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e Intuitively, parametric polymorphism captures uniform behavior of

functions across all type instantiations
e Distinct from ad hoc polymorphism (e.g., Haskell type classes)

e Uniformity of parametric polymorphic functions means that they
— must be given by a single algorithm that works across all types
— cannot make use of any type-specific operations (e.g., +, )

— must map related inputs to related outputs
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Syntax and Semantics'

Syntax: The V type constructor

Semantics: If f : Va.7, then f maps related values to related values

(and similarly for f: 7 — 7)

This semantic “relatedness” requirement ensures that models of para-

metric polymorphism do not contain ad hoc functions

That is, it ensures that V really does mean a uniform “for all”!
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Reynolds’ Programme I

e Paper: Types, abstraction, and parametric polymorphism (1983)

e Construct: A set-theoretic model of parametric polymorphism for Sys-
tem F by giving, compositionally:
— a set interpretation for every type
— a relational interpretation for every type

— a set interpretation for every term

e Prove: An Abstraction Theorem

— Intuitively, if the arguments to a function are related at the rela-
tional interpretations of their types, then applying the function to
them yields results that are related at the relational interpretation

of the function’s return type
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A Caveat and Its Correction'

However...

... Reynolds discovered that his own construction was flawed!

Reynolds showed that no set-theoretic model of parametric polymor-

phism for System F can exist in classical set theory

The next year, Andrew Pitts showed that such models do exist... provided

we work in a constructive set theory

Subsequently, a number of models of parametric polymorphism for

System F have been constructed
We’ll see one such model, based on bifibrations

This model inhabits a “sweet spot” between
— having the simplicity of functorial models, and

— having enough structure to derive consequences of parametricity

that serve as gold standard properties for “good” models
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Type Contexts and J udgements'

A type context A is a list of type variables aq, ..., a,,

A type judgement A F 7 has
— A a type context
— T a type

Type judgements are defined inductively:

o; €A AFT AFT A,a b T
Al o AT — 1 AFVo.r

We consider a-convertible types equivalent
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e A term context A F I has
— A a type context
— &1, ..., £, term variables
— I of the form =, : 71, .cci Ty * T

— A+ 7; for each 7 € {1,...,m}

e A term judgement A;I' -t : 7 has
— A a type context
— A FT aterm context
— A F 7 a type judgement

— t a term
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Term Contexts and Judgements - Part III

e Term judgements are defined inductively:

ArT1, x;:1;, €T A :mHEt:my A;T'HEt o ATTEHEty i — 1
A;T'Hax; i A;T'HE At i — 1 A;T'Htaty :
A,o;THt:T A;T'HEt:Varn AbFRT
A;T F Aa.t : Va.T AT Htm : [ — 7]

e Type abstraction requires that a does not appear (free) in I'

e T[a — 1], tfao — 71|, and t[x — y| denote (capture-free) substitution



Conversion Rules - Part II

()

(aa)

AsTHAx.t = Ay .tjlx — y]: 11 — 7 AT HAaj.t = Aas. tja; — as] : Vag.7

(Bx)

A;T H (Ax.t) s = t[x — s] : AT H (A t)Ty =t wo[a — T4 (Ba)

x & FV(t) a & FTV(t)
AsTHEt=Az.tx: 1 — T (1) A;THEt=Aa.ta: Va.r (712)

A;Te:m Bty =1, : 1 (&) Ao 'ty =ty T (£4)
A;T'H Az .ty = Aoty : 71 — T A A;T'H Aa.t; = Aa. ty : Va.r A




Conversion Rules - Part III

A;Fl_tlztziTl—)Tz A;FI_812822
A;Fl_t181:t282:7'2

1 (cong,)

A,F - tl = tz . ‘v’a.7'2

A; F l_ tl T = tz T - TQ[a — 'Tl] (CongA)
AT F s = T
A;I‘I—t:t:T(reﬂ) A=t = (sym)

A;THt=s:7T INAFs=u:T
A;sTHEt=u: T

(trans)
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Reynolds’ Semantics of Types - The Set UpI

e Reynolds defines two “parallel” semantics for System F types A - T
— an object semantics [A F 7], : Set®! — Set

— a relational semantics [A F 7], : Rel®! — Rel

e Write
— S : Set if S is a set
— R : Rel if R is a relation
— R:Rel(X,Y) if R is a relation on sets X and Y (i.,e., RC X XY)

o Let
— X be a |Al-tuple of sets
— R be a |Al|-tuple of relations
— R; : Rel(X;,Y;) for i =1, ..., |A|
— EqX ={(z,x) |z € X}
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e Type variables: [A F a;]oX = X; and [AF o;].R = R;
e Arrow types:
—[AF T = )X =[AF 7)o X — [AF ] X
—[AFn > nl.R={(f9) ] (a,b) € [A+n],R= (fa,gb) € [AF ].R}

Here, fe[AF 1 - ]oX and g€ [AF 17, — ],Y

e Forall types:

— [AFVar], X ={f: [][A,aF7].(X,S) |
S:Set

VR’ :Rel(X',Y") .(fX', fY") € [A, a F 7],(Eq X, R')}
— [A F Vot R = {(f,9) | VR : Rel(X", Y") . (f X', gY") € [A,a F 7], (R, R')}

Here, f € [A - Va.7],X and g € [A + Va.7],Y
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Some Observations I

e By construction, relational interpretations of functions (on types and

on terms) map related inputs to related outputs
o If R:Rel(X,Y) then [A F 7], R : Rel([A - 7], X, [A F 7], Y)
e The two interpretations of terms get progressively more intertwined:

— The object and relational interpretations of type variables are inde-

pendent of one another

— The object interpretation of an arrow type does not depend on
its relational interpretation, but the relational interpretation of an

arrow type does depend on its object interpretation
— The object and relational interpretations of forall types depend

crucially on one another

e So we do not really have two semantics, but rather a single intercon-

nected semantics!
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Identity Extension Lemma'

e Key for many applications of parametricity
e Intuitively, relational interpretations of types preserve equality

e Theorem (Identity Extension Lemma) For all A + T,

[[A - T]],,. (Eq Xl, TY) Eq X|A|) = Eq ([[A - T]]O(Xl, ...,X|A|))
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e Object and relational interpretations of term contexts
'=x1:1,....Cm : T
are given by
[AFET]o=[AF T]o X+ X [AF Th]o

and
[AET] =[AF 7] X oo X [AF 7],

e An object interpretation of each term is a family of functions
[A;THt: 7] X : [AFT].X = [AF 7] X
parameterized over a set environment X

e We’ll sanity-check the definitions as we go along



Reynolds’ Semantics of Terms - Variablesl

o If

then



Reynolds’ Semantics of Terms - Variablesl

AT a1

o If

then
[[A,F H ;. Ti]]oyz = Az

e This is sensible because we want

[AsTFx;:1]o X : [AFT]o X = [AF1]o X



Reynolds’ Semantics of Terms - Variablesl

AT a1

o If

then
[[A,F H ;. Ti]]oyz = Az

e This is sensible because we want
[AsTFx;:1]o X : [AFT]o X = [AF1]o X

and because if A : [A FT'], X, then A; : [A F 1;],X
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o If
VAN RN IR S ol A oY

A;T'H et e — 1

then
[AsT Azt i1 = o XAA=[A;T,z: 1 Ht: 1], X (A, A)

o This is sensible because we want

[AsT Azt i1 = 1]oX @ [AFT]X = [AF7T — )X
= [AFT]oX — [AF7]eX — [AF ] X

and because the IH gives

[AsT,z:m Ft:m]oX : [AFT]X X [AF 7)o X — [AF ]oX
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Reynolds’ Semantics of Terms - term applications'

o If
A;T'HEt o ATEHEty i —

A;F"tztlng

then
[AsT Htot; i) XA=[A;T Hty: 1 = R]o X A([A;T Ft;:1]o X A)
e This is sensible because we want
[A;T Ftot; i ]o X : [AFT]X — [AF 1]oX
and because the IH gives

[A;Fl—t2:7'1—>7'2]]oy : [[AI—I‘]]OY—>[[AI—7'1—>7'2]]OY
= [AF I‘]]OY — [AF Tl]]oy — [AF Tz]]of

and
[A;THt 1] X [AFT], X — [AF 7] X
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e So far, term interpretations are all in the required sets

e But when Reynolds interpreted type abstractions and applications
... and tried to show that term interpretations are in the required sets

... he ran into problems
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o If
A,o; 't T

A;T H Aot : Va.r

then
[A;T F Aat : Va.m]o X A = Hgset[A, 5T Ht: 7], (X,S) A

e This is sensible because we want

[A;T H At : Va.1]o X @ [AFT], X — [AFVa.r], X
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Reynolds’ Semantics of Terms - type abstractions'

o If
A,o; 't 71

A;T H Aa.t : Va.r

then
[A;T F Aat : Vam]o X A = Hgse[A, 5T Ht: 7], (X,S) A

e This is sensible because we want
[A;T F At :Va.t]o X @ [AFRT], X — [AFVa.7], X
= [AFT]oX — {f : Hgset[A, a - T]o(X, S) | ...}
and because a not free in I' implies
[A, ;T Ht: 7], (X,S) @ [A,a+T],(X,S) = [A,at 1], (X,S)
= [AFT]o X = [A,a 1], (X,S)

e But now we’d have to check that the condition after the vertical bar
in the set interpretation of a V-type holds...
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Reynolds’ Semantics of Terms - type applications'

o If
A;T'HtEt:Vamn AbFRT

AT HEtm oo — 7]

then
[AsT -t i mfa—= 7)o X A=[A;TFt:Van], X A([AF 7] X)
e This is sensible because we want
[A;T Ht7: fa— 71]]oX : [AFT]oX — [AF n[a— 71]]oX

and because

[AsT Ht:Van]oX @ [AFT],X — [AFVa.n], X
= [AFT], X — {f : Hsse[A, a - 2], (X, S)]...}

e To type-check this, we’d need to show
[A;T Ft:Varn]o X A(JAF 1]oX) : [AF mla— 1]l X

e But this assumes the interpretation of type abstractions is sensible...
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What About Type Abstractions and Applications?'

e Due to size considerations, Reynolds cannot interpret Va.T as a set of
the form Ilgcset S for the usual set-theoretic product

— o would have to range over all sets interpreting types... including

the set interpreting Va.7!

— This is impossible!

e Idea: Maybe a weaker notion of “large” product can interpret Va.r

while still preserving the usual binary product and function space?

e In order to exclude ad hoc polymorphic functions from his model,

Reynolds restricts it by imposing a so-called parametricity property
e This leads to the interpretations we have seen

e Conjecturing that these definitions give a sensible model, Reynolds

proves his Abstraction Theorem
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Problems in Parametricity Paradise'

The next year Reynolds discovered that there can be no set model of

System F in which
— X is interpreted as the usual binary product
— — is the interpreted as the usual function space

— Va.7 is interpreted as a possibly restricted “large” product

This is the case no matter what notion of “parametric” is used to

restrict “large” products to exclude ad hoc functions!
Reynolds proved this working in a classical set theory

In 1987, Andrew Pitts showed that set models of System F do exist in

constructive set theories
We won’t look at constructive set models of System F in this course

Instead, we’ll just draw inspiration from Reynolds’ ideas
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The Abstraction Theorem'

e Formalizes uniformity of parametric polymorphism

e Intuitively, every (interpretation of every) term is related to itself by

the relational interpretation of its type

e Theorem (Abstraction Theorem) Let X,Y : Set'®l, R : Rel?/(X,Y),
A€ [A+T],X,and B € [A+T],Y. For all A;T ~t:T,

if
(A,B) € [A+T],.R
then

([A;THt:7]o X A, [A;THt:7], Y B) € [A+T].R

e This doesn’t make complete sense because of missing interpretations...

e ...but a model of System F in which the Abstraction Theorem and

Identity Extension Lemma hold is what Reynolds was aiming for
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Coming UpI

Introduction to (bi)fibrations

View Reynolds’ construction and results through the lens of the rela-
tions (bi)fibration on Set

Generalize Reynolds’ constructions to (bi)fibrational models of Sys-
tem F for which we can prove (fibrational versions of) the IEL and

Abstraction Theorem

Reynolds’ construction is (ignoring size issues) such a model
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