
Reynolds’ Parametricity

Patricia Johann
Appalachian State University

cs.appstate.edu/∼johannp

Based on joint work with Neil Ghani, Fredrik Nordvall
Forsberg, Federico Orsanigo, and Tim Revell

OPLSS 2016

Course Outline

Topic: Reynolds’ theory of parametric polymorphism for System F

Goals: - extract the fibrational essence of Reynolds’ theory

- generalize Reynolds’ construction to very general models

• Lecture 1: Reynolds’ theory of parametricity for System F

• Lecture 2: Introduction to fibrations

• Lecture 3: A bifibrational view of parametricity

• Lecture 4: Bifibrational parametric models for System F

Course Outline

Topic: Reynolds’ theory of parametric polymorphism for System F

Goals: - extract the fibrational essence of Reynolds’ theory

- generalize Reynolds’ construction to very general models

• Lecture 1: Reynolds’ theory of parametricity for System F

• Lecture 2: Introduction to fibrations

• Lecture 3: A bifibrational view of parametricity

• Lecture 4: Bifibrational parametric models for System F

Parametric Polymorphic Functions

• Intuitively, parametric polymorphism captures uniform behavior of

functions across all type instantiations

Parametric Polymorphic Functions

• Intuitively, parametric polymorphism captures uniform behavior of

functions across all type instantiations

• Distinct from ad hoc polymorphism (e.g., Haskell type classes)

Parametric Polymorphic Functions

• Intuitively, parametric polymorphism captures uniform behavior of

functions across all type instantiations

• Distinct from ad hoc polymorphism (e.g., Haskell type classes)

• Uniformity of parametric polymorphic functions means that they

– must be given by a single algorithm that works across all types

Parametric Polymorphic Functions

• Intuitively, parametric polymorphism captures uniform behavior of

functions across all type instantiations

• Distinct from ad hoc polymorphism (e.g., Haskell type classes)

• Uniformity of parametric polymorphic functions means that they

– must be given by a single algorithm that works across all types

– cannot make use of any type-specific operations (e.g., +, ¬)

Parametric Polymorphic Functions

• Intuitively, parametric polymorphism captures uniform behavior of

functions across all type instantiations

• Distinct from ad hoc polymorphism (e.g., Haskell type classes)

• Uniformity of parametric polymorphic functions means that they

– must be given by a single algorithm that works across all types

– cannot make use of any type-specific operations (e.g., +, ¬)

– must map related inputs to related outputs

Syntax and Semantics

• Syntax: The ∀ type constructor

Syntax and Semantics

• Syntax: The ∀ type constructor

• Semantics: If f : ∀α.τ , then f maps related values to related values

(and similarly for f : τ1 → τ2)

Syntax and Semantics

• Syntax: The ∀ type constructor

• Semantics: If f : ∀α.τ , then f maps related values to related values

(and similarly for f : τ1 → τ2)

• This semantic “relatedness” requirement ensures that models of para-

metric polymorphism do not contain ad hoc functions

Syntax and Semantics

• Syntax: The ∀ type constructor

• Semantics: If f : ∀α.τ , then f maps related values to related values

(and similarly for f : τ1 → τ2)

• This semantic “relatedness” requirement ensures that models of para-

metric polymorphism do not contain ad hoc functions

• That is, it ensures that ∀ really does mean a uniform “for all”!

Reynolds’ Programme

• Paper: Types, abstraction, and parametric polymorphism (1983)

Reynolds’ Programme

• Paper: Types, abstraction, and parametric polymorphism (1983)

• Construct: A set-theoretic model of parametric polymorphism for Sys-

tem F by giving, compositionally:

Reynolds’ Programme

• Paper: Types, abstraction, and parametric polymorphism (1983)

• Construct: A set-theoretic model of parametric polymorphism for Sys-

tem F by giving, compositionally:

– a set interpretation for every type

Reynolds’ Programme

• Paper: Types, abstraction, and parametric polymorphism (1983)

• Construct: A set-theoretic model of parametric polymorphism for Sys-

tem F by giving, compositionally:

– a set interpretation for every type

– a relational interpretation for every type

Reynolds’ Programme

• Paper: Types, abstraction, and parametric polymorphism (1983)

• Construct: A set-theoretic model of parametric polymorphism for Sys-

tem F by giving, compositionally:

– a set interpretation for every type

– a relational interpretation for every type

– a set interpretation for every term

Reynolds’ Programme

• Paper: Types, abstraction, and parametric polymorphism (1983)

• Construct: A set-theoretic model of parametric polymorphism for Sys-

tem F by giving, compositionally:

– a set interpretation for every type

– a relational interpretation for every type

– a set interpretation for every term

• Prove: An Abstraction Theorem

Reynolds’ Programme

• Paper: Types, abstraction, and parametric polymorphism (1983)

• Construct: A set-theoretic model of parametric polymorphism for Sys-

tem F by giving, compositionally:

– a set interpretation for every type

– a relational interpretation for every type

– a set interpretation for every term

• Prove: An Abstraction Theorem

– Intuitively, if the arguments to a function are related at the rela-

tional interpretations of their types, then applying the function to

them yields results that are related at the relational interpretation

of the function’s return type

A Caveat and Its Correction

• However...

A Caveat and Its Correction

• However...

... Reynolds discovered that his own construction was flawed!

A Caveat and Its Correction

• However...

... Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymor-

phism for System F can exist in classical set theory

A Caveat and Its Correction

• However...

... Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymor-

phism for System F can exist in classical set theory

• The next year, Andrew Pitts showed that such models do exist... provided

we work in a constructive set theory

A Caveat and Its Correction

• However...

... Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymor-

phism for System F can exist in classical set theory

• The next year, Andrew Pitts showed that such models do exist... provided

we work in a constructive set theory

• Subsequently, a number of models of parametric polymorphism for

System F have been constructed

A Caveat and Its Correction

• However...

... Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymor-

phism for System F can exist in classical set theory

• The next year, Andrew Pitts showed that such models do exist... provided

we work in a constructive set theory

• Subsequently, a number of models of parametric polymorphism for

System F have been constructed

• We’ll see one such model, based on bifibrations

A Caveat and Its Correction

• However...

... Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymor-

phism for System F can exist in classical set theory

• The next year, Andrew Pitts showed that such models do exist... provided

we work in a constructive set theory

• Subsequently, a number of models of parametric polymorphism for

System F have been constructed

• We’ll see one such model, based on bifibrations

• This model inhabits a “sweet spot” between

– having the simplicity of functorial models, and

A Caveat and Its Correction

• However...

... Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymor-

phism for System F can exist in classical set theory

• The next year, Andrew Pitts showed that such models do exist... provided

we work in a constructive set theory

• Subsequently, a number of models of parametric polymorphism for

System F have been constructed

• We’ll see one such model, based on bifibrations

• This model inhabits a “sweet spot” between

– having the simplicity of functorial models, and

– having enough structure to derive consequences of parametricity

that serve as gold standard properties for “good” models

Type Contexts and Judgements

• A type context ∆ is a list of type variables α1, ..., αn

Type Contexts and Judgements

• A type context ∆ is a list of type variables α1, ..., αn

• A type judgement ∆ ` τ has

– ∆ a type context

– τ a type

Type Contexts and Judgements

• A type context ∆ is a list of type variables α1, ..., αn

• A type judgement ∆ ` τ has

– ∆ a type context

– τ a type

• Type judgements are defined inductively:

αi ∈ ∆
∆ ` αi

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

Type Contexts and Judgements

• A type context ∆ is a list of type variables α1, ..., αn

• A type judgement ∆ ` τ has

– ∆ a type context

– τ a type

• Type judgements are defined inductively:

αi ∈ ∆
∆ ` αi

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

• We consider α-convertible types equivalent

Term Contexts and Judgements - Part I

• A term context ∆ ` Γ has

– ∆ a type context

– x1, ..., xm term variables

– Γ of the form x1 : τ1, ..., xm : τm

– ∆ ` τi for each i ∈ {1, ...,m}

Term Contexts and Judgements - Part I

• A term context ∆ ` Γ has

– ∆ a type context

– x1, ..., xm term variables

– Γ of the form x1 : τ1, ..., xm : τm

– ∆ ` τi for each i ∈ {1, ...,m}

• A term judgement ∆; Γ ` t : τ has

– ∆ a type context

– ∆ ` Γ a term context

– ∆ ` τ a type judgement

– t a term

Term Contexts and Judgements - Part II

• Term judgements are defined inductively:

∆ ` τi xi : τi ∈ Γ
∆; Γ ` xi : τi

∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2 t1 : τ2

∆, α; Γ ` t : τ

∆; Γ ` Λα.t : ∀α.τ
∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

Term Contexts and Judgements - Part II

• Term judgements are defined inductively:

∆ ` τi xi : τi ∈ Γ
∆; Γ ` xi : τi

∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2 t1 : τ2

∆, α; Γ ` t : τ

∆; Γ ` Λα.t : ∀α.τ
∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

• Type abstraction requires that α does not appear (free) in Γ

Term Contexts and Judgements - Part II

• Term judgements are defined inductively:

∆ ` τi xi : τi ∈ Γ
∆; Γ ` xi : τi

∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2 t1 : τ2

∆, α; Γ ` t : τ

∆; Γ ` Λα.t : ∀α.τ
∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

• Type abstraction requires that α does not appear (free) in Γ

• τ2[α 7→ τ1], t[α 7→ τ1], and t[x 7→ y] denote (capture-free) substitution

Conversion Rules - Part I

∆; Γ ` λx. t = λy. t[x 7→ y] : τ1 → τ2
(αλ)

∆; Γ ` Λα1. t = Λα2. t[α1 7→ α2] : ∀α1.τ
(αΛ)

∆; Γ ` (λx. t) s = t[x 7→ s] : τ2
(βλ)

∆; Γ ` (Λα. t)τ1 = t : τ2[α 7→ τ1]
(βΛ)

x /∈ FV (t)

∆; Γ ` t = λx. t x : τ1 → τ2
(ηλ)

α /∈ FTV (t)

∆; Γ ` t = Λα. t α : ∀α.τ (ηΛ)

∆; Γ, x : τ1 ` t1 = t2 : τ2

∆; Γ ` λx. t1 = λx. t2 : τ1 → τ2
(ξλ)

∆, α; Γ ` t1 = t2 : τ

∆; Γ ` Λα. t1 = Λα. t2 : ∀α.τ (ξΛ)

Conversion Rules - Part II

∆; Γ ` t1 = t2 : τ1 → τ2 ∆; Γ ` s1 = s2 : τ1

∆; Γ ` t1 s1 = t2 s2 : τ2
(congλ)

∆; Γ ` t1 = t2 : ∀α.τ2

∆; Γ ` t1 τ1 = t2 τ1 : τ2[α 7→ τ1]
(congΛ)

∆; Γ ` t = t : τ
(refl)

∆; Γ ` s = t : τ

∆; Γ ` t = s : τ
(sym)

∆; Γ ` t = s : τ Γ; ∆ ` s = u : τ

∆; Γ ` t = u : τ
(trans)

Reynolds’ Semantics of Types - The Set Up

• Reynolds defines two “parallel” semantics for System F types ∆ ` τ

Reynolds’ Semantics of Types - The Set Up

• Reynolds defines two “parallel” semantics for System F types ∆ ` τ
– an object semantics [[∆ ` τ]]o : Set|∆| → Set

Reynolds’ Semantics of Types - The Set Up

• Reynolds defines two “parallel” semantics for System F types ∆ ` τ
– an object semantics [[∆ ` τ]]o : Set|∆| → Set

– a relational semantics [[∆ ` τ]]r : Rel|∆| → Rel

Reynolds’ Semantics of Types - The Set Up

• Reynolds defines two “parallel” semantics for System F types ∆ ` τ
– an object semantics [[∆ ` τ]]o : Set|∆| → Set

– a relational semantics [[∆ ` τ]]r : Rel|∆| → Rel

• Write

– S : Set if S is a set

– R : Rel if R is a relation

– R : Rel(X,Y) if R is a relation on sets X and Y (i.e., R ⊆ X × Y)

Reynolds’ Semantics of Types - The Set Up

• Reynolds defines two “parallel” semantics for System F types ∆ ` τ
– an object semantics [[∆ ` τ]]o : Set|∆| → Set

– a relational semantics [[∆ ` τ]]r : Rel|∆| → Rel

• Write

– S : Set if S is a set

– R : Rel if R is a relation

– R : Rel(X,Y) if R is a relation on sets X and Y (i.e., R ⊆ X × Y)

• Let

– X be a |∆|-tuple of sets

– R be a |∆|-tuple of relations

– Ri : Rel(Xi, Yi) for i = 1, ..., |∆|
– EqX = {(x, x) |x ∈ X}

Reynolds’ Semantics of Types

• Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

Reynolds’ Semantics of Types

• Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

• Arrow types:

− [[∆ ` τ1 → τ2]]oX = [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

Reynolds’ Semantics of Types

• Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

• Arrow types:

− [[∆ ` τ1 → τ2]]oX = [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

− [[∆ ` τ1 → τ2]]rR = {(f, g) | (a, b) ∈ [[∆ ` τ1]]rR⇒ (f a, g b) ∈ [[∆ ` τ2]]rR}

Reynolds’ Semantics of Types

• Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

• Arrow types:

− [[∆ ` τ1 → τ2]]oX = [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

− [[∆ ` τ1 → τ2]]rR = {(f, g) | (a, b) ∈ [[∆ ` τ1]]rR⇒ (f a, g b) ∈ [[∆ ` τ2]]rR}

Here, f ∈ [[∆ ` τ1 → τ2]]oX and g ∈ [[∆ ` τ1 → τ2]]oY

Reynolds’ Semantics of Types

• Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

• Arrow types:

− [[∆ ` τ1 → τ2]]oX = [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

− [[∆ ` τ1 → τ2]]rR = {(f, g) | (a, b) ∈ [[∆ ` τ1]]rR⇒ (f a, g b) ∈ [[∆ ` τ2]]rR}

Here, f ∈ [[∆ ` τ1 → τ2]]oX and g ∈ [[∆ ` τ1 → τ2]]oY

• Forall types:

− [[∆ ` ∀α.τ]]oX = {f :
∏
S:Set

[[∆, α ` τ]]o(X,S) |

∀R′ : Rel(X ′, Y ′) .(fX ′, fY ′) ∈ [[∆, α ` τ]]r(Eq X,R
′)}

Reynolds’ Semantics of Types

• Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

• Arrow types:

− [[∆ ` τ1 → τ2]]oX = [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

− [[∆ ` τ1 → τ2]]rR = {(f, g) | (a, b) ∈ [[∆ ` τ1]]rR⇒ (f a, g b) ∈ [[∆ ` τ2]]rR}

Here, f ∈ [[∆ ` τ1 → τ2]]oX and g ∈ [[∆ ` τ1 → τ2]]oY

• Forall types:

− [[∆ ` ∀α.τ]]oX = {f :
∏
S:Set

[[∆, α ` τ]]o(X,S) |

∀R′ : Rel(X ′, Y ′) .(fX ′, fY ′) ∈ [[∆, α ` τ]]r(Eq X,R
′)}

− [[∆ ` ∀α.τ]]rR = {(f, g) | ∀R′ : Rel(X ′, Y ′) . (fX ′, gY ′) ∈ [[∆, α ` τ]]r(R,R
′)}

Reynolds’ Semantics of Types

• Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

• Arrow types:

− [[∆ ` τ1 → τ2]]oX = [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

− [[∆ ` τ1 → τ2]]rR = {(f, g) | (a, b) ∈ [[∆ ` τ1]]rR⇒ (f a, g b) ∈ [[∆ ` τ2]]rR}

Here, f ∈ [[∆ ` τ1 → τ2]]oX and g ∈ [[∆ ` τ1 → τ2]]oY

• Forall types:

− [[∆ ` ∀α.τ]]oX = {f :
∏
S:Set

[[∆, α ` τ]]o(X,S) |

∀R′ : Rel(X ′, Y ′) .(fX ′, fY ′) ∈ [[∆, α ` τ]]r(Eq X,R
′)}

− [[∆ ` ∀α.τ]]rR = {(f, g) | ∀R′ : Rel(X ′, Y ′) . (fX ′, gY ′) ∈ [[∆, α ` τ]]r(R,R
′)}

Here, f ∈ [[∆ ` ∀α.τ]]oX and g ∈ [[∆ ` ∀α.τ]]oY

Some Observations

• By construction, relational interpretations of functions (on types and

on terms) map related inputs to related outputs

Some Observations

• By construction, relational interpretations of functions (on types and

on terms) map related inputs to related outputs

• If R : Rel(X,Y) then [[∆ ` τ]]rR : Rel([[∆ ` τ]]oX, [[∆ ` τ]]oY)

Some Observations

• By construction, relational interpretations of functions (on types and

on terms) map related inputs to related outputs

• If R : Rel(X,Y) then [[∆ ` τ]]rR : Rel([[∆ ` τ]]oX, [[∆ ` τ]]oY)

• The two interpretations of terms get progressively more intertwined:

Some Observations

• By construction, relational interpretations of functions (on types and

on terms) map related inputs to related outputs

• If R : Rel(X,Y) then [[∆ ` τ]]rR : Rel([[∆ ` τ]]oX, [[∆ ` τ]]oY)

• The two interpretations of terms get progressively more intertwined:

– The object and relational interpretations of type variables are inde-

pendent of one another

Some Observations

• By construction, relational interpretations of functions (on types and

on terms) map related inputs to related outputs

• If R : Rel(X,Y) then [[∆ ` τ]]rR : Rel([[∆ ` τ]]oX, [[∆ ` τ]]oY)

• The two interpretations of terms get progressively more intertwined:

– The object and relational interpretations of type variables are inde-

pendent of one another

– The object interpretation of an arrow type does not depend on

its relational interpretation, but the relational interpretation of an

arrow type does depend on its object interpretation

Some Observations

• By construction, relational interpretations of functions (on types and

on terms) map related inputs to related outputs

• If R : Rel(X,Y) then [[∆ ` τ]]rR : Rel([[∆ ` τ]]oX, [[∆ ` τ]]oY)

• The two interpretations of terms get progressively more intertwined:

– The object and relational interpretations of type variables are inde-

pendent of one another

– The object interpretation of an arrow type does not depend on

its relational interpretation, but the relational interpretation of an

arrow type does depend on its object interpretation

– The object and relational interpretations of forall types depend

crucially on one another

Some Observations

• By construction, relational interpretations of functions (on types and

on terms) map related inputs to related outputs

• If R : Rel(X,Y) then [[∆ ` τ]]rR : Rel([[∆ ` τ]]oX, [[∆ ` τ]]oY)

• The two interpretations of terms get progressively more intertwined:

– The object and relational interpretations of type variables are inde-

pendent of one another

– The object interpretation of an arrow type does not depend on

its relational interpretation, but the relational interpretation of an

arrow type does depend on its object interpretation

– The object and relational interpretations of forall types depend

crucially on one another

• So we do not really have two semantics, but rather a single intercon-

nected semantics!

Identity Extension Lemma

• Key for many applications of parametricity

Identity Extension Lemma

• Key for many applications of parametricity

• Intuitively, relational interpretations of types preserve equality

Identity Extension Lemma

• Key for many applications of parametricity

• Intuitively, relational interpretations of types preserve equality

• Theorem (Identity Extension Lemma) For all ∆ ` τ ,

[[∆ ` τ]]r (EqX1, ...,EqX|∆|) = Eq ([[∆ ` τ]]o(X1, ..., X|∆|))

Reynolds’ Semantics of Terms - The Set Up

• Object and relational interpretations of term contexts

Γ = x1 : τ1, . . . , xm : τm

are given by

[[∆ ` Γ]]o = [[∆ ` τ1]]o × · · · × [[∆ ` τm]]o

and

[[∆ ` Γ]]r = [[∆ ` τ1]]r × · · · × [[∆ ` τm]]r

Reynolds’ Semantics of Terms - The Set Up

• Object and relational interpretations of term contexts

Γ = x1 : τ1, . . . , xm : τm

are given by

[[∆ ` Γ]]o = [[∆ ` τ1]]o × · · · × [[∆ ` τm]]o

and

[[∆ ` Γ]]r = [[∆ ` τ1]]r × · · · × [[∆ ` τm]]r

• An object interpretation of each term is a family of functions

[[∆; Γ ` t : τ]]oX : [[∆ ` Γ]]oX → [[∆ ` τ]]oX

parameterized over a set environment X

Reynolds’ Semantics of Terms - The Set Up

• Object and relational interpretations of term contexts

Γ = x1 : τ1, . . . , xm : τm

are given by

[[∆ ` Γ]]o = [[∆ ` τ1]]o × · · · × [[∆ ` τm]]o

and

[[∆ ` Γ]]r = [[∆ ` τ1]]r × · · · × [[∆ ` τm]]r

• An object interpretation of each term is a family of functions

[[∆; Γ ` t : τ]]oX : [[∆ ` Γ]]oX → [[∆ ` τ]]oX

parameterized over a set environment X

• We’ll sanity-check the definitions as we go along

Reynolds’ Semantics of Terms - variables

• If

∆; Γ ` xi : τi

then

[[∆; Γ ` xi : τi]]oXA = Ai

Reynolds’ Semantics of Terms - variables

• If

∆; Γ ` xi : τi

then

[[∆; Γ ` xi : τi]]oXA = Ai

• This is sensible because we want

[[∆; Γ ` xi : τi]]oX : [[∆ ` Γ]]oX → [[∆ ` τi]]oX

Reynolds’ Semantics of Terms - variables

• If

∆; Γ ` xi : τi

then

[[∆; Γ ` xi : τi]]oXA = Ai

• This is sensible because we want

[[∆; Γ ` xi : τi]]oX : [[∆ ` Γ]]oX → [[∆ ` τi]]oX

and because if A : [[∆ ` Γ]]oX, then Ai : [[∆ ` τi]]oX

Reynolds’ Semantics of Terms - term abstractions

• If
∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

then

[[∆; Γ ` λx.t : τ1 → τ2]]oXAA = [[∆; Γ, x : τ1 ` t : τ2]]oX (A,A)

Reynolds’ Semantics of Terms - term abstractions

• If
∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

then

[[∆; Γ ` λx.t : τ1 → τ2]]oXAA = [[∆; Γ, x : τ1 ` t : τ2]]oX (A,A)

• This is sensible because we want

[[∆; Γ ` λx.t : τ1 → τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` τ1 → τ2]]oX

= [[∆ ` Γ]]oX → [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

Reynolds’ Semantics of Terms - term abstractions

• If
∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

then

[[∆; Γ ` λx.t : τ1 → τ2]]oXAA = [[∆; Γ, x : τ1 ` t : τ2]]oX (A,A)

• This is sensible because we want

[[∆; Γ ` λx.t : τ1 → τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` τ1 → τ2]]oX

= [[∆ ` Γ]]oX → [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

and because the IH gives

[[∆; Γ, x : τ1 ` t : τ2]]oX : [[∆ ` Γ]]oX × [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

Reynolds’ Semantics of Terms - term applications

• If
∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2 t1 : τ2

then

[[∆; Γ ` t2 t1 : τ2]]oXA = [[∆; Γ ` t2 : τ1 → τ2]]oXA ([[∆; Γ ` t1 : τ1]]oXA)

Reynolds’ Semantics of Terms - term applications

• If
∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2 t1 : τ2

then

[[∆; Γ ` t2 t1 : τ2]]oXA = [[∆; Γ ` t2 : τ1 → τ2]]oXA ([[∆; Γ ` t1 : τ1]]oXA)

• This is sensible because we want

[[∆; Γ ` t2 t1 : τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` τ2]]oX

Reynolds’ Semantics of Terms - term applications

• If
∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2 t1 : τ2

then

[[∆; Γ ` t2 t1 : τ2]]oXA = [[∆; Γ ` t2 : τ1 → τ2]]oXA ([[∆; Γ ` t1 : τ1]]oXA)

• This is sensible because we want

[[∆; Γ ` t2 t1 : τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` τ2]]oX

and because the IH gives

[[∆; Γ ` t2 : τ1 → τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` τ1 → τ2]]oX

= [[∆ ` Γ]]oX → [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

Reynolds’ Semantics of Terms - term applications

• If
∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2 t1 : τ2

then

[[∆; Γ ` t2 t1 : τ2]]oXA = [[∆; Γ ` t2 : τ1 → τ2]]oXA ([[∆; Γ ` t1 : τ1]]oXA)

• This is sensible because we want

[[∆; Γ ` t2 t1 : τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` τ2]]oX

and because the IH gives

[[∆; Γ ` t2 : τ1 → τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` τ1 → τ2]]oX

= [[∆ ` Γ]]oX → [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

and

[[∆; Γ ` t1 : τ1]]oX : [[∆ ` Γ]]oX → [[∆ ` τ1]]oX

Taking Stock

• So far, term interpretations are all in the required sets

Taking Stock

• So far, term interpretations are all in the required sets

• But when Reynolds interpreted type abstractions and applications

Taking Stock

• So far, term interpretations are all in the required sets

• But when Reynolds interpreted type abstractions and applications

... and tried to show that term interpretations are in the required sets

Taking Stock

• So far, term interpretations are all in the required sets

• But when Reynolds interpreted type abstractions and applications

... and tried to show that term interpretations are in the required sets

... he ran into problems

Reynolds’ Semantics of Terms - type abstractions

• If
∆, α; Γ ` t : τ

∆; Γ ` Λα.t : ∀α.τ

then

[[∆; Γ ` Λα.t : ∀α.τ]]oXA = ΠS:Set[[∆, α; Γ ` t : τ]]o (X,S)A

Reynolds’ Semantics of Terms - type abstractions

• If
∆, α; Γ ` t : τ

∆; Γ ` Λα.t : ∀α.τ

then

[[∆; Γ ` Λα.t : ∀α.τ]]oXA = ΠS:Set[[∆, α; Γ ` t : τ]]o (X,S)A

• This is sensible because we want

[[∆; Γ ` Λα.t : ∀α.τ]]oX : [[∆ ` Γ]]oX → [[∆ ` ∀α.τ]]oX

= [[∆ ` Γ]]oX → {f : ΠS:Set[[∆, α ` τ]]o(X,S) | ...}

Reynolds’ Semantics of Terms - type abstractions

• If
∆, α; Γ ` t : τ

∆; Γ ` Λα.t : ∀α.τ

then

[[∆; Γ ` Λα.t : ∀α.τ]]oXA = ΠS:Set[[∆, α; Γ ` t : τ]]o (X,S)A

• This is sensible because we want

[[∆; Γ ` Λα.t : ∀α.τ]]oX : [[∆ ` Γ]]oX → [[∆ ` ∀α.τ]]oX

= [[∆ ` Γ]]oX → {f : ΠS:Set[[∆, α ` τ]]o(X,S) | ...}

and because α not free in Γ implies

[[∆, α; Γ ` t : τ]]o (X,S) : [[∆, α ` Γ]]o (X,S)→ [[∆, α ` τ]]o (X,S)

= [[∆ ` Γ]]oX → [[∆, α ` τ]]o (X,S)

Reynolds’ Semantics of Terms - type abstractions

• If
∆, α; Γ ` t : τ

∆; Γ ` Λα.t : ∀α.τ

then

[[∆; Γ ` Λα.t : ∀α.τ]]oXA = ΠS:Set[[∆, α; Γ ` t : τ]]o (X,S)A

• This is sensible because we want

[[∆; Γ ` Λα.t : ∀α.τ]]oX : [[∆ ` Γ]]oX → [[∆ ` ∀α.τ]]oX

= [[∆ ` Γ]]oX → {f : ΠS:Set[[∆, α ` τ]]o(X,S) | ...}

and because α not free in Γ implies

[[∆, α; Γ ` t : τ]]o (X,S) : [[∆, α ` Γ]]o (X,S)→ [[∆, α ` τ]]o (X,S)

= [[∆ ` Γ]]oX → [[∆, α ` τ]]o (X,S)

• But now we’d have to check that the condition after the vertical bar

in the set interpretation of a ∀-type holds...

Reynolds’ Semantics of Terms - type applications

• If
∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

then

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]]oXA = [[∆; Γ ` t : ∀α.τ2]]oXA ([[∆ ` τ1]]oX)

Reynolds’ Semantics of Terms - type applications

• If
∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

then

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]]oXA = [[∆; Γ ` t : ∀α.τ2]]oXA ([[∆ ` τ1]]oX)

• This is sensible because we want

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]]oX : [[∆ ` Γ]]oX → [[∆ ` τ2[α 7→ τ1]]]oX

Reynolds’ Semantics of Terms - type applications

• If
∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

then

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]]oXA = [[∆; Γ ` t : ∀α.τ2]]oXA ([[∆ ` τ1]]oX)

• This is sensible because we want

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]]oX : [[∆ ` Γ]]oX → [[∆ ` τ2[α 7→ τ1]]]oX

and because

[[∆; Γ ` t : ∀α.τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` ∀α.τ2]]oX

= [[∆ ` Γ]]oX → {f : ΠS:Set[[∆, α ` τ2]]o(X,S)|...}

Reynolds’ Semantics of Terms - type applications

• If
∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

then

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]]oXA = [[∆; Γ ` t : ∀α.τ2]]oXA ([[∆ ` τ1]]oX)

• This is sensible because we want

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]]oX : [[∆ ` Γ]]oX → [[∆ ` τ2[α 7→ τ1]]]oX

and because

[[∆; Γ ` t : ∀α.τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` ∀α.τ2]]oX

= [[∆ ` Γ]]oX → {f : ΠS:Set[[∆, α ` τ2]]o(X,S)|...}

• To type-check this, we’d need to show

[[∆; Γ ` t : ∀α.τ2]]oXA ([[∆ ` τ1]]oX) : [[∆ ` τ2[α 7→ τ1]]]oX

Reynolds’ Semantics of Terms - type applications

• If
∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

then

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]]oXA = [[∆; Γ ` t : ∀α.τ2]]oXA ([[∆ ` τ1]]oX)

• This is sensible because we want

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]]oX : [[∆ ` Γ]]oX → [[∆ ` τ2[α 7→ τ1]]]oX

and because

[[∆; Γ ` t : ∀α.τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` ∀α.τ2]]oX

= [[∆ ` Γ]]oX → {f : ΠS:Set[[∆, α ` τ2]]o (X,S)|...}

• To type-check this, we’d need to show

[[∆; Γ ` t : ∀α.τ2]]oXA ([[∆ ` τ1]]oX) : [[∆ ` τ2[α 7→ τ1]]]oX

• But this assumes the interpretation of type abstractions is sensible...

What About Type Abstractions and Applications?

• Due to size considerations, Reynolds cannot interpret ∀α.τ as a set of

the form ΠS∈SetS for the usual set-theoretic product

What About Type Abstractions and Applications?

• Due to size considerations, Reynolds cannot interpret ∀α.τ as a set of

the form ΠS∈SetS for the usual set-theoretic product

– α would have to range over all sets interpreting types... including

the set interpreting ∀α.τ !

What About Type Abstractions and Applications?

• Due to size considerations, Reynolds cannot interpret ∀α.τ as a set of

the form ΠS∈SetS for the usual set-theoretic product

– α would have to range over all sets interpreting types... including

the set interpreting ∀α.τ !

– This is impossible!

What About Type Abstractions and Applications?

• Due to size considerations, Reynolds cannot interpret ∀α.τ as a set of

the form ΠS∈SetS for the usual set-theoretic product

– α would have to range over all sets interpreting types... including

the set interpreting ∀α.τ !

– This is impossible!

• Idea: Maybe a weaker notion of “large” product can interpret ∀α.τ
while still preserving the usual binary product and function space?

What About Type Abstractions and Applications?

• Due to size considerations, Reynolds cannot interpret ∀α.τ as a set of

the form ΠS∈SetS for the usual set-theoretic product

– α would have to range over all sets interpreting types... including

the set interpreting ∀α.τ !

– This is impossible!

• Idea: Maybe a weaker notion of “large” product can interpret ∀α.τ
while still preserving the usual binary product and function space?

• In order to exclude ad hoc polymorphic functions from his model,

Reynolds restricts it by imposing a so-called parametricity property

What About Type Abstractions and Applications?

• Due to size considerations, Reynolds cannot interpret ∀α.τ as a set of

the form ΠS∈SetS for the usual set-theoretic product

– α would have to range over all sets interpreting types... including

the set interpreting ∀α.τ !

– This is impossible!

• Idea: Maybe a weaker notion of “large” product can interpret ∀α.τ
while still preserving the usual binary product and function space?

• In order to exclude ad hoc polymorphic functions from his model,

Reynolds restricts it by imposing a so-called parametricity property

• This leads to the interpretations we have seen

What About Type Abstractions and Applications?

• Due to size considerations, Reynolds cannot interpret ∀α.τ as a set of

the form ΠS∈SetS for the usual set-theoretic product

– α would have to range over all sets interpreting types... including

the set interpreting ∀α.τ !

– This is impossible!

• Idea: Maybe a weaker notion of “large” product can interpret ∀α.τ
while still preserving the usual binary product and function space?

• In order to exclude ad hoc polymorphic functions from his model,

Reynolds restricts it by imposing a so-called parametricity property

• This leads to the interpretations we have seen

• Conjecturing that these definitions give a sensible model, Reynolds

proves his Abstraction Theorem

Problems in Parametricity Paradise

• The next year Reynolds discovered that there can be no set model of

System F in which

– × is interpreted as the usual binary product

– → is the interpreted as the usual function space

– ∀α.τ is interpreted as a possibly restricted “large” product

Problems in Parametricity Paradise

• The next year Reynolds discovered that there can be no set model of

System F in which

– × is interpreted as the usual binary product

– → is the interpreted as the usual function space

– ∀α.τ is interpreted as a possibly restricted “large” product

• This is the case no matter what notion of “parametric” is used to

restrict “large” products to exclude ad hoc functions!

Problems in Parametricity Paradise

• The next year Reynolds discovered that there can be no set model of

System F in which

– × is interpreted as the usual binary product

– → is the interpreted as the usual function space

– ∀α.τ is interpreted as a possibly restricted “large” product

• This is the case no matter what notion of “parametric” is used to

restrict “large” products to exclude ad hoc functions!

• Reynolds proved this working in a classical set theory

Problems in Parametricity Paradise

• The next year Reynolds discovered that there can be no set model of

System F in which

– × is interpreted as the usual binary product

– → is the interpreted as the usual function space

– ∀α.τ is interpreted as a possibly restricted “large” product

• This is the case no matter what notion of “parametric” is used to

restrict “large” products to exclude ad hoc functions!

• Reynolds proved this working in a classical set theory

• In 1987, Andrew Pitts showed that set models of System F do exist in

constructive set theories

Problems in Parametricity Paradise

• The next year Reynolds discovered that there can be no set model of

System F in which

– × is interpreted as the usual binary product

– → is the interpreted as the usual function space

– ∀α.τ is interpreted as a possibly restricted “large” product

• This is the case no matter what notion of “parametric” is used to

restrict “large” products to exclude ad hoc functions!

• Reynolds proved this working in a classical set theory

• In 1987, Andrew Pitts showed that set models of System F do exist in

constructive set theories

• We won’t look at constructive set models of System F in this course

Problems in Parametricity Paradise

• The next year Reynolds discovered that there can be no set model of

System F in which

– × is interpreted as the usual binary product

– → is the interpreted as the usual function space

– ∀α.τ is interpreted as a possibly restricted “large” product

• This is the case no matter what notion of “parametric” is used to

restrict “large” products to exclude ad hoc functions!

• Reynolds proved this working in a classical set theory

• In 1987, Andrew Pitts showed that set models of System F do exist in

constructive set theories

• We won’t look at constructive set models of System F in this course

• Instead, we’ll just draw inspiration from Reynolds’ ideas

The Abstraction Theorem

• Formalizes uniformity of parametric polymorphism

The Abstraction Theorem

• Formalizes uniformity of parametric polymorphism

• Intuitively, every (interpretation of every) term is related to itself by

the relational interpretation of its type

The Abstraction Theorem

• Formalizes uniformity of parametric polymorphism

• Intuitively, every (interpretation of every) term is related to itself by

the relational interpretation of its type

• Theorem (Abstraction Theorem) Let X,Y : Set|∆|, R : Rel|∆|(X,Y),

A ∈ [[∆ ` Γ]]oX, and B ∈ [[∆ ` Γ]]oY . For all ∆; Γ ` t : τ ,

if

(A,B) ∈ [[∆ ` Γ]]rR

then

([[∆; Γ ` t : τ]]o X A, [[∆; Γ ` t : τ]]o Y B) ∈ [[∆ ` τ]]rR

The Abstraction Theorem

• Formalizes uniformity of parametric polymorphism

• Intuitively, every (interpretation of every) term is related to itself by

the relational interpretation of its type

• Theorem (Abstraction Theorem) Let X,Y : Set|∆|, R : Rel|∆|(X,Y),

A ∈ [[∆ ` Γ]]oX, and B ∈ [[∆ ` Γ]]oY . For all ∆; Γ ` t : τ ,

if

(A,B) ∈ [[∆ ` Γ]]rR

then

([[∆; Γ ` t : τ]]o X A, [[∆; Γ ` t : τ]]o Y B) ∈ [[∆ ` τ]]rR

• This doesn’t make complete sense because of missing interpretations...

The Abstraction Theorem

• Formalizes uniformity of parametric polymorphism

• Intuitively, every (interpretation of every) term is related to itself by

the relational interpretation of its type

• Theorem (Abstraction Theorem) Let X,Y : Set|∆|, R : Rel|∆|(X,Y),

A ∈ [[∆ ` Γ]]oX, and B ∈ [[∆ ` Γ]]oY . For all ∆; Γ ` t : τ ,

if

(A,B) ∈ [[∆ ` Γ]]rR

then

([[∆; Γ ` t : τ]]o X A, [[∆; Γ ` t : τ]]o Y B) ∈ [[∆ ` τ]]rR

• This doesn’t make complete sense because of missing interpretations...

• ... but a model of System F in which the Abstraction Theorem and

Identity Extension Lemma hold is what Reynolds was aiming for

Coming Up

• Introduction to (bi)fibrations

Coming Up

• Introduction to (bi)fibrations

• View Reynolds’ construction and results through the lens of the rela-

tions (bi)fibration on Set

Coming Up

• Introduction to (bi)fibrations

• View Reynolds’ construction and results through the lens of the rela-

tions (bi)fibration on Set

• Generalize Reynolds’ constructions to (bi)fibrational models of Sys-

tem F for which we can prove (fibrational versions of) the IEL and

Abstraction Theorem

Coming Up

• Introduction to (bi)fibrations

• View Reynolds’ construction and results through the lens of the rela-

tions (bi)fibration on Set

• Generalize Reynolds’ constructions to (bi)fibrational models of Sys-

tem F for which we can prove (fibrational versions of) the IEL and

Abstraction Theorem

• Reynolds’ construction is (ignoring size issues) such a model

References

• Types, abstraction, and parametric polymorphism. J. Reynolds. In-

formation Processing, 1983.

• Polymorphism is not set-theoretic. J. Reynolds. Semantics of Data

Types, 1984.

• Polymorphism is set-theoretic, constructively. A. Pitts. CTCS’84.

