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• Intuitively, parametric polymorphism captures uniform behavior of

functions across all type instantiations

• Distinct from ad hoc polymorphism (e.g., Haskell type classes)

• Uniformity of parametric polymorphic functions means that they

– must be given by a single algorithm that works across all types

– cannot make use of any type-specific operations (e.g., +, ¬)

– must map related inputs to related outputs
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Syntax and Semantics

• Syntax: The ∀ type constructor

• Semantics: If f : ∀α.τ , then f maps related values to related values

(and similarly for f : τ1 → τ2)

• This semantic “relatedness” requirement ensures that models of para-

metric polymorphism do not contain ad hoc functions

• That is, it ensures that ∀ really does mean a uniform “for all”!
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Reynolds’ Programme

• Paper: Types, abstraction, and parametric polymorphism (1983)

• Construct: A set-theoretic model of parametric polymorphism for Sys-

tem F by giving, compositionally:

– a set interpretation for every type

– a relational interpretation for every type

– a set interpretation for every term

• Prove: An Abstraction Theorem

– Intuitively, if the arguments to a function are related at the rela-

tional interpretations of their types, then applying the function to

them yields results that are related at the relational interpretation

of the function’s return type
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A Caveat and Its Correction

• However...

... Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymor-

phism for System F can exist in classical set theory

• The next year, Andrew Pitts showed that such models do exist... provided

we work in a constructive set theory

• Subsequently, a number of models of parametric polymorphism for

System F have been constructed

• We’ll see one such model, based on bifibrations

• This model inhabits a “sweet spot” between

– having the simplicity of functorial models, and

– having enough structure to derive consequences of parametricity

that serve as gold standard properties for “good” models
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• A type context ∆ is a list of type variables α1, ..., αn

• A type judgement ∆ ` τ has

– ∆ a type context

– τ a type

• Type judgements are defined inductively:

αi ∈ ∆
∆ ` αi

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

• We consider α-convertible types equivalent
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• A term context ∆ ` Γ has

– ∆ a type context

– x1, ..., xm term variables

– Γ of the form x1 : τ1, ..., xm : τm

– ∆ ` τi for each i ∈ {1, ...,m}

• A term judgement ∆; Γ ` t : τ has

– ∆ a type context

– ∆ ` Γ a term context

– ∆ ` τ a type judgement

– t a term
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• Term judgements are defined inductively:

∆ ` τi xi : τi ∈ Γ
∆; Γ ` xi : τi

∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2 t1 : τ2

∆, α; Γ ` t : τ

∆; Γ ` Λα.t : ∀α.τ
∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

• Type abstraction requires that α does not appear (free) in Γ

• τ2[α 7→ τ1], t[α 7→ τ1], and t[x 7→ y] denote (capture-free) substitution



Conversion Rules - Part I

∆; Γ ` λx. t = λy. t[x 7→ y] : τ1 → τ2
(αλ)

∆; Γ ` Λα1. t = Λα2. t[α1 7→ α2] : ∀α1.τ
(αΛ)

∆; Γ ` (λx. t) s = t[x 7→ s] : τ2
(βλ)

∆; Γ ` (Λα. t)τ1 = t : τ2[α 7→ τ1]
(βΛ)

x /∈ FV (t)

∆; Γ ` t = λx. t x : τ1 → τ2
(ηλ)

α /∈ FTV (t)

∆; Γ ` t = Λα. t α : ∀α.τ (ηΛ)

∆; Γ, x : τ1 ` t1 = t2 : τ2

∆; Γ ` λx. t1 = λx. t2 : τ1 → τ2
(ξλ)

∆, α; Γ ` t1 = t2 : τ

∆; Γ ` Λα. t1 = Λα. t2 : ∀α.τ (ξΛ)



Conversion Rules - Part II

∆; Γ ` t1 = t2 : τ1 → τ2 ∆; Γ ` s1 = s2 : τ1

∆; Γ ` t1 s1 = t2 s2 : τ2
(congλ)

∆; Γ ` t1 = t2 : ∀α.τ2

∆; Γ ` t1 τ1 = t2 τ1 : τ2[α 7→ τ1]
(congΛ)

∆; Γ ` t = t : τ
(refl)

∆; Γ ` s = t : τ

∆; Γ ` t = s : τ
(sym)

∆; Γ ` t = s : τ Γ; ∆ ` s = u : τ

∆; Γ ` t = u : τ
(trans)
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Reynolds’ Semantics of Types - The Set Up

• Reynolds defines two “parallel” semantics for System F types ∆ ` τ
– an object semantics [[∆ ` τ ]]o : Set|∆| → Set

– a relational semantics [[∆ ` τ ]]r : Rel|∆| → Rel

• Write

– S : Set if S is a set

– R : Rel if R is a relation

– R : Rel(X,Y ) if R is a relation on sets X and Y (i.e., R ⊆ X × Y )

• Let

– X be a |∆|-tuple of sets

– R be a |∆|-tuple of relations

– Ri : Rel(Xi, Yi) for i = 1, ..., |∆|
– EqX = {(x, x) |x ∈ X}
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Some Observations

• By construction, relational interpretations of functions (on types and

on terms) map related inputs to related outputs

• If R : Rel(X,Y ) then [[∆ ` τ ]]rR : Rel([[∆ ` τ ]]oX, [[∆ ` τ ]]oY )

• The two interpretations of terms get progressively more intertwined:

– The object and relational interpretations of type variables are inde-

pendent of one another

– The object interpretation of an arrow type does not depend on

its relational interpretation, but the relational interpretation of an

arrow type does depend on its object interpretation

– The object and relational interpretations of forall types depend

crucially on one another

• So we do not really have two semantics, but rather a single intercon-

nected semantics!
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Identity Extension Lemma

• Key for many applications of parametricity

• Intuitively, relational interpretations of types preserve equality

• Theorem (Identity Extension Lemma) For all ∆ ` τ ,

[[∆ ` τ ]]r (EqX1, ...,EqX|∆|) = Eq ([[∆ ` τ ]]o(X1, ..., X|∆|))
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Reynolds’ Semantics of Terms - The Set Up

• Object and relational interpretations of term contexts

Γ = x1 : τ1, . . . , xm : τm

are given by

[[∆ ` Γ]]o = [[∆ ` τ1]]o × · · · × [[∆ ` τm]]o

and

[[∆ ` Γ]]r = [[∆ ` τ1]]r × · · · × [[∆ ` τm]]r

• An object interpretation of each term is a family of functions

[[∆; Γ ` t : τ ]]oX : [[∆ ` Γ]]oX → [[∆ ` τ ]]oX

parameterized over a set environment X

• We’ll sanity-check the definitions as we go along
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• If

∆; Γ ` xi : τi

then

[[∆; Γ ` xi : τi]]oXA = Ai

• This is sensible because we want

[[∆; Γ ` xi : τi]]oX : [[∆ ` Γ]]oX → [[∆ ` τi]]oX

and because if A : [[∆ ` Γ]]oX, then Ai : [[∆ ` τi]]oX
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• If
∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

then

[[∆; Γ ` λx.t : τ1 → τ2]]oXAA = [[∆; Γ, x : τ1 ` t : τ2]]oX (A,A)

• This is sensible because we want

[[∆; Γ ` λx.t : τ1 → τ2]]oX : [[∆ ` Γ]]oX → [[∆ ` τ1 → τ2]]oX

= [[∆ ` Γ]]oX → [[∆ ` τ1]]oX → [[∆ ` τ2]]oX

and because the IH gives

[[∆; Γ, x : τ1 ` t : τ2]]oX : [[∆ ` Γ]]oX × [[∆ ` τ1]]oX → [[∆ ` τ2]]oX
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• But when Reynolds interpreted type abstractions and applications

... and tried to show that term interpretations are in the required sets

... he ran into problems
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then
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• Due to size considerations, Reynolds cannot interpret ∀α.τ as a set of

the form ΠS∈SetS for the usual set-theoretic product

– α would have to range over all sets interpreting types... including

the set interpreting ∀α.τ !

– This is impossible!

• Idea: Maybe a weaker notion of “large” product can interpret ∀α.τ
while still preserving the usual binary product and function space?

• In order to exclude ad hoc polymorphic functions from his model,

Reynolds restricts it by imposing a so-called parametricity property

• This leads to the interpretations we have seen

• Conjecturing that these definitions give a sensible model, Reynolds

proves his Abstraction Theorem
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Problems in Parametricity Paradise

• The next year Reynolds discovered that there can be no set model of

System F in which

– × is interpreted as the usual binary product

– → is the interpreted as the usual function space

– ∀α.τ is interpreted as a possibly restricted “large” product

• This is the case no matter what notion of “parametric” is used to

restrict “large” products to exclude ad hoc functions!

• Reynolds proved this working in a classical set theory

• In 1987, Andrew Pitts showed that set models of System F do exist in

constructive set theories

• We won’t look at constructive set models of System F in this course

• Instead, we’ll just draw inspiration from Reynolds’ ideas
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• Formalizes uniformity of parametric polymorphism

• Intuitively, every (interpretation of every) term is related to itself by

the relational interpretation of its type

• Theorem (Abstraction Theorem) Let X,Y : Set|∆|, R : Rel|∆|(X,Y ),

A ∈ [[∆ ` Γ]]oX, and B ∈ [[∆ ` Γ]]oY . For all ∆; Γ ` t : τ ,

if

(A,B) ∈ [[∆ ` Γ]]rR

then

([[∆; Γ ` t : τ ]]o X A, [[∆; Γ ` t : τ ]]o Y B) ∈ [[∆ ` τ ]]rR

• This doesn’t make complete sense because of missing interpretations...

• ... but a model of System F in which the Abstraction Theorem and

Identity Extension Lemma hold is what Reynolds was aiming for
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Coming Up

• Introduction to (bi)fibrations

• View Reynolds’ construction and results through the lens of the rela-

tions (bi)fibration on Set

• Generalize Reynolds’ constructions to (bi)fibrational models of Sys-

tem F for which we can prove (fibrational versions of) the IEL and

Abstraction Theorem

• Reynolds’ construction is (ignoring size issues) such a model
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