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Abstract
Monads are commonplace programming devices that are used to
uniformly structure computations with effects such as state, excep-
tions, and I/O. This paper further develops the monadic program-
ming paradigm by investigating the extent to which monadic com-
putations can be optimised by using generalisations of short cut fu-
sion to eliminate monadic structures whose sole purpose is to “glue
together” monadic program components.

We make several contributions. First, we show thatevery in-
ductive type has an associatedbuild combinator and an associ-
ated short cut fusion rule. Second, we introduce the notion of an
inductive monadto describe those monads that give rise to in-
ductive types, and we give examples of such monads which are
widely used in functional programming. Third, we generalise the
standardaugment combinators andcata/augment fusion rules for
algebraic data types to types induced by inductive monads. This
allows us to give the firstcata/augment rules for some common
data types, such as rose trees. Fourth, we demonstrate the practi-
cal applicability of our generalisations by providing Haskell imple-
mentations for all concepts and examples in the paper. Finally, we
offer deep theoretical insights by showing that theaugment com-
binators are monadic in nature, and thus that ourcata/build and
cata/augment rules are arguably the best generally applicable fu-
sion rules obtainable.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Denotational semantics; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—
Functional constructs, program and recursion schemes
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1. Introduction
As originally conceived by Moggi,monadsform a useful compu-
tational abstraction which models diverse effects such as stateful
computations, exceptions, and I/O in a modular, uniform, and prin-
cipled manner [13]. Wadler [24] led the call to turn Moggi’s theory
of effectful computation into a practical programming methodol-
ogy, and showed how to use monads to structure such computa-
tions. Monads are now firmly established as part of Haskell [16],
supported by specific language features and used in a wide range of
applications. The essential idea behind monads is the type-safe sep-
aration of values from effectful computations that return those val-
ues.1 Because monads abstract the nature of effectful computations,
and in particular the mechanism for composing them, monadic pro-
grams are often more highly structured than non-monadic ones
which perform the same computational tasks. Monadic programs
thus boast the usual benefits of structured code, namely being eas-
ier to read, write, modify, and reason about than their non-monadic
counterparts. However, compositionally constructed monadic pro-
grams also tend to be less efficient than monolithic ones. In par-
ticular, a component in such a program will often construct an in-
termediate monadic structure — i.e., an intermediate structure of
type m t wherem is a monad andt is a type — only to have it
immediately consumed by the next component in the composition.

Given the widespread use of monadic computations, it is natu-
ral to try to apply automatable program transformation techniques
to improve the efficiency of modularly constructed monadic pro-
grams.Fusion is one technique which has been used to improve
modularly constructed functional programs, and a number of fu-
sion transformations appropriate to the non-monadic setting have
been developed in recent years [1, 6, 7, 8, 9, 19, 20, 21, 23].
Perhaps the best known of these isshort cut fusion[6], a local
transformation based upon two combinators —build, which pro-
duces lists in a uniform manner, andfoldr, which uniformly con-
sumes them — and a single, oriented replacement rule known as
thefoldr/build rule. (See Section 3.) Thefoldr/build rule re-
places calls tobuild which are immediately followed by calls to
foldr with equivalent computations that do not construct the inter-
mediate lists introduced bybuild and consumed byfoldr. Elim-
inating such lists via short cut fusion can significantly improve the
efficiency of programs.

Unfortunately, there are common list producers — such as the
append function — thatbuild cannot express in a manner suit-
able for short cut fusion. This led Gill to introduce a list producer,
called augment, which generalisesbuild, together with an ac-
companyingfoldr/augment fusion rule for lists [5]. This rule has

1 Monads, such as the expression monad in Example 1, which correspond
to ordinary algebraic data types can be thought of as having an effect of
storing data in a data structure.



subsequently been generalised to givecata/augment rules which
fuse producers and consumers of arbitrary non-list algebraic data
types [8].2 Fusion rules which are dual to thefoldr/build rule (in
a precise category-theoretic sense) [20, 21], and rules which elimi-
nate list-manipulating operations other than data constructors [23],
have also been developed.

This paper further generalises short cut fusion to rules which
eliminate intermediate monadic structures. In order to write con-
sumers of expressions of typem t in terms ofcatas we restrict
attention to typesm t which are inductive types in a uniform man-
ner. We call a monadm with the property thatm t is an inductive
data type for every typet an inductive monad.

Our first observation is thatbuild combinators andcata/build
fusion rules can be defined forall inductive types. As we demon-
strate, this opens the way for a generic theory of fusion. Next,
we ask whetheraugment combinators andcata/augment rules
can similarly be generically defined. We show that there are in-
ductive types which do not supportaugment combinators (see
Section 4.2), but that a large class of inductive monads do. To de-
scribe these monads, we introduce the notion of aparameterised
monad, and use the observation that the least fixed point of every
parameterised monad is an inductive monad [22] to define generic
augment combinators andcata/augment rules for all such fixed
points. We illustrate our results with expression languages, rose
trees, interactive input/output monads, and hyperfunctions, all of
which are commonly used monads arising as least fixed points of
parameterised monads. When applied to types for whichaugment
combinators are already known, our results yield more expres-
sive augment combinators. On the other hand, the examples in-
volving rose trees and interactive input/output monads show that
there are well-known and widely used monads for which neither
augment combinators norcata/augment fusion rules were previ-
ously known, but for which we can derive both. Since, as we show
in Section 4.3, thebind operations for monads which are least
fixed points of parameterised monads can be written in terms of
our augment combinators, ourcata/augment fusion rules can be
applied whenever an application ofbind is followed by acata.
This is expected to be often, since thebind operation is the fun-
damental operation in monadic computation. We thus expect our
cata/augment fusion rules to be widely applicable.

The results detailed in this paper are of practical interest since
the cata/augment fusion rules we develop have the potential to
improve the efficiency of modularly constructed programs using
a variety of different monads. Our results are of theoretical im-
portance as well: they clearly establish the monadic nature of our
augment combinators by showing that they are interdefinable with
the monadicbind operations. The fact that our results make it
possible to definecata/build rules for all functors, as well as
cata/augment rules for all least fixed points of parameterised
monads, suggests that they are close to the best achievable. We
expect, therefore, that our results will appeal to a variety of differ-
ent audiences. Those who work with monads will be interested in
parameterised monads and their applications, and those in the pro-
gram transformation community will be interested in seeing their
ideas for optimising computations successfully deployed in the
monadic setting. We hope that, as with the best cross-fertilisations
of ideas, ours will enable experts in each of these communities to
gain greater understanding of, and facility with, the ideas and mo-
tivations of the other.

The concrete contributions of this paper are as follows:

2 As is standard in Haskell, we usefoldr to denote the standard catamor-
phism for lists. Catamorphisms for other inductive data types are written as
cata.

• In Section 3 we derive abuild combinator for the least fixed
point of any functor, and show how this opens the way for an
algebra of fusion.

• In Section 4 we define the notion of aparameterised monad
and show that the least fixed point ofanyparameterised monad
is a monad. We use this observation to generalise the standard
augment combinators for algebraic data types to giveaugment
combinators forall monads arising as least fixed points of pa-
rameterised monads. Finally, we argue that ouraugment com-
binators are inherently monadic in nature by showing that the
augment combinator for each parameterised monad is interde-
finable with thebind operation for the monad which is its least
fixed point via the elegant equality

augment g k = build g >>= k

A more general development ofaugment combinators for a
larger class of data types is hard to envisage.

• In Section 5 we generalise the standardcata/augment fusion
rules for algebraic data types to givecata/augment rules forall
monads arising as least fixed points of parameterised monads.

• We support this development with a variety of running exam-
ples and a Haskell implementation. The latter can be down-
loaded fromhttp://www.mcs.le.ac.uk/∼ng13.

We discuss related work in Section 6 and conclude in Section 7.
Throughout the paper we assume as little background of the reader
as possible. In particular, no knowledge of category theory is as-
sumed or required and, in order to make this paper accessible to
as wide an audience as possible, the correctness of the fusion rules
presented here is given in a separate paper [4]. On the other hand,
this paper is addressed to the functional programming community
and, aside from using the same combinators, is disjoint from [4].

2. Why monads?
Functional programming was recognised early on as providing a
clean programming environment in which programs are easy to
read, write, and prove correct. But the problem of performing ef-
fectful computations in a purely functional language without com-
promising the advantages of the functional paradigm proved dif-
ficult to solve. Moggi’s very nice solution was to tag types with
“flags” which indicate that effects are associated with values of
those types. For example, ift is a type andm flags a particular
computational effect, thenm t is a new computational type whose
inhabitants can be thought of as performing effectful computations
described bym and (possibly) returning results of typet. For exam-
ple, the typeInt contains integer values, while the computational
typeState Env Int contains functions which transform the cur-
rent state (given by an element of typeEnv) into an integer value
and a new state. (See Example 3 below.)

In order to program with computational types we need two op-
erations. The first, calledreturn, lifts any value of the underly-
ing type to the trivial computation which returns that value. The
second, calledbind and written>>=, composes two computations
which have the same type of effect. A flagm together with its two
operations forms amonad. Monads are represented in Haskell via
the type class

class Monad m where
return :: a -> m a
>>= :: m a -> (a -> m b) -> m b

From a semantic perspective,return andbind are expected to sat-
isfy the three monad laws [13]. These can be thought of as requir-
ing that the composition of effectful computations be associative
and that values act as left and right units for it. Satisfaction of the



monad laws is, however, not enforced by the compiler. Instead, it
is the programmer’s responsibility to ensure that thereturn and
bind operations for any instance of Haskell’s monad class behave
appropriately.

EXAMPLE 1. The algebraic data typeExpr a represents simple
arithmetic expressions.

data Ops = Add | Sub | Mul | Div

data Expr a = Var a | Lit Int
| Op Ops (Expr a) (Expr a)

instance Monad Expr where
return = Var
Var x >>= k = k x
Lit i >>= k = Lit i
Op op e1 e2 >>= k = Op op (e1 >>= k) (e2 >>= k)

EXAMPLE 2. The typeMaybe a consists of values of typea and a
distinguished error value.

data Maybe a = Nothing | Just a

instance Monad Maybe where
return = Just
Nothing >>= k = Nothing
Just x >>= k = k x

EXAMPLE 3. The typeState s a represents computations that
can change states of types while computing results of typea.

newtype State s a = State {runState :: s -> (a,s)}

instance Monad (State s) where
return x = State (\s -> (x,s))
State g >>= k = State (\s -> let (y,t) = g s

in runState (k y) t)

We conclude this section by demonstrating how monads sys-
tematise, simplify, and highlight the structure of effectful programs
by allowing us to structure them as though they were non-effectful.
Suppose we want to write an evaluatoreval :: Expr Int -> Int
for (closed) expressions over the typea. In a non-monadic setting
we might have the clause

eval (Op Div e1 e2) = (eval e1) ‘div‘ (eval e2)

together with similar clauses for expressions involving the other
arithmetic operators. To better accommodate exceptions — arising,
for example, from attempting to divide by 0 — we could instead use
a monadic evaluatoreval’ :: Expr Int -> Maybe Int and
write

eval’ (Op Div e1 e2) = liftM2 div (eval’ e1)
(eval’ e2)

Here,liftM2 is a built-in Haskell function which lifts functions
over types to functions over their corresponding monadic types.
Note how the essential structure of the computation remains faith-
fully represented in the definition ofeval’ while all error han-
dling is abstracted and hidden in the use of the monadic operation
liftM2.

3. Short cut fusion
As already noted, modularly constructed programs tend to be less
efficient than their non-modular counterparts. A major difficulty is
that the direct implementation of compositional programsliterally
constructs, traverses, and discards intermediate data structures —
although they play no essential role in a computation. Even in lazy

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr c n xs = case xs of [] -> n

z:zs -> c z (foldr c n zs)

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

augment :: (forall b. (a -> b -> b) -> b -> b)
-> [a] -> [a]

augment g xs = g (:) xs

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

map :: (a -> b) -> [a] -> [b]
map f xs = build (\ c n -> foldr (c . f) n xs)

Figure 1. Combinators and functions for lists

languages like Haskell this is expensive, both slowing execution
time and increasing heap requirements.

3.1 Short cut fusion for algebraic data types

Fortunately, fusion rules often make it possible to avoid the
creation and manipulation of intermediate data structures. The
foldr/build rule [6], for example, capitalises on the uniform
production of lists viabuild and the uniform consumption of
lists viafoldr to optimise list-manipulating programs. Intuitively,
foldr c n xs produces a value by replacing all occurrences of
(:) in xs by c and the single occurrence of[] in xs by n. For
instance,foldr (+) 0 xs sums the (numeric) elements of the
list xs. The functionbuild, on the other hand, takes as input a
function g providing a type-independent template for construct-
ing “abstract” lists, and produces a corresponding “concrete” list.
For example,build (\c n -> c 3 (c 7 n)) produces the list
[3,7]. The Haskell definitions offoldr and build, as well as
those of other list-processing functions used in this paper, are given
in Figure 1. The recursive combinatorfoldr is standard in the
Haskell prelude.

Thefoldr/build rule serves as the basis for short cut fusion.
It states that, for every closed typet and every closed function
g :: forall b. (t -> b -> b) -> b -> b,

foldr c n (build g) = g c n (1)

Here, type instantiation is performed silently, as in Haskell. When
this law, considered as a replacement rule oriented from left to
right, is applied to a program, it yields a new program which
avoids constructing the intermediate list produced bybuild g and
immediately consumed byfoldr c n in the original. Thus, ifsum
andmap are defined as in Figure 1, and ifsqr x = x * x, then

sumSqs :: [Int] -> Int
sumSqs xs = sum (map sqr xs)

= foldr (+) 0
(build (\c n -> foldr (c . sqr) n xs))

= (\c n -> foldr (c . sqr) n xs) (+) 0
= foldr ((+) . sqr) 0 xs

No intermediate lists are produced by this version ofsumSqs.
Transformations such as the above can be generalised to other

data structures. It is well-known that every algebraic data typeD
— whose definition appears in, e.g., [8] — has an associatedcata
combinator and an associatedbuild combinator. Operationally, the
cata combinator for an algebraic data typeD takes as input appro-
priately typed replacement functions for each ofD’s constructors



cata-E :: (a -> b) -> (Int -> b) ->
(Ops -> b -> b -> b) -> Expr a - > b

cata-E v l o e = case e of
Var x -> v x
Lit i -> l i
Op op e1 e2 -> o op (cata-E v l o e1)

(cata-E v l o e2)

build-E :: (forall b. (a -> b) -> (Int -> b) ->
(Ops -> b -> b -> b) -> b) -> Expr a

build-E g = g Var Lit Op

augment-E :: (forall b. (a -> b) -> (Int -> b) ->
(Ops -> b -> b -> b) -> b) ->

(a -> Expr c) -> Expr c
augment-E g v = g v Lit Op

Figure 2. Combinators for expressions

and a data elementd of D. It replaces all (fully applied) occurrences
of D’s constructors ind by corresponding applications of their re-
placement functions. Thebuild combinator for an algebraic data
type D takes as input a functiong providing a type-independent
template for constructing “abstract” data structures from values. It
instantiates all (fully applied) occurrences of the abstract construc-
tors which appear ing with corresponding applications of the “con-
crete” constructors ofD. Versions of these combinators and related
functions for the arithmetic expression data type of Example 1 ap-
pear in Figures 2 and 3. As we will see, the types ofaugment-E
andsubst are more general than those in [8] — a benefit arising
from our monadic perspective.

Compositions of data structure-consuming and -producing
functions defined using thecata and build combinators for an
algebraic data typeD can be fused via acata/build rule forD. For
example, the rule for the data typeExpr t states that, for every
closed typet and every closed functiong :: forall b. (t ->
b) -> (Int -> b) -> (Ops -> b -> b -> b) -> b,

cata-E v l o (build-E g) = g v l o (2)

EXAMPLE 4. Letenv :: a -> b be a renaming environment and
e be an expression. The function

renameAccum :: (a -> b) -> Expr a -> [b]

which accumulates variables of renamings of expressions, can be
defined modularly as

renameAccum env e = accum (map-E env e)

Using rule (2) and the definitions in Figure 3 we can derive the
following optimised version ofrenameAccum:

renameAccum env e
= cata-E (\x -> [x]) (\i -> []) (\op -> (++))

(build-E (\v l o -> cata-E (v . env) l o e))
= (\v l o -> cata-E (v . env) l o e)

(\x -> [x]) (\i -> []) (\op -> (++))
= cata-E ((\x -> [x]) . env) (\i -> [])

(\op -> (++)) e

Unlike the original expressionaccum (map-E env e), the opti-
mised version ofrenameAccum does not construct the renamed
expression but instead accumulates variables “on the fly” while
renaming.

3.2 Short cut fusion for functors

In this section we show that the least fixed point of every func-
tor has an associatedcata/build rule and provide clean Haskell

accum :: Expr a -> [a]
accum = cata-E (\x -> [x]) (\i -> []) (\op -> (++))

map-E :: (a -> b) -> Expr a -> Expr b
map-E env e = build-E

(\v l o -> cata-E (v . env) l o e)

subst = (a -> Expr b) -> Expr a -> Expr b
subst env e = augment-E

(\v l o -> cata-E v l o e) env

Figure 3. Functions for expressions

implementations of these rules. This opens the way for analge-
bra of fusion, which allows us to define generic fusion rules which
are applicable to any data type, rather than only specific rules for
specific data types. Haskell’sFunctor class, which represents type
constructors supporting map functions, is given by

class Functor f where
fmap :: (a -> b) -> f a -> f b

The functionfmap is expected to satisfy two semantic functor laws
stating thatfmap preserves identities and composition. Like the
monad laws, they are enforced by the programmer rather than by
the compiler.

Given an arbitrary functorf we can implement its least fixed
point andcata andbuild combinators as follows:

newtype M f = Inn {unInn :: f (M f)}

cata-f :: Functor f => (f a -> a) -> M f -> a
cata-f h (Inn k) = h (fmap (cata-f h) k)

build-f :: Functor f =>
(forall b. (f b -> b) -> b) -> M f

build-f g = g Inn

The definition of the typeM f represents in Haskell the standard
categorical formulation of the initial algebra/least fixed point off,
while cata-f represents the unique mediating map from the initial
algebra off to any otherf-algebra. For a categorical semantics of
build and the other combinators introduced in this paper see [3].
By contrast with the variousbuild combinators that have previ-
ously been defined for specific data types, thebuild combinators
defined above are entirely generic. Moreover, all previously known
definitions ofbuild for specific types are instances of these. We
call a type of the formM f for an instancef of theFunctor class
an inductive data type, and we call an element of an inductive data
type aninductive data structure. By definition, every algebraic data
type is an inductive data type.

EXAMPLE 5. The algebraic data typeExpr a in Example 1 is
M (E a) for the functorE a defined by

data E a b = Var a | Lit Int | Op Ops b b

EXAMPLE 6. An interactive input/output computation[18] is ei-
ther i) a value of typea, ii) an input action, which forevery input
token of typei results in a new interactive input/output compu-
tation, or iii) an output of an output token of typeo and a new
interactive input/output computation. The algebraic data type

data IntIO i o a = Val a | Inp (i -> IntIO i o a)
| Outp (o, IntIO i o a)

of such computations is the least fixed point of the functorK i o a
where



data K i o a b = V a | I (i -> b) | O (o,b)

We can derive abuild combinator forK i o a by instantiating
our generic definition ofbuild.3 Writing f for K i o a gives

cata-f :: (a -> b) -> ((i -> b) -> b) ->
((o,b) -> b) -> IntIO i o a -> b

cata-f v p q k = case k of
Val x -> v x
Inp h -> p (cata-f v p q . h)
Outp (y,z) -> q (y, cata-f v p q z)

build-f :: (forall b. (a -> b) -> ((i -> b) -> b)
-> ((o,b) -> b) -> b) -> IntIO i o a

build-f g = g Val Inp Outp

Pleasingly, our genericcata and build combinators for any
functorf can be used to eliminate inductive data structures of type
M f from computations. Foreveryfunctorf, and for every closed
functiong of closed typeforall b. (f b -> b) -> b, we can
generalise rules (1) and (2) to the followingcata/build rule forf:

cata-f h (build-f g) = g h (3)

In Section 3.1 we saw how thefoldr/build rule can be used
to eliminate fromsumSqs the intermediate list produced bymap
and consumed bysum. In Example 4, we saw how thecata/build
rule for expressions can be used to eliminate fromrenameAccum
the intermediate expression produced bymap-E and consumed by
accum. Since modularly constructed programs often usecatas
to consume data structures produced bymaps, it is convenient to
derive a genericcata/map fusion rule that can be instantiated at
different types, rather than having to invent a new such rule for
each data type. We now show that ourbuild combinators make
this possible.

A bifunctor is a functor in two variables. In Haskell, we have

class BiFunctor f where
bmap :: (a -> b) -> (c -> d) -> f a c -> f b d

If f is a bifunctor then, for every typea, f a is a functor, and the
type M (f a) is sensible. If we define the type constructorMu f
by Mu f a = M (f a) then, by inlining the definition ofM in that
of Mu f, we see thatMu f is a functor and itscata and build
combinators can be represented in Haskell as

newtype Mu f a = In {unIn :: f a (Mu f a)}

cata-f :: BiFunctor f => (f a c -> c) -> Mu f a -> c
cata-f h (In k) = h (bmap id (cata-f h) k)

build-f :: (forall c. (f a c -> c) -> c) -> Mu f a
build-f g = g In

Here, we have writtencata-f andbuild-f rather thancata-(f a)
andbuild-(f a), respectively. Suppressing reference to the type
a is reasonable because the definitions of thebuild and cata
combinators forf a are uniform ina. The function

fmap :: (a -> b) -> h a -> h b

for a functorh can be defined in terms ofcata-f providedh a is
uniformly a least fixed point. This is certainly the case whenh is of
the formMu f for some bifunctorf, and we have

instance BiFunctor f => Functor (Mu f) where

3 Here, and at several places below, we must appropriately unbundle type
isomorphisms to obtain the desired instantiation. So rather thancata-f
for f = K i o a having type(K i o a b -> b) -> IntIO i o a ->
b, we take it to have the type given above. Unbundling is done without
comment henceforth.

fmap f xs = build-f
(\k -> cata-f (k . bmap f id) xs)

EXAMPLE 7. If f is the bifunctorE from Example 5 then the above
instance declaration gives the functionmap-E from Figure 3. Using
this definition offmap we have, for every bifunctorf, thecata/map
fusion rules

cata-f k (fmap f xs)
= cata-f k (build-f

(\k -> cata-f (k . bmap f id) xs))
= cata-f (k . bmap f id) xs

fmap f (build g) = build-f
(\h -> g (h . bmap f id))

The first expression in the first rule above constructs an interme-
diate data structure viafmap and then immediately consumes it
with a call tocata-f. The optimised final expression avoids this.
In the second fusion rule, the right-hand side expression is a call
to build, making further fusions possible. Developing analgebra
of fusion incorporating generic rules such as these is an exciting
possibility.

4. Augment
The instance ofbuild-E used inmap-E in Figure 3 can be thought
of as constructing particularly simple substitution instances of ex-
pressions. It replaces data associated with the non-recursive con-
structorVar by new data, but not with arbitrary expressions. As
demonstrated above, the process of mapping over an expression in
this way and then accumulating variables in the resulting expres-
sion is well-suited for optimisation via thecata/build rule for
expressions.

Although it is possible to usebuild-E to construct more gen-
eral substitution instances of expressions which replace data with
arbitrary expressions — and, indeed, to usebuild-f to construct
general substitution instances of structures of any inductive data
typeM f — thebuild representations of these more robust substi-
tution instances are inefficient. The problem is that extra consump-
tions must be introduced to process the subexpressions introduced
by the substitution. Unfortunately, subsequent removal of such con-
sumptions via fusion cannot be guaranteed [5].

Suppose, for example, that we want to write a substitution
function for expressions of typeExpr a in terms ofbuild-E and
cata-E. It is tempting to write

badSub :: (a -> Expr a) -> Expr a -> Expr a
badSub env e = build-E (\v l o -> cata-E env l o e)

but the expression on the right hand side is ill-typed:env has type
a -> Expr a, while build-E requirescata-E’s replacement for
Var to be of the more general typea -> b for some type variable
b. The difficulty here is that the constructors in the expressions
introduced byenv are part of the result ofbadSub, but they are
not properly abstracted bybuild-E. More generally, the argument
g to build-E must abstractall of the concrete constructors that
appear in the data structure it produces, not just the top-level ones
contributed byg itself. To achieve this, extra consumptions using
cata-E are required:

goodSub env e = build-E
(\v l o -> cata-E ((cata-E v l o) . env) l o e)

In the literature, eliminating such extra consumptions has been ad-
dressed by the introduction of more generalaugment combinators.
The augment combinator for lists was introduced in [5] and ap-
pears in Figure 1. Analogues for arbitrary algebraic data types are



given in [8]; theaugment combinator given in [8] for theExpr data
type, for example, is

aug-E :: (forall b. (a -> b) -> (Int -> b) ->
(Op -> b -> b -> b) -> b) ->

(a -> Expr a) -> Expr a
aug-E g v = g v Lit Op

Note that the type ofaug-E is more restrictive than that of the
augment combinatoraugment-E developed in this paper, which
appears in Figure 2. Usingaug-E we can expresssubst as

subst env e = aug-E (\v l o -> cata-E v l o e) env

The aug-E combinator offers more than a nice means of ex-
pressing substitution, however. When expression-producing func-
tions are written in terms ofaug-E and are composed with
expression-consuming functions written in terms ofcata-E, a
cata/augment rule generalising thecata/build rule for expres-
sions can eliminate the intermediate data structure produced by
aug-E. This fusion rule asserts that, for every closed typet and ev-
ery closed functiong :: forall b. (t -> b) -> (Int -> b)
-> (Ops -> b -> b -> b) -> b,

cata-E v l o (aug-E g f) (4)

= g (cata-E v l o . f) l o

EXAMPLE 8. First inlining the aug-E form of subst above and
the cata-E form of accum from Figure 3, and then applying the
above rule, eliminates the intermediate expression in

substAccum :: (a -> Expr b) -> Expr a -> [b]
substAccum env e = accum (subst env e)

to give

substAccum env e = cata-E (accum . env) (\i -> [])
(\op -> (++)) e

This example generalises Example 4 since renaming is a special
case of substitution.

Note thataugment combinators are derived only for algebraic
data types in [8]. In Section 5 we generalise the combinators of [8]
to giveaugment combinators, and analogues of thecata/augment
rule (4), for non-algebraic inductive data types as well. The precise
relationship between our combinators and those of [8] is discussed
in Section 4.5 below, where we show how, for algebraic data types,
the latter can be derived from the former.

4.1 Introducing monadic augment

We have seen that abuild combinator can be defined for any
functor. A natural question raised by the discussion in the previous
section is thus: For how general a range of functors canaugment
combinators be defined?

The essence ofaugment is to extendbuild by allowing data
structure-producing functions to take as input additional replace-
ment functions. In [5], theappend function is the motivating ex-
ample, and the replacement function argument to theaugment
combinator for lists replaces the empty list occurring at the end
of append’s first input list with append’s second input list. Sim-
ilar combinators are defined for arbitrary algebraic types in [8].
There, each constructor of an algebraic data type is designated ei-
ther recursive or non-recursive, and theaugment combinator for
each algebraic data type allows the replacement of data stored at
the non-recursive constructors with arbitrary elements of that data
type. (See Section 4.5.)

We take a different approach in this paper. We, too, start
from the observations that i) eachaugment combinator extends

the correspondingbuild combinator with a function which re-
places data/values by structures/computations, and ii) the essence
of monadic computation is precisely a well-behaved notion of such
replacement. But we see these as evidence that theaugment com-
binators are inherently monadic in nature. Moreover, as discussed
at the end of Section 4.3, theaugment combinators bear relation-
ships to their correspondingbuild combinators similar to those
that thebind operations bear to their correspondingfmaps. That
is, bothbuild andfmap support the replacement of data by data,
while augment andbind allow the replacement of data by struc-
tures. Of course,augment andbind are defined for monads, while
build andfmap are defined for functors.

This theoretical insight offers practical dividends. As we demon-
strate below, it allows us to define more expressiveaugment
combinators, and more generalcata/augment rules, than those
known before. It also allows us to defineaugment combinators and
cata/augment rules for types for which these were not previously
known to exist. We briefly illustrate our results before proceeding
with the formal development of the monadicaugment combinators
and their associated fusion rules in the next section.

EXAMPLE 9. The data type

data Rose a = Node a [Rose a]

of rose trees has no non-recursive constructors. The associated
augment combinator of [8] therefore does not allow the replace-
ment of data of typea with rose trees. But we will see in Section 4.3
that Rose is a monad, and thus that theaugment combinator for
Rose defined in this paper does allow such replacements. In fact,
it allows replacements of data of typea with structures of type
Rose b for anyb.

EXAMPLE 10. The inductive data type

data Tree a b = Node (Tree a b) a (Tree a b)
| Leaf b

has one non-recursive constructor storing data of typeb. The
associatedaugment combinator of [8] thus supports replacement
functions of typeb -> Tree a b. But sinceTree a is also a
monad, theaugment combinator defined in this paper supports
replacement functions of the more general typeb -> Tree a c.

4.2 Parameterised monads

We have argued above that the essence of anaugment combina-
tor is to extend its correspondingbuild combinator with replace-
ment functions mapping data/values to structures/computations.
The types of the structures produced by theaugment combinators
must therefore be of the formm a for some monadm. But if we
want to be able to consume withcatas the monadic structures pro-
duced byaugment combinators then we must restrict our attention
to those monadsm for whichcata combinators can be defined. This
is possible providedm is an inductive monad.

One way to specify inductive monads uniformly is to focus
on monads of the formm a = Mu f a for a bifunctorf. As we
have seen,Mu f is a functor. But it is clear thatMu f is not,
in general, a monad. Indeed, the data typeTree a b from Ex-
ample 10 can be written asTree a b = Mu (T b) a where
data T b a c = N c a c | L b, butTree a b is not a monad
in a, i.e., does not admit a substitution functionTree a b -> (a
-> Tree c b) -> Tree c b. Defining such a function would
entail constructing new trees from old ones by replacing each in-
ternal node in a given tree by a new tree. Since there is no way to
do this, we see thatTree a b is an example of a common induc-
tive type which does not support anaugment combinator. In light
of this observation, it is quite satisfying to find weak and elegant
conditions onf which guarantee thatMu f is indeed a monad.



To define these conditions we introduce the notion of apa-
rameterised monad[22]. Parameterised monads are represented in
Haskell via the following type class:

class PMonad f where
preturn :: a -> f a c
(>>!) :: f a c -> (a -> f b c) -> f b c
pmap :: (c -> d) -> f a c -> f a d

The operationspreturn, >>=, andpmap are expected to satisfy the
following five parameterised monad laws:

>>! preturn = id
(>>! g) . preturn = g
>>! ((>>! g) . j) = (>>! j) . (>>! j)
pmap g . preturn = preturn
pmap g . (>>! j) = (>>! (pmap g . j)) . pmap g

Thus a parameterised monad is just a type-indexed family of mon-
ads. That is, for each typec, the mapf’ c sending a typea to
f a c is the monad whosereturn operation is given bypreturn,
and whosebind operation is given by>>!. Note how the first three
parameterised monad laws ensure this. Moreover, the fact thatf’ c
is a monaduniformly in c is expressed by requiring the opera-
tion pmap to be such that every mapg :: c -> d lifts to a map
pmap g between the monadsf’ c andf’ d. This is ensured by the
last two parameterised monad laws. Intuitively, we think of>>! as
replacing, according to its second argument, the non-recursive data
of type a in structures of typef a c, and ofpmap as modifying,
according to its first argument, the recursively defined substructures
of structures of typef a c to give corresponding structures of type
f a d. As for the monad and functor laws, the compiler does not
check that the operations of a parameterised monad satisfy the re-
quired semantic conditions. Note that a parameterised monad is a
special form of bifunctor withpmap, >>!, andpreturn implement-
ing the requiredbmap operation:

instance PMonad m => BiFunctor m where
bmap f g xs = (pmap g xs) >>! (preturn . f)

There are many parameterised monads commonly occurring in
functional programming. To illustrate, we first show that the ex-
pression languageExpr a is generated by a parameterised monad.
We then give three different mechanisms for constructing parame-
terised monads and, for each such mechanism, give a widely used
example of a parameterised monad constructed using that mecha-
nism.

EXAMPLE 11. We can derive expression monads from parame-
terised monads as follows. If

data E a b = Var a | Lit Int | Op Ops b b

as in Example 5, thenE is a parameterised monad with operations
given as follows, andExpr a = Mu E a.

instance PMonad E where
preturn = Var
Var x >>! h = h x
Lit i >>! h = Lit i
Op op e1 e2 >>! h = Op op e1 e2
pmap g (Var x) = Var x
pmap g (Lit i) = Lit i
pmap g (Op op e1 e2) = Op op (g e1) (g e2)

EXAMPLE 12. If h is any functor, then the following defines a
parameterised monad:

data SumFunc h a b = Val a | Con (h b)

instance Functor h => PMonad (SumFunc h) where

preturn = Val
Val x >>! h = h x
Con y >>! h = Con y
pmap g (Val x) = Val x
pmap g (Con y) = Con (fmap g y)

The nameSumFunc reflects the fact thatSumFunc h a is the sum
of the functorh and the constantlya-valued functor. The data type
Expr a from Example 1 is (essentially, i.e., ignoring terms induced
by the “extra” lifting implicit in the data declaration forh b)
Mu (SumFunc h) a for

data h b = Lit Int | Op Ops b b

The data typeIntIO i o a of interactive input/output compu-
tations from Example 6 is (essentially)Mu (SumFunc h) a for
h = k i o anddata k i o b = I (i -> b) | O (o,b).

A parameterised monad of the formSumFunc h constructs
monads with a tree-like structure in which data is stored at the
leaves. We can instead consider monads with a tree-like struc-
ture in which data is stored at the nodes, i.e., in the recursive
constructors. These are induced by parameterised monads of the
form ProdFunc h a b = Node a (h b). Because the>>! op-
eration of a parameterised monad must replace (internal) tree nodes
with other trees, the branching structure of such trees must form a
monoid. We therefore restrict attention to “structure functors”h
such that, for each typet, the typeh t forms a monoid. This re-
striction is captured in the following Haskell type class definition:

class Functor h => FunctorPlus h where
zero :: h a
plus :: h a -> h a -> h a

The programmer is expected to verify that the operationszero and
plus form a monoid onh a.

EXAMPLE 13. If h is an instance of theFunctorPlus class, then
the following defines a parameterised monad:

newtype ProdFunc h a b = Node a (h b)

instance FunctorPlus h => PMonad (ProdFunc h) where
preturn x = Node x zero
Node x t >>! k = let Node y s = k x

in Node y (plus t s)
pmap g (Node x t) = Node x (fmap g t)

A commonly occurring data type which is the least fixed point
of a parameterised monad of the formProdFunc h is the data
type of rose trees from Example 9. Indeed, the data typeRose is
Mu (ProdFunc []) where[] is the list functor and

instance FunctorPlus [] where
zero = []
plus = (++)

Our final example of a general mechanism for generating
parameterised monads concerns a generalisation of hyperfunc-
tions [10]. Here, we start with a contravariant “structure functor”,
i.e., with a functor in the class

class ContraFunctor f where
cfmap :: (a -> b) -> f b -> f a

EXAMPLE 14. If h is a contravariant functor, then the following
defines a parameterised monad:

newtype H h a b = H {unH :: h b -> a}

instance ContraFunctor h => PMonad (H h) where
preturn x = H (\f -> x)



H h >>! k = H (\f -> unH (k (h f)) f)
pmap g (H h) = H (\f -> h (cfmap g f))

An example of a data type which arises as the least fixed point
of a parameterised monad of the formH h is the data type of
hyperfunctions with argument typee and result typea:

newtype Hyp e a = Hyp {unHyp :: (Hyp e a -> e) -> a}

Indeed,Hyp e is Mu (H h) for the contravariant functorh b =
b -> e. This example shows that the data types induced by param-
eterised monads go well beyond those induced by polynomial func-
tors, and include exotic and sophisticated examples which arise in
functional programming.

We now turn our attention to showing that every parame-
terised monad has anaugment combinator and an associated
cata/augment fusion rule. This will allow us to show that every
least fixed point of a parameterised monad is a monad by writing
the requiredbind operation for the least fixed point in terms of
theaugment combinator for the parameterised monad whose least
fixed point it is. That this can be done is very important and we
will return to it in the next section. We will also show there that we
can write theaugment combinators in terms of their corresponding
binds, and thus that theaugment combinators really are gmonadic
in nature.

4.3 Augment for parameterised monads

The central contribution of this paper is the definition, for each pa-
rameterised monadf, of anaugment combinator andcata/augment
fusion rule for the monadMu f. Our definition is entirely generic,
and extends the definition of theaugment combinators from [8] to
accommodate non-algebraic inductive data types.

If f is a parameterised monad then we can define anaugment
combinator for it by

augment-f :: PMonad f => (forall c.
(f a c -> c) -> c) -> (a -> Mu f b) -> Mu f b

augment-f g k = g (In . ( >>! (unIn . k)))

Here,>>! (unIn . k) is the application of the infix operator>>!
to its second argument. We can now see clearly that the definition
of augment is the same as that ofbuild, except that it allows an
extra input of typea -> Mu f b which is used to replace data
of type a in the structure generated byg with structures of type
Mu f b. Note thata -> Mu f b is the type of a Kleisli arrow for
what we will see is themonadMu f. It is theaugment combinators’
ability to consume Kleisli arrows — mirroring thebind operations’
ability to do so — that precisely locatesaugment as a monadic
concept. Indeed, as we now show, thebind operation forMu f can
be written in terms of theaugment combinator forf.

We have already observed that iff is a bifunctor thenMu f is a
functor. But iff satisfies the stronger criteria on bifunctors neces-
sary to ensure that it is a parameterised monad, thenMu f is actu-
ally an inductive monad. The relationship between a parameterised
monadf and the induced monadMu f is captured in the Haskell
instance declaration

instance PMonad f => Monad (Mu f) where
return x = In (preturn x)
x >>= k = augment-f g k where g h = cata-f h x

Although not stated explicitly, this instance declaration entails that
if f satisfies the semantic laws for a parameterised monad, then
Mu f is guaranteed to satisfy the semantic laws for monads. More-
over, whileMu f may support more than one choice of monadic
return andbind operations, this declaration uniquely determines
a choice of monadic operations forMu f which respect the struc-
ture of the underlying parameterised monadf. By analogy with

the situation for inductive data types, we call a type of the form
Mu f a which is induced by a parameterised monad in this way a
parameterised monadic data type. Further, we call an element of
a parameterised monadic data type aparameterised monadic data
structure.

We now consider the relationship betweenaugment, build,
and bind. We have seen above that thebind operation for the
least fixed point of a parameterised monad can be defined in terms
of the associatedaugment combinator. It is also known that the
build combinators for specific data types can be defined as spe-
cialisations of theaugment combinators for those types, e.g.,
build g = augment g []. Our generic definitions allow us to
show that this holds in general. We have, for every parameterised
monadf:

build-f g >>= k = augment-f g k (5)

Setting k = return and using the monad laws, we see that
build-f is definable fromaugment-f. Together with the obser-
vation that

fmap k = >>= (return . k)

the equality (5) shows that the implementation ofbuild in terms
of augment is similar to that offmap in terms ofbind. But (5) also
shows howaugment combinators can be defined in terms ofbind
operations. The equality (5) is very elegant indeed! In addition, it
provides support for our assertion that theaugment combinators
are monadic by demonstrating that they are interdefinable with, and
hence are essentially optimisable forms of, thebind operations for
their associated monads.

4.4 Examples

Examples of the monads andaugment combinators derived from
the parameterised monadsE, SumFunc (k i o), ProdFunc [],
andH h for h b = b -> e from Examples 11 through 14 appear
below. In the interest of completeness we give the correspondence
between the generic combinators derived from the definition based
on parameterised monads and the specific combinators given earlier
for the expression language in Example 1. The monadic interpre-
tation of ouraugment combinators makes it possible to generalise
those of [8], which allow replacement only of data stored in the
non-recursive constructors of data types, to allow replacement of
data stored in recursive constructors of data types as well. (See Ex-
ample 17.) It also makes it possible to go well beyond algebraic
data types, as is illustrated in Example 18.

EXAMPLE 15. If E is the parameterised monad from Example 11,
then the data type induced byE is the expression monadExpr a
from Example 1, whosereturn and bind operations are defined
below. Instantiating the generic derivations of thecata, build,
and augment combinators forE and then simplifying the results
gives thecata, build, andaugment combinators in Figure 2.

return x = In (preturn x) = In (Var x) = Var x
e >>= k = augment-E g k

where g h l o = cata-E h l o e
= g k Lit Op

where g h l o = cata-E h l o e
= cata-E k Lit Op e
= case e of

Var x -> k x
Lit i -> Lit i
Op op e1 e2 -> Op op

(cata-E k Lit Op e1)
(cata-E k Lit Op e2)

EXAMPLE 16. If f = SumFunc (k i o) is the parameterised
monad from Example 12, then the data type induced byf is (es-



sentially) that of interactive input/output computations from Ex-
ample 6. Instantiating the generic derivations of thecata, build,
and augment combinators for the parameterised monadf yields
the definitions forcata-f andbuild-f from Example 6 and

augment-f :: (forall b. (a -> b) -> ((i -> b) -> b)
-> ((o,b) -> b) -> b)

-> (a -> IntIO i o c) -> IntIO i o c
augment-f g k = g k Inp Outp

Using the above definitions, we can also instantiate the generic
derivation of the monad operations forIntIO i o from the op-
erations for the underlying parameterised monadf. This gives

return x = Val x
intio >>= k = cata-f k Inp Outp intio

EXAMPLE 17. If f = ProdFunc [] is the parameterised monad
from Example 13, then the data type induced byf is that of rose
trees from Example 9. Instantiating the generic derivations of the
cata, build, and augment combinators for the parameterised
monadf gives

cata-f :: (a -> [b] -> b) -> Rose a -> b
cata-f n (Node x tas) = n x (map (cata-f n) tas)

build-f :: (forall b. (a -> [b] -> b) -> b)
-> Rose a

build-f g = g Node

augment-f :: (forall b. (a -> [b] -> b) -> b)
-> (a -> Rose c) -> Rose c

augment-f g k = g (\x t -> let Node y s = k x
in Node y (t ++ s))

The definitions ofcata-f and build-f coincide with those
in [15]. Using the above definitions, we can also instantiate the
generic derivation of the monad operations forRose a from the
operations for the underlying parameterised monadf. This gives

return x = Node x []
t >>= k = cata-f (\x ts -> let Node y s = k x

in Node y (ts ++ s)) t

EXAMPLE 18. If f = H h with h b = b -> e is the parame-
terised monad from Example 14, then the data type induced byf is
the monad of hyperfunctions given there. Instantiating the generic
derivations of thecata, build, andaugment combinators for the
parameterised monadf gives

cata-f :: ((b -> e) -> a) -> b) -> Hyp e a -> a
cata-f h (Hyp k) = h (\g -> k (g . cata-f h))

build-f :: (forall b. (((b -> e) -> a) -> b) -> b)
-> Hyp e a

build-f g = g Hyp

augment-f :: (forall b. (((b -> e) -> a) -> b) -> b)
-> (a -> Hyp e c) -> Hyp e c

augment-f g k = g (\u -> Hyp (\f -> unHyp
(k (u f)) f))

Using the above definitions, we can also instantiate the generic
derivation of the monad operations forHyp e a from the opera-
tions for the underlying parameterised monadf. This gives

return x = Hyp (\k -> x)
(Hyp h) >>= k = Hyp (\f -> unHyp

(k (h (f . (>>= k)))) f)

4.5 Representing algebraic augment

In addition to providing newaugment combinators for rose trees,
as well asaugment combinators for other types which were not
previously known to have them, our results also generalise the
augment combinators of [8]. At first glance this does not appear to
be the case, however, since theaugment combinators from [8] are
derived for all algebraic data types, while the ones in this paper are
derived for types of the formMu f a wheref is a parameterised
monad. Surely, one thinks, there are more algebraic types than
inductive monads arising as least fixed points of parameterised
monads. Put differently, it seems that one can distinguish between
recursive and non-recursive constructors, as Johann does, more
often than one can distinguish between values and computations,
as we do.

The key to resolving this apparent conundrum is the observa-
tion that, for each algebraic data type, we can form a parameterised
monad by bundling all the non-recursive constructors of the alge-
braic type together and treating them as values. Theaugment com-
binator derived from this parameterised monad will allow replace-
ment of all of these values, thereby achieving the expressiveness of
Johann’saugment combinators for the original algebraic data type.
Lack of space prevents a full treatment of this observation, but we
illustrate with two examples, namely Gill’saugment combinator
for lists and Johann’saugment combinator for expressions.

The list monad is not of the formMu L for any parameterised
monadL. However, if we define

data L a e b = Var e | Cons a b

then, for each typea, the typeL a is a parameterised monad.
The data typeLt a e = Mu (L a) e can be thought of as rep-
resenting lists of elements of typea that end with elements of
type e, rather than with the empty list. We therefore have that
[a] = Lt a (), where() is the one element type. Theaugment
combinator for this parameterised monad can take as input a re-
placement function of type() -> Lt a (), i.e., can take as input
another list of typea. This gives precisely the functionality of Gill’s
augment combinator for lists. Note the key step of generalising the
non-recursive constructor[] of lists to variables.

Johann’saugment combinator for expressions allows the re-
placement of both variablesand literals with other expressions.
By contrast, ouraugment combinator for the expression data
type allows only the replacement of variables with other expres-
sions. However, the same approach we used to derive the standard
augment combinator for lists works here as well. If we define the
parameterised monad

data Ex a b = Op op b b | Var a

then the typeExpr a is Mu Ex (Plus a) where

data Plus a = Left a | Right Int

Here, any occurrences of the constructorLeft can be thought
of as the true variables ofExpr a, while any occurrences of the
constructorRight can be thought of as its literals.

Theaugment combinator forEx can take as input replacement
functions of typePlus t -> Mu Ex (Plus u), which replace
both the literals and true variables with expressions of typeExpr u.
This augment combinator is actually more general than the one
in [8], which forces the type of the variables being replaced to be
the same as that of the variables occurring in the replacement ex-
pressions. This extra generality, while appearing small, is actually
very useful in practice, e.g., in implementingmap functions using
augment. Once again, the key step in the derivation here is the treat-
ment of the non-recursive constructors as variables in the parame-
terised monad.



Although Johann’saugment combinators can be derived from
our monadic ones, the distinction between recursive/non-recursive
constructors may be more intuitive for many programmers than
the monadic distinction between values and computations. Of
course, whenaugment combinators based on both distinctions are
available, the programmer is free to choose between them. But a
monadicaugment may be available even if an algebraic one is not.

5. Generalised short cut fusion
We have seen that parameterised monads are particularly well-
behaved, in the sense that their least fixed points are inductive
monads which supportcata, build, andaugment combinators.
In this section we give a genericcata/augment fusion rule which
can be specialised for each parameterised monad. The rule we
give generalises thecata/augment rules for lists and expressions
discussed in Section 4, as well as the ones in [8].

The rule says that, for each parameterised monadf,

cata-f h (augment-f g k) (6)

= g (h . (>>! (pmap (cata-f h)) . unIn . k))

The correctness, and indeed the derivation, of this rule is based
on a categorical interpretation of theaugment combinators which
reduces correctness to parametricity; see [4] for details. As with the
genericcata/build rule (3) from Section 3.2, the right-hand side
of this rule is an application of the abstract templateg, but now the
extra replacement functionk must be blended into the algebrah.

As we have seen in Section 4.3, thebind operation of the least
fixed point of a parameterised monadf can be defined in terms of
the associatedaugment combinator. The possibility ofcata/bind
fusion for Mu f is therefore hardwired into the very definition of
parameterised monadic types. Moreover, sincebind is the most
fundamental of monadic operations, and since data structures uni-
formly constructed viabinds are often uniformly consumed by
catas, we expect to see many applications ofbinds followed
by catas in monadic code. The intermediate data structures con-
structed by suchbinds and consumed by suchcatas are eligible
for elimination via (6) and, because theaugment representation of
eachbind is based on acata, the fused optimisation of abind
followed by acata will itself be a cata. This has the important
consequence that not just a singlebind followed by acata, but in
fact awhole sequenceof binds followed by acata, can be opti-
mised by a series ofcata/augment fusions, each (except the first)
enabled by the one that came before. These will ripple backward,
allowing monadic code to intermingle and intermediate data struc-
tures to be eliminated from computations.

We now illustrate fusion using the generic rule (6). The ex-
amples below are natural generalisations of the optimisation of
sumSqs in Section 3.1, which is typical of the applications found
in the literature.

EXAMPLE 19. To compute the list of free variables appearing in
any expression, we can first substitute for each variable node in
the expression a new variable node consisting of the singleton list
containing the variable name, and then accumulate the contents of
these lists by recursively appending them. We have

free-vars :: Expr a -> [a]
free-vars e = cata-E id (\i -> []) (\op -> (++))

(subst (\x -> Var [x]) e)

The instantiation of the genericcata/augment rule for E is

cata-E v l o (augment-E g k)
= g (cata-E v l o . k) l o

where cata-E and augment-E are as in Figure 2. Using this,
together with theaugment representation ofsubst from Figure 3,

we can derive an equivalent version offree-vars in which the
intermediate expression produced bysubst has been eliminated
from the modular computation:

free-vars e
= cata-E id (\i -> []) (\op -> (++)) (augment-E

(\v l o -> cata-E v l o e) (\x -> Var [x]))
= (\v l o -> cata-E v l o e)

(\x -> [x]) (\i -> []) (\op -> (++))
= cata-E (\x -> [x]) (\i -> []) (\op -> (++)) e

Note that whereas the intermediate expressions in Examples 4
and 8 are of typeExpr a, the one infree-vars has a type of
the more general formExpr c, wherec is taken to be[a].

EXAMPLE 20. Consider again the monad of interactive input/output
computations from Examples 12 and 16. The functiondown plays
the game in which the user chooses an integern and tries to incre-
mentally decrease this number to0 by inputting a number, record-
ing that number as an output, decreasingn by the input, and play-
ing the game from the result. Letf = SumFunc (k i o) as in
Example 16. Then

down :: Int -> IntIO Int Int Int
down n = augment-f (\v in out -> let loop x =

if x <= 0 then v x else
in (\k -> out (k, loop (x-k)))

in loop n) Val

We can represent such a game as a tree with nodes labelled by the
last input and the remaining distance to go to zero. The exception
is the root node, representing the start of the game, which does not
have a preceding input. For example, ignoring the branches which
fail by becoming negative,down 3 could be represented by

(1, 0)

(1, 1)

(1, 2)

3

(2, 1)

(1, 0)

(3, 0)

(2, 0)

The functionresults takes as input a numbern and an interac-
tive input/output computation, and returns the list of values in the
leaves of that computation. The user’s inputs are assumed to be
integers between1 andn.

results :: Int -> IntIO Int o a -> [a]
results n = cata-f v in out where

v x = [x]
in g = concat [g x | x <- [1 .. n]]
out (o, p) = p

The instantiation of the genericcata/augment rule forf = SumFunc
(k i o) is

cata-f v in out (augment-f g k)
= g (cata-f v in out . k) in out

We can optimise the function which returns the list of values
in the leaves of the game tree rooted atn. Sincev x = [x],
in g = concat [g x | x <- [1 .. n]], and out (o,p)
= p, we have the following equivalent computation from which
the intermediate tree of typeIntIO Int Int Int has been elim-
inated:

results n (down n)



= cata-f v in out
(augment-f (\v in out ->
let loop x = if x <= 0 then v x else

in (\k -> out (k, loop (x-k)))
in loop n) Val)

= (\v in out ->
let loop x = if x <= 0 then v x else

in (\k -> out (k, loop (x-k)))
in loop n) (cata-f v in out . Val) in out

= let loop x = if x <= 0
then (cata-f v in out . Val) x
else in (\k -> out (k, loop (x-k)))

in loop n
= let loop x = if x <= 0 then [x] else

in (\k -> loop (x-k))
in loop n

= let loop x = if x <= 0 then [x] else
concat [loop (x-z) | z <- [1 .. n]]

in loop n

EXAMPLE 21. Consider again the monad of rose trees from Exam-
ples 13 and 17. The functiondown takes a non-negative integern as
input and produces a rose tree whose root is labelledn and in which
each node has one child for each non-negative integer smaller than
its label. For example,down 3 produces

3

10

0 0

2

1

0

Lettingf = ProdFunc [] as in Example 17 we have

return :: a -> Rose a
return x = Node x []

down :: Int -> Rose Int
down n = augment-f (\h ->

let loop x = h x (map loop [0 .. x-1])
in loop n) return

The functionresults returns the prefix list of data elements in a
rose tree:

results :: Rose a -> [a]
results = cata-f (\x ys -> x : concat ys)

The instantiation of the genericcata/augment rule forf = ProdFunc
[] is

cata-f no (augment g k)
= g (\x t -> let Node y s = k x

in no y (t ++ map (cata-f no) s))

Using this we can optimise the function which returns the prefix list
of data elements in the rose tree produced bydown n. Letting

no x ys = x : concat ys

g h = let loop y = h y (map loop [0 .. y-1])
in loop n

we have the following equivalent computation from which the inter-
mediate rose tree of integers produced bydown n has been elimi-
nated:

results (down n)
= cata-f no (augment-f g return)
= g (\x t -> let Node y s = return x

in no y (t ++ map (cata-f no) s))
= g (\x t -> no x) t)
= let loop y =

(\x t -> no x t) y (map loop [0 .. y-1])
in loop n

= let loop y = no y (map loop [0 .. y-1]) in loop n
= let loop y = y : concat (map loop [0 .. y-1])
in loop n

EXAMPLE 22. Rather than give another example in the same vein
as previously, we add some variety by establishing the potential for
the optimisation of programs which manipulate hyperfunctions by
reimplementing the interface for hyperfunctions given in [10]. The
original interface was based upon the following operations:

run :: Hyp o o -> o
run (Hyp k) = k run

base :: o -> Hyp i o
base a = Hyp (\x -> a)

(<<) :: (i -> o) -> Hyp i o -> Hyp i o
f << fs = Hyp (\k -> f (k (fs)))

We can now reimplement this library using the combinators given
in Example 18:

run = cata (\c -> c id)

base a = build (\h -> h (\x -> a))

f << fs = build (\h -> h (\k -> f (k (cata h fs))))

Correctness of the implementation ofrun is proved as follows:

run (Hyp k) = cata (\c -> c id) (Hyp k)
= (\c -> c id) (\g ->

k (g . cata (\c -> c id)))
= (\g -> k (g . cata (\c -> c id))) id
= k (id . cata (\c -> c id))
= k (cata (\c -> c id))
= k run

Similar proofs exist for the other combinators. Code written using
this interface can now potentially be optimised.

As a final observation, we note that, in the instance declaration
for parameterised monadic data types, we could have written the
bind operation of the monadMu f as

x >>= k = cata-f (In . ( >>! (unIn . k))) x

rather than in terms ofaugment-f. There are, however, two reasons
to not do this. First, this definition ofbind is significantly less
clear than the one involvingaugment-f, and it goes against the
practice of abstracting away from programming details via high-
level combinators. The second, bigger problem for the purpose of
optimisation is that, if abind is followed by a consumingcata,
then it might not be possible to fuse thecata implementing the
bind with this cata since not all compositions ofcatas can be
fused. To get around this difficulty we would be led to devise
some kind of strategy for marking those compositions which can
be so fused, which would be tantamount to inventing theaugment
combinators.



6. Related work
In addition to the literature on monads and program transformation
cited above, there are some additional papers relating to the inter-
action of these subjects.

• Our work on genericbuild and augment combinators con-
tributes to the fruitful line of research into generic recursion
combinators. Research in this area has led, for example, to the
generalisation offold for lists to arbitrary mixed variance data
types [2, 11].

• Like us, Pardo [14] sought to understand fusion in the con-
text of monadic computation, but his goal was different from
ours. Pardo investigated conditions under which an expression
of typeM(µF ), for M a monad andF a functor with least fixed
point µF , can be fused with a functionfoldφ : µF → X to
produce an expression of typeM(X). The crucial difference
with our work is that Pardo considered the monadM an ambi-
ent structure which was not to be eliminated by the fusion rule.
Our goal, on the other hand, is to eliminate the construction of
precisely such monadic structures.

• In a similar vein, [12] develops a variety of fusion laws in
the monadic setting, including a short cut deforestation law
for eliminating intermediate structures of the form M(List X).
However, as with [14], the aim is not to eliminate the monad,
but rather the list inside the monad.

• Jürgensen [9] defined a fusion combinator based on the unique-
ness of the map from a free monad to any other monad. Thus,
his technique is really a different form of fusion from ours and,
in particular, isn’t based upon writing consumers in terms of
catamorphisms. Since catamorphisms appear in the literature
far more frequently than monad morphisms, it is natural to want
as well-developed a theory of catamorphism-based fusion as
possible, irrespective of other possibilities such as J¨urgensen’s.

• Correctness proofs for the fusion rules presented in this pa-
per rely on sophisticated categorical concepts — in particular,
strong dinaturality, which, it has been suggested, is unsuitable
for a general functional programming and programming trans-
formation audience. Since our aim is to reach precisely such an
audience, the correctness proofs of our fusion rules are given in
a separate paper [4] which extends the categorical account of
cata/build fusion given in [3].

7. Conclusion and future work
We have definedbuild combinators for all inductive types. In ad-
dition, we have demonstrated thataugment is inherently an induc-
tive and monadic construction, and definedaugment combinators
for inductive monads arising as least fixed points of parameterised
monads. We believe it will be difficult to find a more general mech-
anism for defining inductive monads, and thus that these results are
about as general as can be hoped for.

The categorical semantics of [4] reduces correctness of the fu-
sion rules given here to the problem of constructing parametric
models which respect the categorical semantics given there. An al-
ternative approach to correctness is taken in [8], where the opera-
tional semantics-based parametric model of [17] is used to validate
the fusion rules for algebraic data types introduced in that paper.
Extending these techniques to tie the correctness of our monadic
fusion rules into an operational semantics of the underlying func-
tional language is ongoing work. Benchmarking the rules and de-
veloping a preprocessor for automatically converting monadically
structured functions intocata/augment form are additional direc-
tions for future work.
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