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Abstract: We pose a research question: Can the newly-developed structural reso-
lution be used to extend coinductive methods in automated theorem proving?
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1 Coinductive methods in ITP and ATP
Mathematical induction is pervasive in programming and program verification. It arises in data
definitions (e.g., it describes some algebraic data structures), it underlies program semantics (e.g.,
it explains how to reason about finite iteration and recursion), and it gets used in proofs (e.g., it
supports lemmas about data structures used in inductive proofs). Coinduction, too, is important
in programming and program verification. It arises in infinite data definitions (e.g., lazily defined
infinite streams), semantics (e.g., of concurrency), and proofs (e.g., of observational equivalence,
or bisimulation, of potentially infinite processes). It is thus desirable to have good support for
both induction and coinduction in systems for reasoning about programs.

The first implementations of coinduction were pioneered in interactive theorem proving (ITP)
[Gim98], where the duality of inductive and coinductive methods was achieved by distinguishing
inductive from coinductive types, recursive functions consuming inputs of inductive types from
corecursive functions producing outputs of coinductive types, and methods for constructing in-
ductive proofs from those for constructing coinductive proofs.

Recently, the rapid development of automated theorem proving (ATP) in general, and SAT/SMT
solvers in particular, has opened the way to introducing induction and coinduction to ATP
[LM14, RB15, S+07], and thus to bridging the previously existing gap between coinductive
methods in ITP and ATP. Some coinductive methods of ITP can be easily translated to ATPs.
For example, definitions of (inductive and) coinductive types in ITP translate naturally into fixed-
point definitions in ATP. However, some coinductive methods in ITP are much trickier to adapt
to ATP. In particular, the notion of program and function productivity that is so central to the
theory of corecursive functions in ITP has, until recently, been virtually absent from ATP.

2 Why ITP Theory of Productivity is a challenge for ATP?
In ITP, productivity plays a role for coinductive computations dual to that of termination for
inductive ones. To safely use potentially non-terminating programs defined by corecursion, a
∗ This author is sponsored by the EPSRC Grant EP/K031864/1.
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system must be able to guarantee that they are productive, in the sense that each part of their
(potentially) infinite coinductive output will be generated in finite time. In the absence of pro-
ductivity, the soundness of systems supporting corecursion is not ensured. Some systems, in-
cluding Coq and Agda, guarantee productivity via syntactic guardedness checks [Gim98] which
ensure that any recursive call to a corecursive function occurs under a call to a constructor of
the program’s output data type, and thus that the program’s output yields finite observations by
terminating recursive programs.

In ITP, productivity and guardedness depend crucially on types and type constructors, as well
as on reductions by pattern matching computations. Indeed, the very definition of a productive
function in ITP requires that the type of its output data be coinductive. But in the untyped setting
of ATP there is no way to ensure that a function’s output is coinductive, and thus that coinductive
reasoning will be sound for it. In addition, ITP guardedness checks do not work if reductions by
pattern matching are replaced by derivations via (SLD-)resolution, as commonly used in ATP.

Some approaches to coinduction in ATP, such as those of [RB15, S+07], can construct coin-
ductive proofs only for terms that can be represented as rational (or regular) trees. The corre-
sponding regular corecursion is relatively easy to handle operationally via cycle detection [S+07],
and yields cyclic closed terms. This is crucial for SAT/SMT solvers [RB15]. Other approaches
“guard” corecursion by imposing a recursive observational measure on corecursive functions —
thus effectively viewing corecursion as a form of recursion [LM14]. All such additional restric-
tions are unnecessary in ITP, and, due to their ad hoc nature, work for only restricted cases of
corecursion. In the general case, they do not actually capture the essence of ITP productivity.

3 Can Structural Resolution help?

Structural Resolution [JKK15, JKF+15] is a newly-proposed resolution method that supports a
very natural definition of productivity, as well as semi-decidable guardedness checks for it.

The propositional resolution rule underlying most modern ATPs is given by C∨A ¬A∨D
C∨D , where

A,C,D are propositions. The standard (first-order) resolution rule is then (1) C∨A ¬B∨D
θ(C)∨θ(D) , where

A,B,C,D are (first-order) terms and θ is a unifier of A and B (i.e., θ(A) = θ(B)), and the pattern
matching reduction used in ITP is given by the restriction of the above rule to (2) C∨A ¬B∨D

θ(C)∨D ,

where A,B,C,D are (first-order) terms and θ is a matcher of A and B (i.e., θ(A) = B). The
restricted rule (2) is of course incomplete relative to rule (1), and requires a further rule to emulate
the effect of standard resolution by rule (1). This rule is given by (3) C∨A ¬B∨D

C∨A, θ(¬B)∨θ(D) , where
A,B,C,D are (first-order) terms and θ is a unifier of A and B.

Subject to careful definitions, derivations comprising rules (2) and (3) can be shown to emulate
the effect of standard resolution by rule (1) [FK15]. These are called derivations by structural
resolution. Importantly, and perhaps surprisingly, structural resolution bears properties that are
key to the theory of coinduction and productivity for resolution-based methods. Logic programs
that correspond to productive corecursive functions in ITP are precisely those for which reduc-
tions steps by rule (2) always terminate (give finite observations), and reductions by rule (3) can
be applied infinitely (thus accounting for the coinductive nature of a program’s “output”). These
two properties can be used to define productivity via structural resolution in LP. We ask: Can
structural resolution give a theory of productivity for other resolution-based ATPs?
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