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Abstract 1. Introduction

Monads are commonplace programming devices that are used toAs originally conceived by Moggimonadsform a useful compu-
uniformly structure computations with effects such as state, excep- tational abstraction which models diverse effects such as stateful
tions, and 1/0. This paper further develops the monadic program- computations, exceptions, and I/O in a modular, uniform, and prin-
ming paradigm by investigating the extent to which monadic com- cipled manner [13]. Wadler [24] led the call to turn Moggi’s theory
putations can be optimised by using generalisations of short cut fu- of effectful computation into a practical programming methodol-
sion to eliminate monadic structures whose sole purpose is to “glue ogy, and showed how to use monads to structure such computa-
together” monadic program components. tions. Monads are now firmly established as part of Haskell [16],
We make several contributions. First, we show teatryin- supported by specific language features and used in a wide range of
ductive type has an associatedild combinator and an associ-  applications. The essential idea behind monads is the type-safe sep-
ated short cut fusion rule. Second, we introduce the notion of an aration of values from effectful computations that return those val-
inductive monado describe those monads that give rise to in- ues! Because monads abstract the nature of effectful computations,
ductive types, and we give examples of such monads which areand in particular the mechanism for composing them, monadic pro-
widely used in functional programming. Third, we generalise the grams are often more highly structured than non-monadic ones
standarchugment combinators andata/augment fusion rules for which perform the same computational tasks. Monadic programs
algebraic data types to types induced by inductive monads. This thus boast the usual benefits of structured code, namely being eas-
allows us to give the firstata/augment rules for some common ier to read, write, modify, and reason about than their non-monadic
data types, such as rose trees. Fourth, we demonstrate the practieounterparts. However, compositionally constructed monadic pro-
cal applicability of our generalisations by providing Haskell imple- grams also tend to be less efficient than monolithic ones. In par-
mentations for all concepts and examples in the paper. Finally, we ticular, a component in such a program will often construct an in-

offer deep theoretical insights by showing that #ugment com- termediate monadic structure — i.e., an intermediate structure of
binators are monadic in nature, and thus that@ura/build and typem t wherem is a monad and is a type — only to have it
cata/augment rules are arguably the best generally applicable fu- immediately consumed by the next component in the composition.
sion rules obtainable. Given the widespread use of monadic computations, it is natu-
. ) . ] ral to try to apply automatable program transformation techniques
Categories and Subject DescriptorsD.3.2 [Programming Lan-  to improve the efficiency of modularly constructed monadic pro-

guage§ Language Classifications—Applicative (functional) lan-  grams.Fusionis one technique which has been used to improve
guages; F.3.2ogics and Meanings of PrografhsSemantics of  modularly constructed functional programs, and a number of fu-

Programming Languages—Denotational semantics; A3@i¢s sion transformations appropriate to the non-monadic setting have
and Meanings of PrograntsStudies of Program Constructs—  peen developed in recent years [1, 6, 7, 8, 9, 19, 20, 21, 23].
Functional constructs, program and recursion schemes Perhaps the best known of thesestsort cut fusion[6], a local

transformation based upon two combinatorssi1d, which pro-

duces lists in a uniform manner, afid1dr, which uniformly con-

sumes them — and a single, oriented replacement rule known as

the foldr/build rule. (See Section 3.) Thip1ldr/build rule re-

" - - - ) places calls twuild which are immediately followed by calls to
Supported in part by National Science Foundation grant CCF-0429072. £ ,1 41 with equivalent computations that do not construct the inter-

T Supported in part by Estonian Science Foundation grant 5567. mediate lists introduced yuild and consumed b§oldr. Elim-

 Supported in part by Estonian Science Foundation grant 5567. inating such lists via short cut fusion can significantly improve the

efficiency of programs.

Unfortunately, there are common list producers — such as the
append function — thabuild cannot express in a manner suit-
able for short cut fusion. This led Gill to introduce a list producer,
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e |n Section 3 we derive Build combinator for the least fixed
point of any functor, and show how this opens the way for an
algebra of fusion

In Section 4 we define the notion of marameterised monad
and show that the least fixed pointariy parameterised monad

is a monad. We use this observation to generalise the standard
augment combinators for algebraic data types to giugsment
combinators forll monads arising as least fixed points of pa-

subsequently been generalised to gieea/augment rules which
fuse producers and consumers of arbitrary non-list algebraic data
types [8]? Fusion rules which are dual to theldr/build rule (in
a precise category-theoretic sense) [20, 21], and rules which elimi-
nate list-manipulating operations other than data constructors [23],
have also been developed.

This paper further generalises short cut fusion to rules which
eliminate intermediate monadic structures. In order to write con-

sumers of expressions of typet in terms ofcatas we restrict
attention to types t which are inductive types in a uniform man-
ner. We call a monad with the property thai t is an inductive
data type for every type aninductive monad

Our first observation is thatuild combinators andata/build

rameterised monads. Finally, we argue that @ugment com-
binators are inherently monadic in nature by showing that the
augment combinator for each parameterised monad is interde-
finable with thebind operation for the monad which is its least
fixed point via the elegant equality

fusion rules can be defined fatl inductive types. As we demon-
strate, this opens the way for a generic theory of fusion. Next,
we ask whetherugment combinators andtata/augment rules

can similarly be generically defined. We show that there are in-
ductive types which do not supposiigment combinators (see
Seclon £2) bt It lrge i o cive moniads do_ e %" s or agebrac cata ypes o e ugnent s orl
monad and use the observation that the least fixed point of every monads ansm_g as least fixed po_lnts of pgrameterlsgd monads.
parameterised monad is an inductive monad [22] to define generic ® Ve support this development with a variety of running exam-
augment combinators andata/augment rules for all such fixed ples and a Haskell implementation. The latter can be down-
points. We illustrate our results with expression languages, rose  0aded fromhttp://wiw.mcs.le.ac.uk/~ng13.

trees, interactive input/output monads, and hyperfunctions, all of
which are commonly used monads arising as least fixed points of
parameterised monads. When applied to types for whigment
combinators are already known, our results yield more expres-
sive augment combinators. On the other hand, the examples in-
volving rose trees and interactive input/output monads show that
there are well-known and widely used monads for which neither
augment combinators notata/augment fusion rules were previ-
ously known, but for which we can derive both. Since, as we show
in Section 4.3, théind operations for monads which are least
fixed points of parameterised monads can be written in terms of 2. Why monads?
our augment combinators, outata/augment fusion rules can be
applied whenever an application bind is followed by acata.

This is expected to be often, since thind operation is the fun-
damental operation in monadic computation. We thus expect our
catalaugment fusion rules to be widely applicable.

The results detailed in this paper are of practical interest since
the catal/augment fusion rules we develop have the potential to
improve the efficiency of modularly constructed programs using
a variety of different monads. Our results are of theoretical im-
portance as well: they clearly establish the monadic nature of our
augment combinators by showing that they are interdefinable with
the monadicbind operations. The fact that our results make it
possible to definecata/build rules for all functors, as well as
cata/augment rules for all least fixed points of parameterised
monads, suggests that they are close to the best achievable. Wi
expect, therefore, that our results will appeal to a variety of differ-
ent audiences. Those who work with monads will be interested in
parameterised monads and their applications, and those in the pro
gram transformation community will be interested in seeing their
ideas for optimising computations successfully deployed in the
monadic setting. We hope that, as with the best cross-fertilisations
of ideas, ours will enable experts in each of these communities to
gain greater understanding of, and facility with, the ideas and mo-
tivations of the other.

The concrete contributions of this paper are as follows:

augment g k = build g >>= k

A more general development augment combinators for a
larger class of data types is hard to envisage.

In Section 5 we generalise the standasta/augment fusion

We discuss related work in Section 6 and conclude in Section 7.
Throughout the paper we assume as little background of the reader
as possible. In particular, no knowledge of category theory is as-
sumed or required and, in order to make this paper accessible to
as wide an audience as possible, the correctness of the fusion rules
presented here is given in a separate paper [4]. On the other hand,
this paper is addressed to the functional programming community
and, aside from using the same combinators, is disjoint from [4].

Functional programming was recognised early on as providing a
clean programming environment in which programs are easy to
read, write, and prove correct. But the problem of performing ef-
fectful computations in a purely functional language without com-
promising the advantages of the functional paradigm proved dif-
ficult to solve. Moggi’s very nice solution was to tag types with
“flags” which indicate that effects are associated with values of
those types. For example, if is a type andn flags a particular
computational effect, them t is a new computational type whose
inhabitants can be thought of as performing effectful computations
described by and (possibly) returning results of typeFor exam-
ple, the typeInt contains integer values, while the computational
typeState Env Int contains functions which transform the cur-
rent state (given by an element of typev) into an integer value

nd a new state. (See Example 3 below.)

In order to program with computational types we need two op-
erations. The first, calledeturn, lifts any value of the underly-
ing type to the trivial computation which returns that value. The
second, calle#ind and written>>=, composes two computations
which have the same type of effect. A flagogether with its two
operations forms anonad Monads are represented in Haskell via
the type class

class Monad m where
return :: a -> m a
>>= ::ma->(a->mb) ->mb

From a semantic perspectiugsturn andbind are expected to sat-
2As is standard in Haskell, we ugeldr to denote the standard catamor-  iSfy the three monad laws [13]. These can be thought of as requir-
phism for lists. Catamorphisms for other inductive data types are written as ing that the composition of effectful computations be associative
cata. and that values act as left and right units for it. Satisfaction of the




monad laws is, however, not enforced by the compiler. Instead, it
is the programmer’s responsibility to ensure that teeurn and
bind operations for any instance of Haskell's monad class behave
appropriately.

ExAMPLE 1. The algebraic data typ&xpr a represents simple
arithmetic expressions.
data Ops = Add | Sub | Mul | Div

data Expr a = Var a | Lit Int
| Op Ops (Expr a) (Expr a)

instance Monad Expr where
return = Var
Var x >>=k =k x
Lit i >>=k = Lit i

Op op el e2 >>=k = Op op (el >>= k) (e2 >>= k)

EXAMPLE 2. The typelaybe a consists of values of typeand a
distinguished error value.

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just
Nothing >>= k = Nothing
Just x >>=k = k x

EXAMPLE 3. The typeState s a represents computations that
can change states of tygawhile computing results of type

newtype State s a = State {runState :: s -> (a,s)}
instance Monad (State s) where

return x State (\s -> (x,s))

State g >>= k = State (\s -> let (y,t) =g s

in runState (k y) t)

We conclude this section by demonstrating how monads sys-
tematise, simplify, and highlight the structure of effectful programs
by allowing us to structure them as though they were non-effectful.
Suppose we want to write an evaluagéenl :: Expr Int -> Int
for (closed) expressions over the typeln a non-monadic setting
we might have the clause

eval (Op Div el e2) = (eval el) ‘div‘¢ (eval e2)
together with similar clauses for expressions involving the other

arithmetic operators. To better accommodate exceptions — arising,

for example, from attempting to divide by 0 — we could instead use
a monadic evaluatoeval’ :: Expr Int -> Maybe Int and
write

eval’ (Op Div el e2) = 1liftM2 div (eval’ el)
(eval’ e2)

Here,1iftM2 is a built-in Haskell function which lifts functions
over types to functions over their corresponding monadic types.
Note how the essential structure of the computation remains faith-
fully represented in the definition afval’ while all error han-
dling is abstracted and hidden in the use of the monadic operation
1iftM2.

3. Short cut fusion

[al > D
->n
-> ¢ z (foldr c n zs)

foldr :: (a ->b ->b) -> b >
foldr ¢ n xs case xs of []
Z:zs

build :: (forall b. b) > b -> b) -> [a]

build g = g (:) [

(a =>b —>

(a->b ->b) ->b ->b)
-> [a] -> [a]

augment :: (forall b.

augment g xs = g (:) xs

sum :: [Int] -> Int
sum xs = foldr (+) O xs
map :: (a -> b) -> [a]l -> [b]

map £ xs = build (\ ¢ n -> foldr (¢ . f) n xs)

Figure 1. Combinators and functions for lists

languages like Haskell this is expensive, both slowing execution
time and increasing heap requirements.

3.1 Short cut fusion for algebraic data types

Fortunately, fusion rules often make it possible to avoid the
creation and manipulation of intermediate data structures. The
foldr/build rule [6], for example, capitalises on the uniform
production of lists viabuild and the uniform consumption of
lists viafoldr to optimise list-manipulating programs. Intuitively,
foldr ¢ n xs produces a value by replacing all occurrences of
(:) in xs by c and the single occurrence @i in xs by n. For
instance,foldr (+) 0 xs sums the (numeric) elements of the
list xs. The functionbuild, on the other hand, takes as input a
function g providing a type-independent template for construct-
ing “abstract” lists, and produces a corresponding “concrete” list.
For examplepuild (\c n -> ¢ 3 (c 7 n)) produces the list
[3,7]. The Haskell definitions ofoldr andbuild, as well as
those of other list-processing functions used in this paper, are given
in Figure 1. The recursive combinatépldr is standard in the
Haskell prelude.

The foldr/build rule serves as the basis for short cut fusion.
It states that, for every closed typeand every closed function
g :: forall b. (t -=> b -> b) -> b -> b,

)

Here, type instantiation is performed silently, as in Haskell. When
this law, considered as a replacement rule oriented from left to
right, is applied to a program, it yields a new program which
avoids constructing the intermediate list producedbtyld gand
immediately consumed b§oldr c ninthe original. Thus, ifum
andmap are defined as in Figure 1, andsiir x = x * x, then

foldr ¢ n (build g) =g cn

[Int] -> Int
sum (map sqr xs)
foldr (+) 0

(build (\¢ n -> foldr (c . sqr) n xs))
= (\c n -> foldr (c . sqr) n xs) (+) O
foldr ((+) . sqr) O xs

sumSgs ::
sumSgs xs

No intermediate lists are produced by this versioswiSgs.
Transformations such as the above can be generalised to other

As already noted, modularly constructed programs tend to be lessdata structures. It is well-known that every algebraic data fype

efficient than their non-modular counterparts. A major difficulty is
that the direct implementation of compositional progrditesally

— whose definition appears in, e.g., [8] — has an associaied
combinator and an associatedati 1d combinator. Operationally, the

constructs, traverses, and discards intermediate data structures —eata combinator for an algebraic data type¢akes as input appro-

although they play no essential role in a computation. Even in lazy

priately typed replacement functions for eachD&f constructors



cata-E :: (a -> b) -> (Int -> b) -> accum :: Expr a -> [a]

(Ops => b ->b ->b) -> Expr a - > b accum = cata~E (\x -> [x]) (\i -> [1) (\op —> (++))
cata-E v 1 o e = case e of

Var x => v x map-E :: (a -> b) -> Expr a -> Expr b

Lit i -> 11 map-E env e = build-E

Op op el e2 -> o op (cata-E v 1 o el) (\v 1 0o -> cata-E (v . env) 1 o e)

(cata-E v 1 o e2)
subst = (a -> Expr b) -> Expr a -> Expr b
build-E :: (forall b. (a -> b) -> (Int -> b) -> subst env e = augment-E
(Ops => b => b -> b) -> b) -> Expr a (\v 1 0 ->cata-E v 1 o e) env
build-E g = g Var Lit Op

Figure 3. Functions for expressions
augment-E :: (forall b. (a -> b) -> (Int -> b) ->

(Ops -=> b ->Db ->b) -> b) >

(a -> Expr c) -> Expr ¢ implementations of these rules. This opens the way foalge-
augment-E g v = g v Lit Op bra of fusion which allows us to define generic fusion rules which
are applicable to any data type, rather than only specific rules for
Figure 2. Combinators for expressions specific data types. HaskelBainctor class, which represents type

constructors supporting map functions, is given by

and a data elementof D. It replaces all (fully applied) occurrences  class Functor f where

of D’s constructors ird by corresponding applications of their re- fmap :: (a ->b) >fa->fb
placement functions. Thieuild combinator for an algebraic data
type D takes as input a functiog providing a type-independent
template for constructing “abstract” data structures from values. It
instantiates all (fully applied) occurrences of the abstract construc-
tors which appear ig with corresponding applications of the “con-
crete” constructors df. Versions of these combinators and related
functions for the arithmetic expression data type of Example 1 ap-

The functionfmap is expected to satisfy two semantic functor laws
stating thatfmap preserves identities and composition. Like the
monad laws, they are enforced by the programmer rather than by
the compiler.

Given an arbitrary functof we can implement its least fixed
point andcata andbuild combinators as follows:

pear in Figures 2 and 3. As we will see, the typeaofment-E newtype M £ = Inn {unInn :: £ (M £)}

andsubst are more general than those in [8] — a benefit arising

from our monadic perspective. cata-f :: Functor f => (f a -> a) ->M f -> a
Compositions of data structure-consuming and -producing cata-f h (Inn k) = h (fmap (cata-f h) k)

functions defined using theata andbuild combinators for an

algebraic data type can be fused via @aata/build rule forD. For build-f :: Functor f =>

example, the rule for the data tyjgpr t states that, for every (forall b. (f b -=>b) -=>b) > M £

closed typet and every closed functiog :: forall b. (t -> build-f g = g Inn

) -> (Int =>b) > (Ops -> b -> b => b) -> b, The definition of the type! f represents in Haskell the standard

cata-E v 1 o (build-E g) = gv 1l o 2 categorical formulation of the initial algebra/least fixed point pf
while cata-£ represents the uniqgue mediating map from the initial
algebra off to any otherf-algebra. For a categorical semantics of
build and the other combinators introduced in this paper see [3].
renameAccum :: (a -> b) -> Expr a -> [b] By contrast with the variousuild combinators that have previ-
ously been defined for specific data types, théld combinators
defined above are entirely generic. Moreover, all previously known
definitions ofbuild for specific types are instances of these. We
renameAccum env e = accum (map-E env e) call a type of the formM £ for an instancet of the Functor class
Using rule (2) and the definitions in Figure 3 we can derive the anlndu_ctlve d_ata typeand we call an _eI_e_ment ofan |nduct|_ve data
following optimised version afenameAccum: type gnnd_uctlve _data structureBy definition, every algebraic data
type is an inductive data type.

EXAMPLE 4. Letenv :: a -> bbe arenaming environment and
e be an expression. The function

which accumulates variables of renamings of expressions, can be
defined modularly as

renameAccum env e

cata-E (\x -> [x]) (\i -> [1) (\op -> (++)) EXAMPLE 5. The algebraic data typ&zpr a in Example 1 is
(build-E (\v 1 o -> cata-E (v . env) 1 o e)) M (E a) forthe functoiE a defined by

(\v1lo->cata-E (v . env) 1 o e)

Ax -> [x]) (\i -> [1) (\op —> (++))

data Ea b =Var a | Lit Int | Op Ops b b

= cata-E ((\x > [x]) . env) (\i -> [D) EXAMPLE 6. An interactive input/output computatidi8] is ei-
(\op => (++)) e ther i) a value of typex, ii) an input action, which foeveryinput
Unlike the original expressioaccun (map-E env e), the opti- token of typei results in a new interactive input/output compu-

mised version ofenameAccum does not construct the renamed  tation, or iii) an output of an output token of typeand a new
expression but instead accumulates variables “on the fly” while interactive input/output computation. The algebraic data type

renaming. data IntI0 i o a = Val a | Inp (i -> IntI0 i o a)

3.2 Short cut fusion for functors | Outp (o, IntI0 i o a)

In this section we show that the least fixed point of every func- of such computations is the least fixed point of the furictar o a
tor has an associatethta/build rule and provide clean Haskell — where



dataKioab=ValIC(@->b) |0 (,b) fmap f xs = build-f

. . . o -> - . i
We can derive &uild combinator fork i o a by instantiating ke cata~f (k . bmap £ id) xs)

our generic definition obuild.” Writing £ fork i o agives EXAMPLE 7. If £ is the bifunctorE from Example 5 then the above

cata-f :: (a -> b) -> ((1 -> b) -> b) -> instance declaration gives the functimap-E from Figure 3. Using
((o,b) => b) -> IntI0 i oa->b this definition offmap we have, for every bifunctdt, thecata/map
cata-f v p q k = case k of fusion rules
Val x -> vV X

cata-f k (fmap f xs)
= cata-f k (build-f
(\k -> cata-f (k . bmap f id) xs))
= cata-f (k . bmap f id) xs

Inp h -> p (cata-f v p q . h)
Outp (y,z) -> q (y, cata-f v p q 2z)

build-f :: (forall b. (a -> b) -> ((i -> b) -> b)
-> ((o,b) => b) > b) -> IntI0 i o a

build-f g = g Val Inp Outp fmap f (build g) = build-f

(\h > g (h . bmap £ id))
Pleasingly, our generieata andbuild combinators for any
functor £ can be used to eliminate inductive data structures of type
M £ from computations. Foeveryfunctor £, and for every closed
functiong of closed typeforall b. (f b -> b) -> b, we can

generalise rules (1) and (2) to the followingta/build rule for f£:

The first expression in the first rule above constructs an interme-
diate data structure vigmap and then immediately consumes it
with a call to cata-f. The optimised final expression avoids this.
In the second fusion rule, the right-hand side expression is a call
to build, making further fusions possible. Developingagebra
cata-f h (build-f g) = gh ) of fusionincorporating generic rules such as these is an exciting

. ossibility.
In Section 3.1 we saw how thi&1dr/build rule can be used P vy

to eliminate fromsumSqs the intermediate list produced map
and consumed byum. In Example 4, we saw how theata/build 4. Augment
rule for expressions can be used to eliminate fagshameAccum
the intermediate expression producedmrap-E and consumed by
accum. Since modularly constructed programs often dseas
to consume data structures producedmbys, it is convenient to
derive a genericata/map fusion rule that can be instantiated at
different types, rather than having to invent a new such rule for
each data type. We now show that aurild combinators make
this possible.

A bifunctoris a functor in two variables. In Haskell, we have

The instance obuild-E used inmap-E in Figure 3 can be thought
of as constructing particularly simple substitution instances of ex-
pressions. It replaces data associated with the non-recursive con-
structorVar by new data, but not with arbitrary expressions. As
demonstrated above, the process of mapping over an expression in
this way and then accumulating variables in the resulting expres-
sion is well-suited for optimisation via theata/build rule for
expressions.

Although it is possible to useuild-E to construct more gen-
class BiFunctor f where eral substitution instances of expressions which replace data with

bmap :: (a ->b) -> (¢ ->d) ->fac->fbd arbitrary expressions — and, indeed, to baé1d-f to construct
general substitution instances of structures of any inductive data
typeM f — thebuild representations of these more robust substi-
tution instances are inefficient. The problem is that extra consump-
tions must be introduced to process the subexpressions introduced
by the substitution. Unfortunately, subsequent removal of such con-
sumptions via fusion cannot be guaranteed [5].
newtype Mu f a = In {unIn :: £ a (Mu £ a)} Suppose, for example, that we want to write a substitution

function for expressions of typexpr a in terms ofbuild-E and

cata-f :: BiFunctor f => (f a ¢ ->c) -> Mu f a > ¢ cata-E. Itis tempting to write
cata-f h (In k) = h (bmap id (cata-f h) k)

If £ is a bifunctor then, for every type £ a is a functor, and the
typeM (f a) is sensible. If we define the type constructor £
byMu £ a = M (£ a) then, by inlining the definition aft in that
of Mu f, we see thaMu £ is a functor and itxata andbuild
combinators can be represented in Haskell as

badSub :: (a -> Expr a) -> Expr a -> Expr a

build—f :: (forall c. (f ac => ¢c) => ¢) => Mu f a badSub env e = build-E (\v 1 o -> cata-E env 1 o e)

build-f g = g In but the expression on the right hand side is ill-typatk has type

Here, we have writtenata—f andbuild-f rather tharcata-(f a) a -> Expr a, While build-E requirescata-E's replacement for

andbuild-(f a), respectively. Suppressing reference to the type V2T t0 be of the more general type -> b for some type variable
a is reasonable because the definitions of Baé1ld and cata b. The difficulty here is that the constructors in the expressions
combinators fof a are uniform ina. The function introduced byenv are part of the result ofadSub, but they are

not properly abstracted yuild-E. More generally, the argument
fmap :: (a ->b) >ha->hb g to build-E must abstractll of the concrete constructors that
for a functorh can be defined in terms ehta-f providedh a is appear in the data structure it produces, not just the top-level ones
uniformly a least fixed point. This is certainly the case whésiof contributed byg itself. To achieve this, extra consumptions using

the formMu £ for some bifunctort, and we have cata-E are required:

instance BiFunctor f => Functor (Mu f) where go?$Sub env e = bUil?EE y y )
v 1 o -> cata-E cata-E v 1 0) . env) 1 o e
3Here, and at several places below, we must appropriately unbundle type . Lo .
isomorphisms to obtain the desired instantiation. So rather ¢aaa-£ In the Ilterature,_ ellmlnat_lng such extra consumptions h_as been ad-
forf=K i o ahavingtype(X i o ab -> b) -> IntI0 i 0 a -> dressed by the introduction of more geneta@gment combinators.

b, we take it to have the type given above. Unbundling is done without The augment combinator for lists was introduced in [5] and ap-
comment henceforth. pears in Figure 1. Analogues for arbitrary algebraic data types are



given in [8]; theaugment combinator given in [8] for th&xpr data
type, for example, is

aug-E :: (forall b. (a -> b) -> (Int -> b) >
(Op =>b ->b ->b) =>b) ->
(a -> Expr a) -> Expr a
aug-E g v = g v Lit Op

Note that the type okug-E is more restrictive than that of the
augment combinatoraugment-E developed in this paper, which

appears in Figure 2. Usinghg-E we can expressubst as
subst env e = aug-E (\v 1 o -> cata-E v 1 o e) env

The aug-E combinator offers more than a nice means of ex-

the correspondinguild combinator with a function which re-
places data/values by structures/computations, and ii) the essence
of monadic computation is precisely a well-behaved notion of such
replacement. But we see these as evidence thatuifeent com-
binators are inherently monadic in nature. Moreover, as discussed
at the end of Section 4.3, thmgment combinators bear relation-
ships to their correspondinguild combinators similar to those
that thebind operations bear to their correspondifigaps. That
is, bothbuild andfmap support the replacement of data by data,
while augment andbind allow the replacement of data by struc-
tures. Of coursegugment andbind are defined for monads, while
build andfmap are defined for functors.

This theoretical insight offers practical dividends. As we demon-

pressing substitution, however. When expression-producing func- Strate below, it allows us to define more expressivgment

tions are written in terms okug-E and are composed with
expression-consuming functions written in terms cafta-E, a
catalaugment rule generalising theata/build rule for expres-

combinators, and more generehta/augment rules, than those
known before. It also allows us to definegment combinators and
catalaugment rules for types for which these were not previously

sions can eliminate the intermediate data structure produced byknown to exist. We briefly illustrate our results before proceeding

aug-E. This fusion rule asserts that, for every closed tyad ev-
ery closed functiog :: forall b. (t -> b) -> (Int -> b)
-> (0ps => b -> b -> b) -> b,

cata-E v 1 o (aug-E g £) 4)

= g (cata-rEvlo. f)1lo

EXAMPLE 8. First inlining the aug-E form of subst above and
the cata-E form of accum from Figure 3, and then applying the
above rule, eliminates the intermediate expression in

substAccum ::
substAccum env e =

(a -> Expr b) -> Expr a -> [b]
accum (subst env e)

to give

cata-E (accum . env) (\i -> [1)

N\op —> (++)) e

substAccum env e =

with the formal development of the monadiegment combinators
and their associated fusion rules in the next section.

EXAMPLE 9. The data type

data Rose a = Node a [Rose a]

of rose trees has no non-recursive constructors. The associated
augment combinator of [8] therefore does not allow the replace-
ment of data of type with rose trees. But we will see in Section 4.3
that Rose is a monad, and thus that theigment combinator for
Rose defined in this paper does allow such replacements. In fact,
it allows replacements of data of typewith structures of type
Rose b for anyb.

ExampPLE 10. The inductive data type

Node (Tree a b) a (Tree a b)

data Tree a b =
| Leaf b

This example generalises Example 4 since renaming is a specialhas one non-recursive constructor storing data of typeThe

case of substitution.

Note thataugment combinators are derived only for algebraic

associatechugment combinator of [8] thus supports replacement
functions of typeb -> Tree a b. But sinceTree a is also a
monad, theaugment combinator defined in this paper supports

data types in [8]. In Section 5 we generalise the combinators of [8] replacement functions of the more general tgpe> Tree a c.

to giveaugment combinators, and analogues of deeta/augment

rule (4), for non-algebraic inductive data types as well. The precise 4.2 Parameterised monads

relationship between our combinators and those of [8] is discussed
in Section 4.5 below, where we show how, for algebraic data types

the latter can be derived from the former.

4.1 Introducing monadic augment
We have seen that Build combinator can be defined for any

We have argued above that the essence cfwgment combina-

' tor is to extend its correspondingiild combinator with replace-

ment functions mapping data/values to structures/computations.
The types of the structures produced by shgment combinators
must therefore be of the form a for some monaad. But if we
want to be able to consume withtas the monadic structures pro-

functor. A natural question raised by the discussion in the previous duced byaugment combinators then we must restrict our attention

section is thus: For how general a range of functorsaugment
combinators be defined?
The essence afugment is to extendouild by allowing data

structure-producing functions to take as input additional replace- on monads of the form a =

ment functions. In [5], theppend function is the motivating ex-
ample, and the replacement function argument to dtigment

to those monads for which cata combinators can be defined. This
is possible provided is an inductive monad.

One way to specify inductive monads uniformly is to focus
Mu f a for a bifunctorf. As we
have seenMu f is a functor. But it is clear thallu f is not,
in general, a monad. Indeed, the data typee a b from Ex-

combinator for lists replaces the empty list occurring at the end ample 10 can be written aSree a b = Mu (T b) a where

of append’s first input list with append’s second input list. Sim-

ilar combinators are defined for arbitrary algebraic types in [8].

data Tbac=Ncac /| L bbutTree a bisnotamonad
in a, i.e., does not admit a substitution functibfee a b -> (a

There, each constructor of an algebraic data type is designated ei—> Tree ¢ b) -> Tree c b. Defining such a function would

ther recursive or non-recursive, and tiggment combinator for

entail constructing new trees from old ones by replacing each in-

each algebraic data type allows the replacement of data stored aternal node in a given tree by a new tree. Since there is no way to
the non-recursive constructors with arbitrary elements of that data do this, we see thatree a b is an example of a common induc-

type. (See Section 4.5.)

tive type which does not support angment combinator. In light

We take a different approach in this paper. We, too, start of this observation, it is quite satisfying to find weak and elegant

from the observations that i) eactugment combinator extends

conditions onf which guarantee thatu £ is indeed a monad.



To define these conditions we introduce the notion qfsa
rameterised monafP2]. Parameterised monads are represented in
Haskell via the following type class:

class PMonad f where

preturn :: a -> f a c
>>1) :fac->(@->fbc)>fbc
pmap (c>d) >fac->fad

The operationgpreturn, >>=, andpmap are expected to satisfy the
following five parameterised monad laws:

>>! preturn = id

(>>! g) . preturn = g

>S>E (OG> g) . §) = (> ) > 3)

pmap g . preturn = preturn

pmap g . (>>! j) = (>>! (pmap g . j)) . pmap g

Thus a parameterised monad is just a type-indexed family of mon-
ads. That is, for each type, the mapf’ c sending a typea to

f a cisthe monad whoseeturn operation is given bpreturn,

and whos&ind operation is given by>!. Note how the first three
parameterised monad laws ensure this. Moreover, the fact that

is a monaduniformly in c is expressed by requiring the opera-
tion pmap to be such that every map :: ¢ -> d lifts to a map
pmap g betweenthe monads candf’ d.Thisisensured by the
last two parameterised monad laws. Intuitively, we think»f as

preturn = Val
Val x >>!' h =h x
Con y >>! h = Con y
pmap g (Val x) = Val x

pmap g (Con y) = Con (fmap g y)

The nameSumFunc reflects the fact thatumFunc h a is the sum

of the functorh and the constantly-valued functor. The data type
Expr afrom Example 1is (essentially, i.e., ignoring terms induced
by the “extra” lifting implicit in the data declaration fom b)

Mu (SumFunc h) afor

data h b = Lit Int | Op Ops b b

The data typeIntI0 i o a of interactive input/output compu-
tations from Example 6 is (essentiallyp (SumFunc h) a for
h =%k ioanddata k i ob=1I (i ->b) | 0 (o,b).

A parameterised monad of the for8umFunc h constructs
monads with a tree-like structure in which data is stored at the
leaves. We can instead consider monads with a tree-like struc-
ture in which data is stored at the nodes, i.e., in the recursive
constructors. These are induced by parameterised monads of the
form ProdFunc h a b = Node a (h b). Because the>! op-
eration of a parameterised monad must replace (internal) tree nodes
with other trees, the branching structure of such trees must form a
monoid. We therefore restrict attention to “structure functars”

replacing, according to its second argument, the non-recursive datasuch that, for each type, the typeh t forms a monoid. This re-

of type a in structures of typef a c, and ofpmap as modifying,

according to its first argument, the recursively defined substructures

of structures of typ€ a c to give corresponding structures of type
f a d. As for the monad and functor laws, the compiler does not

check that the operations of a parameterised monad satisfy the re- plus ::

striction is captured in the following Haskell type class definition:

class Functor h => FunctorPlus h where
zero :: h a
:ha->ha->ha

quired semantic conditions. Note that a parameterised monad is aThe programmer is expected to verify that the operatian® and

special form of bifunctor witlpmap, >>!, andpreturn implement-
ing the requirecmap operation:

instance PMonad m => BiFunctor m where
bmap f g xs = (pmap g xs) >>! (preturn .

f)

There are many parameterised monads commonly occurring in
functional programming. To illustrate, we first show that the ex-
pression languagexpr a is generated by a parameterised monad.
We then give three different mechanisms for constructing parame-

terised monads and, for each such mechanism, give a widely used
example of a parameterised monad constructed using that mecha- pnap g (Node x t)

nism.

ExAamMPLE 11. We can derive expression monads from parame-
terised monads as follows. If

data E a b =Var a | Lit Int | Op Ops b b

as in Example 5, theh is a parameterised monad with operations

given as follows, an@xpr a = Mu E a.
instance PMonad E where

preturn = Var

Var x >>! h =h x

Lit i >>!' h = Lit i

Op op el e2 >>! h = 0Op op el e2

pmap g (Var x) = Var x

pmap g (Lit 1) = Lit i

pmap g (Op op el e2) = Op op (g el) (g e2)

ExamMPLE 12. If h is any functor, then the following defines a
parameterised monad:

data SumFunc h a b = Val a | Con (h b)

instance Functor h => PMonad (SumFunc h) where

plus form a monoid orh a.

EXAMPLE 13. If h is an instance of thBunctorPlus class, then
the following defines a parameterised monad:

newtype ProdFunc h a b = Node a (h b)

instance FunctorPlus h => PMonad (ProdFunc h) where
preturn x = Node x zero
Node x t >>! k let Node y s = k x

in Node y (plus t s)

Node x (fmap g t)

A commonly occurring data type which is the least fixed point
of a parameterised monad of the folProdFunc h is the data
type of rose trees from Example 9. Indeed, the data Repe is

Mu (ProdFunc [1) where[] is the list functor and

instance FunctorPlus [] where
zero ]
plus = (++)

Our final example of a general mechanism for generating
parameterised monads concerns a generalisation of hyperfunc-
tions [10]. Here, we start with a contravariant “structure functor”,
i.e., with a functor in the class

class ContraFunctor f where

cfmap :: (@ ->b) > f b ->fa
ExAMPLE 14. If h is a contravariant functor, then the following
defines a parameterised monad:

newtype Hh a b =H {unH :: h b -> a}

instance ContraFunctor h => PMonad (H h) where
preturn x =H (\f -> %)



Hh >! k =H (\f -> unH (kx (h £)) £) the situation for inductive data types, we call a type of the form
pmap g (Hh) = H (\f -> h (cfmap g £)) Mu f awhich is induced by a parameterised monad in this way a
parameterised monadic data typeurther, we call an element of
a parameterised monadic data typpasiameterised monadic data
structure

We now consider the relationship betweetigment, build,
newtype Hyp e a = Hyp {unHyp :: (Hyp e a -> e) -> a} and bind. We have seen above that tbénd operation for the
least fixed point of a parameterised monad can be defined in terms

b —> o Thi le sh that the data t induced b _of the associatedugment combinator. It is also known that the
> e. 1his example SHows that In€ data types induced by param-y ;) 3 compinators for specific data types can be defined as spe-
eterised monads go well beyond those induced by polynomial func-

: . L . ..~ cialisations of theaugment combinators for those types, e.g.,
tors, and include exotic and sophisticated examples which arise in build g = augment g [1. OUr generic definitions allow us to

functional programming. show that this holds in general. We have, for every parameterised

We now turn our attention to showing that every parame- Monadt:
terised monad has aaugment combinator and an associated build-f g >>= k = augment-f g k (5)
cata/augment fusion rule. This will allow us to show that every . .
least fixed point of a parameterised monad is a monad by writing S€tting k = return and using the monad laws, we see that
the requiredbind operation for the least fixed point in terms of ~Puild-f is definable fromaugment-£. Together with the obser-
the augment combinator for the parameterised monad whose least Vation that
fixed point it is. That this can be done is very important and we fmap k = >>= (return . k)
will return to it in the next section. We will also show there that we
can write theaugment combinators in terms of their corresponding
binds, and thus that theugment combinators really are gmonadic
in nature.

An example of a data type which arises as the least fixed point
of a parameterised monad of the fornh is the data type of
hyperfunctions with argument typeand result typea:

Indeed,Hyp e isMu (H h) for the contravariant functoh b =

the equality (5) shows that the implementatiorbafi1d in terms

of augment is similar to that offmap in terms ofoind. But (5) also
shows howaugment combinators can be defined in termstaihd
operations. The equality (5) is very elegant indeed! In addition, it
4.3 Augment for parameterised monads provides support for our assertion that thegment combinators

are monadic by demonstrating that they are interdefinable with, and

The cen_tral contribution of this paper is_the definition, for each pa- pance are essentially optimisable forms of, 5hed operations for
rameterised monag] of anaugment combinator and¢ata/augment their associated monads.

fusion rule for the monattu £. Our definition is entirely generic,
and extends the definition of the&gment combinators from [8] to 4.4 Examples
accommodate non-algebraic inductive data types.

If £ is a parameterised monad then we can defineugnent
combinator for it by

Examples of the monads argigment combinators derived from
the parameterised mona#ls SumFunc (k i o), ProdFunc [],
andH hforh b = b -> e from Examples 11 through 14 appear

augment-f :: PMonad f => (forall c. below. In the interest of completeness we give the correspondence
(fac->c¢c) >c) >(a->Mafb)>Mifb between the generic combinators derived from the definition based
augment-f g k = g (In . ( >>! (unIn . k))) on parameterised monads and the specific combinators given earlier

for the expression language in Example 1. The monadic interpre-
tation of ouraugment combinators makes it possible to generalise
those of [8], which allow replacement only of data stored in the
non-recursive constructors of data types, to allow replacement of
data stored in recursive constructors of data types as well. (See Ex-
ample 17.) It also makes it possible to go well beyond algebraic
data types, as is illustrated in Example 18.

Here,>>! (unIn . k) isthe application of the infix operatop !

to its second argument. We can now see clearly that the definition
of augment is the same as that ®uild, except that it allows an
extra input of typea -> Mu f b which is used to replace data
of type a in the structure generated lgywith structures of type

Mu f b. Note thata -> Mu f b is the type of a Kleisli arrow for
what we will see is thenonadvu f. Itis theaugment combinators’

ability to consume Kleisli arrows — mirroring theind operations’ ExamMPLE 15. If E is the parameterised monad from Example 11,
ability to do so — that precisely locatesigment as a monadic then the data type induced lyis the expression monétkpr a
concept. Indeed, as we now show, thiad operation foMu f can from Example 1, whoseeturn andbind operations are defined
be written in terms of theugment combinator forf. below. Instantiating the generic derivations of tbeta, build,
We have already observed thafifs a bifunctor thettu f is a and augment combinators forE and then simplifying the results

functor. But if £ satisfies the stronger criteria on bifunctors neces- gives thecata, build, andaugment combinators in Figure 2.
sary to ensure that it is a parameterised monad, ety is actu-

ally an inductive monad. The relationship between a parameterised
monadf and the induced monadh f is captured in the Haskell
instance declaration

return x = In (preturn x) = In (Var x) = Var x
e >>=k = augment-E g k
where g h 1 o = cata-Eh 1 o e

= g k Lit Op
instance PMonad f => Monad (Mu f) where where g h 1 o = cata-Eh 1o e
return x = In (preturn x) = cata-E k Lit Op e
x >>= k = augment-f g k where g h = cata-f h x = case e of
- . . . Var x -> k x
Although not stated explicitly, this instance declaration entails that Lit i -> Lit i

if £ satisfies the semantic laws for a parameterised monad, then
Mu f is guaranteed to satisfy the semantic laws for monads. More-
over, whileMu £ may support more than one choice of monadic
return andbind operations, this declaration uniquely determines
a choice of monadic operations fisn £ which respect the struc-  EXAMPLE 16. If £ = SumFunc (k i o) is the parameterised
ture of the underlying parameterised monadBy analogy with monad from Example 12, then the data type induced by/(es-

Op op el e2 -> Op op
(cata-E k Lit Op el)
(cata-E k Lit Op e2)



sentially) that of interactive input/output computations from Ex-
ample 6. Instantiating the generic derivations of teta, build,
and augment combinators for the parameterised monadields
the definitions fokcata-f andbuild-f from Example 6 and

(forall b. (a -> b) -=> ((i => b) -> b)
-> ((o,b) => b) -> b)
-> (a -> IntI0 i o c) -> IntI0 i o ¢

augment-f g k = g k Inp Outp

augment-f ::

Using the above definitions, we can also instantiate the generic
derivation of the monad operations fantI0 i o from the op-
erations for the underlying parameterised moradrhis gives

Val x
cata-f k Inp Outp intio

return x
intio >>= k =
EXAMPLE 17.If £ = ProdFunc [] is the parameterised monad
from Example 13, then the data type inducedfhyg that of rose
trees from Example 9. Instantiating the generic derivations of the
cata, build, and augment combinators for the parameterised
monadf gives

cata-f :: (a -> [b] -> b) -> Rose a -> b
cata-f n (Node x tas) = n x (map (cata-f n) tas)

build-f :: (forall b. (a -> [b] -> b) -> b)
-> Rose a

build-f g = g Node

(forall b. (a -> [b] -> b) -> b)
-> (a -> Rose c¢) -> Rose ¢
augment-f g k = g (\x t -> let Node y s = k x
in Node y (t ++ s))

augment-f ::

The definitions ofcata-f and build-f coincide with those
in [15]. Using the above definitions, we can also instantiate the
generic derivation of the monad operations fwse a from the
operations for the underlying parameterised modadhis gives

Node x []
cata-f (\x ts -> let Node y s = k x
in Node y (ts ++ 8)) t

return x
t >>=k

EXAMPLE 18.If £ = H h withh b = b -> e is the parame-
terised monad from Example 14, then the data type induceddy
the monad of hyperfunctions given there. Instantiating the generic
derivations of thecata, build, andaugment combinators for the
parameterised monatl gives

cata-f :: ((b ->e) ->a) ->b) >Hypea->a

cata-f h (Hyp k) =h (\g -> k (g . cata-f h))

build-f :: (forall b. (((b -> e) -> a) -> b) -> b)
-> Hyp e a

build-f g = g Hyp

(forall b. (((b -> e) -> a) -> b) -> b)
-> (a -> Hyp e c) -> Hyp e ¢

augment-f g k = g (\u -> Hyp (\f -> unHyp

(k (u £)) £))

Using the above definitions, we can also instantiate the generic
derivation of the monad operations figp e a from the opera-
tions for the underlying parameterised mong&drhis gives

augment-f ::

return x = Hyp (\k -> x)
(Hyp h) >>= k = Hyp (\f -> unHyp
& ( (£ . >k )

4.5 Representing algebraic augment

In addition to providing nevaugment combinators for rose trees,

as well asaugment combinators for other types which were not
previously known to have them, our results also generalise the
augment combinators of [8]. At first glance this does not appear to
be the case, however, since thegment combinators from [8] are
derived for all algebraic data types, while the ones in this paper are
derived for types of the formiu f a wheref is a parameterised
monad. Surely, one thinks, there are more algebraic types than
inductive monads arising as least fixed points of parameterised
monads. Put differently, it seems that one can distinguish between
recursive and non-recursive constructors, as Johann does, more
often than one can distinguish between values and computations,
as we do.

The key to resolving this apparent conundrum is the observa-
tion that, for each algebraic data type, we can form a parameterised
monad by bundling all the non-recursive constructors of the alge-
braic type together and treating them as values.allggent com-
binator derived from this parameterised monad will allow replace-
ment of all of these values, thereby achieving the expressiveness of
Johann'saugment combinators for the original algebraic data type.
Lack of space prevents a full treatment of this observation, but we
illustrate with two examples, namely Gill'sugment combinator
for lists and Johann’sugment combinator for expressions.

The list monad is not of the formu L for any parameterised
monadL. However, if we define

data L aeb=Var e | Cons a b

then, for each type, the typeL a is a parameterised monad.
The data type.t a e = Mu (L a) e can be thought of as rep-
resenting lists of elements of typethat end with elements of
type e, rather than with the empty list. We therefore have that
[a]l = Lt a O, where() is the one element type. Th&gment
combinator for this parameterised monad can take as input a re-
placement function of typ€) -> Lt a (), i.e., can take as input
another list of type. This gives precisely the functionality of Gill's
augment combinator for lists. Note the key step of generalising the
non-recursive constructdid of lists to variables.

Johann'saugment combinator for expressions allows the re-
placement of both variableand literals with other expressions.
By contrast, ouraugment combinator for the expression data
type allows only the replacement of variables with other expres-
sions. However, the same approach we used to derive the standard
augment combinator for lists works here as well. If we define the
parameterised monad

data Ex ab=0p op b b | Var a

then the typ&xpr aisMu Ex (Plus a) where

data Plus a = Left a | Right Int

Here, any occurrences of the constructeift can be thought
of as the true variables d&xpr a, while any occurrences of the
constructoRight can be thought of as its literals.

The augment combinator forEx can take as input replacement
functions of typePlus t -> Mu Ex (Plus u), which replace
both the literals and true variables with expressions of Bype: u.

This augment combinator is actually more general than the one
in [8], which forces the type of the variables being replaced to be
the same as that of the variables occurring in the replacement ex-
pressions. This extra generality, while appearing small, is actually
very useful in practice, e.g., in implementingp functions using
augment. Once again, the key step in the derivation here is the treat-
ment of the non-recursive constructors as variables in the parame-
terised monad.



Although Johann’sugment combinators can be derived from  we can derive an equivalent version fifee-vars in which the
our monadic ones, the distinction between recursive/non-recursiveintermediate expression produced bybst has been eliminated
constructors may be more intuitive for many programmers than from the modular computation:
the monadic distinction between values and computations. Of
course, wherwugment combinators based on both distinctions are  _ free—vall‘s e
available, the programmer is free to choose between them. But a~ ¢2ta E id (\i => [1)" Q\op => (++)) (augment-E
monadicaugment may be available even if an algebraic one is not. Qv 1o > cataE v 1oe (\x=>Var [x])

= (\v1lo->cata-E v 1loe)

. . Ax => [x]) (\i => [1) Qop —> (++))
5. Generalised short cut fusion = cata-E (\x -> [x]) (\i -> [1) Qop -> (++)) e

We have seen that parameterised monads are particularly well-
behaved, in the sense that their least fixed points are inductive
monads which supporata, build, andaugment combinators.
In this section we give a generéata/augment fusion rule which
can be specialised for each parameterised monad. The rule weexampLE 20. Consider again the monad of interactive input/output
give generalises '[heata/augment rules for lists and expressions computations from Examples 12 and 16. The funcéiem plays

Note that whereas the intermediate expressions in Examples 4
and 8 are of type&Expr a, the one infree-vars has a type of
the more general forrxpr c, wherec is taken to bela].

discussed in Section 4, as well as the ones in [8]. the game in which the user chooses an integand tries to incre-
The rule says that, for each parameterised manad mentally decrease this numberady inputting a number, record-
cata-f h (augment-f g k) (6) ing that number as an output, decreasimdpy the input, and play-

ing the game from the result. Lét = SumFunc (k i o) as in
= g (b . (>>! (pmap (cata-f h)) . unIn . k)) Example 16. Then
The correctness, and indeed the derivation, of this rule is based
on a categorical interpretation of thagment combinators which
reduces correctness to parametricity; see [4] for details. As with the
genericcatal/build rule (3) from Section 3.2, the right-hand side
of this rule is an application of the abstract templgteut now the
extra replacement functianmust be blended into the algebra

As we have seen in Section 4.3, thind operation of the least ~ We can represent such a game as a tree with nodes labelled by the
fixed point of a parameterised monadatan be defined in terms of  last input and the remaining distance to go to zero. The exception
the associatedugment combinator. The possibility ocfata/bind is the root node, representing the start of the game, which does not
fusion forMu f is therefore hardwired into the very definition of  have a preceding input. For example, ignoring the branches which
parameterised monadic types. Moreover, sibted is the most fail by becoming negativeélown 3 could be represented by
fundamental of monadic operations, and since data structures uni-

down :: Int -> IntI0 Int Int Int
down n = augment-f (\v in out -> let loop x =
if x <= 0 then v x else
in (\k -> out (k, loop (x-k)))
in loop n) Val

I : 3
formly constructed visbinds are often uniformly consumed by
catas, we expect to see many applications tdaihds followed /|\
by catas in monadic code. The intermediate data structures con- (1,2) (2,1) (3,0)
structed by suclbinds and consumed by suelatas are eligible ’ ) ’
for elimination via (6) and, because thegment representation of /
eachbind is based on aata, the fused optimisation of &ind (1,1)  (2,0)

followed by acata will itself be acata. This has the important

consequence that not just a singlend followed by acata, but in

fact awhole sequencef binds followed by acata, can be opti- (1,0) (1,0)

mised by a series afata/augment fusions, each (except the first)

enabled by the one that came before. These will ripple backward, The functionresults takes as input a number and an interac-

allowing monadic code to intermingle and intermediate data struc- tive input/output computation, and returns the list of values in the

tures to be eliminated from computations. leaves of that computation. The user’s inputs are assumed to be
We now illustrate fusion using the generic rule (6). The ex- integers betweemn andn.

amples below are natural generalisations of the optimisation of

sumSqs in Section 3.1, which is typical of the applications found results :: Int -> Intl0 Int o a -> [a]

in the literature results n = cata-f v in out where

' v X = [x]
ExAMPLE 19. To compute the list of free variables appearing in in g = concat [gx | x <- [1 .. n]]
any expression, we can first substitute for each variable node in out (o, p) =p

the expression a new variable node consisting of the singleton list 1,4 instantiation of the generita/augnent rule forf = SumFunc
containing the variable name, and then accumulate the contents of (k i o)is

these lists by recursively appending them. We have
cata-f v in out (augment-f g k)

free-vars :: Expr a -> [al _ . .
= ta-f t .k t
free-vars e = cata-E id (\i -> [1) (\op -> (++)) g (cata~f v in ou ) in ou
(subst (\x -> Var [x]) e) We can optimise the function which returns the list of values

in the leaves of the game tree rooted mt Sincev x = [x],

The instantiation of the genericata/augment rule for E is in g = concat [g x | x <~ [1 .. n]], and out (o,p)

cata-E v 1 o (augment-E g k) = p, we have the following equivalent computation from which
=g (cata-Evlo.k)1lo the intermediate tree of typentI0 Int Int Int has been elim-
inated:

where cata-E and augment-E are as in Figure 2. Using this,
together with theaugment representation ofubst from Figure 3, results n (down n)



= cata-f v in out
(augment-f (\v in out ->
let loop x = if x <= 0 then v x else
in (\k -> out (k, loop (x-k)))
in loop n) Val)
= (\v in out ->
let loop x = if x <= 0 then v x else
in (\k -> out (k, loop (x-k)))
in loop n) (cata-f v in out . Val) in out

= let loop x = if x <=0
then (cata-f v in out . Val) x
else in (\k -> out (k, loop (x-k)))
in loop n
= let loop x = if x <= 0 then [x] else

in (\k -> loop (x-k))
in loop n
= let loop x = if x <= 0 then [x] else
concat [loop (x-z) | z <- [1 ..

nl]

in loop n

ExAMPLE 21. Consider again the monad of rose trees from Exam-
ples 13 and 17. The functi@wn takes a non-negative integels
input and produces a rose tree whose root is labetieshd in which

each node has one child for each non-negative integer smaller than

its label. For exampledown 3 produces
3
0 1 2
I/ \1‘

0
Lettingf = ProdFunc [] asin Example 17 we have
return : a -> Rose a
return x = Node x []
down :: Int -> Rose Int
down n = augment-f (\h ->

let loop x = h x (map loop [0 .. x-11)

in loop n) return

The functionresults returns the prefix list of data elements in a
rose tree:

Rose a -> [a]
cata-f (\x ys -> x :

results ::

results = concat ys)

The instantiation of the generiata/augment rule forf = ProdFunc
[is
cata-f no (augment g k)

=g (\x t -> let Node y s = k x
in no y (t ++ map (cata-f no) s))

Using this we can optimise the function which returns the prefix list
of data elements in the rose tree producedibyn n. Letting

no x ys = x : concat ys

g h = let loop y = h y (map loop [0 .. y-11)
in loop n
we have the following equivalent computation from which the inter-

mediate rose tree of integers produceddayn n has been elimi-
nated:

results (down n)
= cata-f no (augment-f g return)
=g (\x t -> let Node y s = return x
in no y (t ++ map (cata-f no) s))
=g (\x t -> no x) t)
= let loop y =
(\x t -> no x t) y (map loop [0 ..
in loop n

y-11)

= let loop y = no y (map loop [0 .. y-1]) in loop n
= let loop y =y : concat (map loop [0 .. y-11)
in loop n

EXAMPLE 22. Rather than give another example in the same vein

as previously, we add some variety by establishing the potential for
the optimisation of programs which manipulate hyperfunctions by
reimplementing the interface for hyperfunctions given in [10]. The

original interface was based upon the following operations:

run :: Hyp o 0o -> o
run (Hyp k) = k run

base ::
base a =

o ->Hyp i o
Hyp (\x -> a)

(<) (i > 0) ->Hypio->Hypio
f << fs =Hyp (\k -> £ (k (£s)))

We can now reimplement this library using the combinators given
in Example 18:

run = cata (\¢ -> ¢ id)
base a = build (\h -> h (\x -> a))
f << fs = build (\h -=> h (\k > f (k (cata h fs))))

Correctness of the implementationxain is proved as follows:

run (Hyp k) = cata (\¢ -> c id) (Hyp k)

(\c -> c id) (\g —>

k (g . cata (\c > c id)))
= (\g > k (g . cata (\c > ¢ id))) id
=k (id . cata (\c -> c id))

k (cata (\c¢ -> c id))
= k run

Similar proofs exist for the other combinators. Code written using
this interface can now potentially be optimised.

As a final observation, we note that, in the instance declaration
for parameterised monadic data types, we could have written the
bind operation of the monau f as

x >>=k = cata-f (In . ( >>! (unIn . k))) x

rather than in terms afugment-£. There are, however, two reasons
to not do this. First, this definition dfind is significantly less
clear than the one involvingugment-£f, and it goes against the
practice of abstracting away from programming details via high-
level combinators. The second, bigger problem for the purpose of
optimisation is that, if &ind is followed by a consumingata,
then it might not be possible to fuse theta implementing the
bind with this cata since not all compositions afatas can be
fused. To get around this difficulty we would be led to devise
some kind of strategy for marking those compositions which can
be so fused, which would be tantamount to inventingatignent
combinators.
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