-and-

m-algebra homomorphism gives these equational properties, which are

identical — except for types — to the ones for append

eAppend (inListF a Nil) ys = ys

eAppend (inListF a (Cons a xs)) ys = inListF a (Cons a (eAppend xs ys))

• Moreover, for any fixed ys, λxs. eAppend xs ys is an m-Eilenberg-

Moore homomorphism. So for all x :: m (µ(ListF a|m))

eAppend (inm x) ys = inm (fmapm (λxs. eAppend xs ys) x)

• Unfolding the definition of inm we see that eAppend always evaluates

the effects placed “before” the first element of its first argument

Associativity of eAppend (Again) (I)

Theorem: For all xs, ys, zs :: µ(ListF a|m),

eAppend xs (eAppend ys zs) = eAppend (eAppend xs ys) zs

Associativity of eAppend (Again) (I)

Theorem: For all xs, ys, zs :: µ(ListF a|m),

eAppend xs (eAppend ys zs) = eAppend (eAppend xs ys) zs

Proof:

1. Instantiate Proof Principle 2 and prove the equation

(|k|inm|) xs = eAppend (eAppend xs ys) zs

Associativity of eAppend (Again) (I)

Theorem: For all xs, ys, zs :: µ(ListF a|m),

eAppend xs (eAppend ys zs) = eAppend (eAppend xs ys) zs

Proof:

1. Instantiate Proof Principle 2 and prove the equation

(|k|inm|) xs = eAppend (eAppend xs ys) zs

i.e.,

(|k|inm|) = g

where

g = λxs. eAppend (eAppend xs ys) zs

k Nil = eAppend ys zs

k (Cons a xs) = inListF a (Cons a xs)

Associativity of eAppend (Again) (II)

2. It suffices to prove that for all x :: ListF a (µ(ListF a|m)),

eAppend (eAppend (inListF a x) ys) zs

= k (fmapListF a (λxs. eAppend (eAppend xs ys) zs) x)

and

eAppend (eAppend (inm x) ys) zs

= inm (fmapm (λxs. eAppend (eAppend xs ys) zs) x)

Associativity of eAppend (Again) (III)

3. The first is — up to renaming and types — exactly the same as the

equation we had to show for pure append and is proved using the first

two equational properties of eAppend

Associativity of eAppend (Again) (III)

3. The first is — up to renaming and types — exactly the same as the

equation we had to show for pure append and is proved using the first

two equational properties of eAppend

4. The second is proved in just 4 lines using the third equational property

of eAppend (i.e., that λxs. eAppend xs ys is an m-Eilenberg-Moore ho-

momorphism for any fixed ys), and the facts that such homomorphisms

are closed under composition and that fmapm preserves composition

Associativity of eAppend (Again) (III)

3. The first is — up to renaming and types — exactly the same as the

equation we had to show for pure append and is proved using the first

two equational properties of eAppend

4. The second is proved in just 4 lines using the third equational property

of eAppend (i.e., that λxs. eAppend xs ys is an m-Eilenberg-Moore ho-

momorphism for any fixed ys), and the facts that such homomorphisms

are closed under composition and that fmapm preserves composition

The separation of pure and effectful parts ensures that we can reuse the

proof for append , so only have to establish the side condition for effects

Associativity of eAppend (Again) (III)

3. The first is — up to renaming and types — exactly the same as the

equation we had to show for pure append and is proved using the first

two equational properties of eAppend

4. The second is proved in just 4 lines using the third equational property

of eAppend (i.e., that λxs. eAppend xs ys is an m-Eilenberg-Moore ho-

momorphism for any fixed ys), and the facts that such homomorphisms

are closed under composition and that fmapm preserves composition

The separation of pure and effectful parts ensures that we can reuse the

proof for append , so only have to establish the side condition for effects

This proof is simpler, shorter, and more intuitive than the f-algebra proof!

Limitations

• Proof Principle 2 fails for proving

eReverse (eAppend xs ys) = eAppend (eReverse ys) (eReverse xs)

for a suitably defined eReverse :: µ(ListF a|m)→ µ(ListF a|m)

Limitations

• Proof Principle 2 fails for proving

eReverse (eAppend xs ys) = eAppend (eReverse ys) (eReverse xs)

for a suitably defined eReverse :: µ(ListF a|m)→ µ(ListF a|m)

• Intuitively, the LHS will execute all the effects of xs, then those of ys,

while the RHS will execute all the effects of ys, then those of xs

Limitations

• Proof Principle 2 fails for proving

eReverse (eAppend xs ys) = eAppend (eReverse ys) (eReverse xs)

for a suitably defined eReverse :: µ(ListF a|m)→ µ(ListF a|m)

• Intuitively, the LHS will execute all the effects of xs, then those of ys,

while the RHS will execute all the effects of ys, then those of xs

• Technically, the problem is that λxs. eAppend (eReverse ys) (eReverse xs)

is not an m-Eilenberg-Moore-algebra homomorphism for all ys

f-and-m-Algebras for Interleaved Non-termination

• The interleaving of data and non-termination effects can be made

explicit using initial f-and-m-algebras by taking m to be the non-

termination monad

f-and-m-Algebras for Interleaved Non-termination

• The interleaving of data and non-termination effects can be made

explicit using initial f-and-m-algebras by taking m to be the non-

termination monad

• In particular, the type List lazy is µ(ListF a|m)-algebra, where m is the

non-termination monad

f-and-m-Algebras for Interleaved IO Effects

• We can use the initial (ListF a)-and-IO-algebra List io to give hGetContents

a type that makes its interleaving of data and effects explicit

hGetContents :: Handle → Listio

f-and-m-Algebras for Interleaved IO Effects

• We can use the initial (ListF a)-and-IO-algebra List io to give hGetContents

a type that makes its interleaving of data and effects explicit

hGetContents :: Handle → Listio

• We can implement hGetContents using Haskell’s standard primitives

for performing IO on handles

hGetContents h = Listio (do isEOF ← hIsEOF h

if isEOF then return io Nilio

else do c← hGetChar h

return io (Consio c (hGetContents h)))

f-and-m-Algebras for Interleaved IO Effects

• We can use the initial (ListF a)-and-IO-algebra List io to give hGetContents

a type that makes its interleaving of data and effects explicit

hGetContents :: Handle → Listio

• We can implement hGetContents using Haskell’s standard primitives

for performing IO on handles

hGetContents h = Listio (do isEOF ← hIsEOF h

if isEOF then return io Nilio

else do c← hGetChar h

return io (Consio c (hGetContents h)))

• Now IO errors are reported within the scope of IO actions, and we

have access to the IO monad to explicitly close the file

Iteratees

• Iteratees interleave reading from some input with effects from some

monad, eventually yielding some output

data Reader ′ m a b newtype Reader m a b =

= Input (Maybe a→ Reader m a b)

| Yield b

Reader (m (Reader ′ m a b))

Iteratees

• Iteratees interleave reading from some input with effects from some

monad, eventually yielding some output

data Reader ′ m a b newtype Reader m a b =

= Input (Maybe a→ Reader m a b)

| Yield b

Reader (m (Reader ′ m a b))

• A value of type Reader m a b is some effect described by the monad

m, yielding either a result of type b or a request for input of type a

Iteratees

• Iteratees interleave reading from some input with effects from some

monad, eventually yielding some output

data Reader ′ m a b newtype Reader m a b =

= Input (Maybe a→ Reader m a b)

| Yield b

Reader (m (Reader ′ m a b))

• A value of type Reader m a b is some effect described by the monad

m, yielding either a result of type b or a request for input of type a

• The Reader m a b type is the initial f-and-m-algebra, where f is

data ReaderF m a b x

= Input (Maybe a→ x)

| Yield b

Iteratees

• Iteratees interleave reading from some input with effects from some

monad, eventually yielding some output

data Reader ′ m a b newtype Reader m a b =

= Input (Maybe a→ Reader m a b)

| Yield b

Reader (m (Reader ′ m a b))

• A value of type Reader m a b is some effect described by the monad

m, yielding either a result of type b or a request for input of type a

• The Reader m a b type is the initial f-and-m-algebra, where f is

data ReaderF m a b x

= Input (Maybe a→ x)

| Yield b

• We can use Proof Principle 2 to reason about programs involving

iteratees, e.g., to prove that Reader m a b is a monad whenever m is

Pipes

• The central definition of the pipes library is

dataProxy a′ a b′ b m r

= Request a′ (a→ Proxy a′ a b′ b m r)

| Respond b (b′→ Proxy a′ a b′ b m r)

| M m (Proxy a′ a b′ b m r))

| Pure r

Pipes

• The central definition of the pipes library is

dataProxy a′ a b′ b m r

= Request a′ (a→ Proxy a′ a b′ b m r)

| Respond b (b′→ Proxy a′ a b′ b m r)

| M m (Proxy a′ a b′ b m r))

| Pure r

• A value of type Proxy a′ a b′ b m r is a tree of requests of type a′ reading

values of type a, and responses of type b reading values of type b′,

interleaved with effects described by m, and yielding values of type r

Pipes

• The central definition of the pipes library is

dataProxy a′ a b′ b m r

= Request a′ (a→ Proxy a′ a b′ b m r)

| Respond b (b′→ Proxy a′ a b′ b m r)

| M m (Proxy a′ a b′ b m r))

| Pure r

• A value of type Proxy a′ a b′ b m r is a tree of requests of type a′ reading

values of type a, and responses of type b reading values of type b′,

interleaved with effects described by m, and yielding values of type r

• So the Proxy type adds the possibility of bidirectional requests and

responses to the Reader type

Pipes

• The central definition of the pipes library is

dataProxy a′ a b′ b m r

= Request a′ (a→ Proxy a′ a b′ b m r)

| Respond b (b′→ Proxy a′ a b′ b m r)

| M m (Proxy a′ a b′ b m r))

| Pure r

• A value of type Proxy a′ a b′ b m r is a tree of requests of type a′ reading

values of type a, and responses of type b reading values of type b′,

interleaved with effects described by m, and yielding values of type r

• So the Proxy type adds the possibility of bidirectional requests and

responses to the Reader type

• Proxy types are another instance of data interleaved with effects so we

can use Proof Principle 2 to reason about programs involving them

Conclusions

• f-algebras are at the wrong level of abstraction for reasoning about

data interleaved with effects

Conclusions

• f-algebras are at the wrong level of abstraction for reasoning about

data interleaved with effects

• Filinski and Støvring’s f-and-m-algebras generalize to categories other

than CPO

Conclusions

• f-algebras are at the wrong level of abstraction for reasoning about

data interleaved with effects

• Filinski and Støvring’s f-and-m-algebras generalize to categories other

than CPO

• Initial f-and-m-algebras are the effectful analogue of initial f-algebras

Conclusions

• f-algebras are at the wrong level of abstraction for reasoning about

data interleaved with effects

• Filinski and Støvring’s f-and-m-algebras generalize to categories other

than CPO

• Initial f-and-m-algebras are the effectful analogue of initial f-algebras

• Initial f-and-m-algebras separate pure and effectful concerns, and thus

let us transfer definitional and proof principles from pure to effectful

settings and capture implicit interleaving of effects with data in types

Conclusions

• f-algebras are at the wrong level of abstraction for reasoning about

data interleaved with effects

• Filinski and Støvring’s f-and-m-algebras generalize to categories other

than CPO

• Initial f-and-m-algebras are the effectful analogue of initial f-algebras

• Initial f-and-m-algebras separate pure and effectful concerns, and thus

let us transfer definitional and proof principles from pure to effectful

settings and capture implicit interleaving of effects with data in types

• Other effectful data types (iteratees, pipes, etc.) can also be expressed

as initial f-and-m-algebras, making PP2 available for them

Thank You!

Example — An Eilenberg-Moore Algebra for Errors

• An ErrorM -Eilenberg-Moore-algebra with carrier IO a is given by

l :: ErrorM (IO a)→ IO a

l (Ok ioa) = ioa

l (Error msg) = throw (ErrorCallmsg)

• The algebra l propagates normal IO actions, and interprets errors

using the exception throwing facilities of the Haskell IO monad

• The function throw and the constructor ErrorCall are part of the stan-

dard Control .Exception module

From Initial (f ◦m)-Algebras to Initial f-and-m-Algebras

Theorem: Let (f, fmapf) be a functor, and (m, fmapm, returnm, joinm)

be a monad. If we have an initial (f ◦ m)-algebra (µ(f ◦ m), in), then

m (µ(f ◦m)) is the carrier of an initial f-and-m-algebra

The proof of this theorems gives us a way to implement f-and-m-algebras

