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Why Study Semantics of Advanced Data Types?

• A language’s type system allows us to express correctness properties of its
programs. (“Well-typed programs don’t go wrong.”)

• Data types are an important part of any type system.

• Fancier data types let us express more sophisticated correctness properties.

• Type-checking provides guarantees of correctness with respect to these properties.

• In this course:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

• We ask (and answer!)

- What correctness properties can each class of data types express?

- What models can we build to understand each class of data types?

- What do properties of these models say about how we can compute with,

and reason about, programs involving each class of data types?
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Course Outline

Lecture 1: Syntax and semantics of ADTs and nested types

Lecture 2: Syntax and semantics of GADTs

Lecture 3: Parametricity for ADTs and nested types

Lecture 4: Parametricity for GADTs
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Lecture 1:
Syntax and Semantics of ADTs and Nested Types

ADTs nested types GADTs
syntactically

generalized by
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Assumption: Basic familiarity with categories, functors, natural transformations.



Syntax of ADTs (I)

• Booleans
data Bool : Set where

false : Bool
true : Bool

• Natural numbers
data Nat : Set where

zero : Nat
suc : Nat→ Nat

• Lists
data List (A : Set) : Set where

[ ] : List A
:: : A→ List A→ List A

• Binary trees

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B
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Syntax of ADTs (II)

• The only instance of the data type being defined that appears in the type of a
constructor for that data type is the same one being defined

• So an ADT defines a family of inductive types, one for each choice of parameters.

• The general form of an ADT is

data D A1 ...An : Set where

c1 : T11 → ...→ T1j1 → D A1 ...An

...
ck : Tk1 → ...→ Tkjk → D A1 ...An

• Agda also imposes a strict positivity requirement on the types of c1,...,ck: Either

- Tij is not inductive and does not mention D

or

- Tij is inductive and has the form

C1 → ...→ Cp → D A1 ...An

where D does not occur in any Ci.

• Strict positivity

=⇒ no negative occurrences of D in the argument types of its constructors

=⇒ D can be interpreted as the least fixpoint of a functor.
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Category Theory Interlude (I)

• A category C comprises

- a class ob(C) of objects

- for each X,Y ∈ ob(C), a class HomC(X,Y ) of morphisms from X to Y

- for each X ∈ ob(C), an identity morphism idX ∈ HomC(X,X)

- a composition operator ◦ assigning to each pair of morphisms f : X → Y and
g : Y → Z, the composite morphism g ◦ f : X → Z

• The identity morphisms are expected to behave like identities: if f : X → Y then
f ◦ idX = f = idY ◦ f .

• Composition is associative.

• We write X : C rather than X ∈ ob(C) and f : X → Y rather than
f ∈ HomC(X,Y ).

• We will restrict attention to the category Set for now.
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Category Theory Interlude (II)

• If C and D are categories, then a functor F : C → D comprises

- a function F from ob(C) to ob(D), together with

- a function mapF from HomC(X,Y ) to HomD(FX,FY )

• A functor must preserve the fundamental structure of a category. This means that
mapF must preserve identities and composition:

mapF g ◦ mapF f = mapF (g ◦ f)
mapF idX = idFX
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Functorial Semantics for ADTs: Overview

• Each ADT has an underlying functor F because of strict positivity.

• Kelly’s Transfinite Construction of Free Algebras (TFCA) constructs free (i.e.,
initial) algebras for these functors.

• The carrier of the initial algebra for a functor F is its least fixpoint µF .

• If the ADT D is defined by D = F D, where F denotes the underlying functor F for
D, then we interpret D as µF .
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Transfinite Construction of Free Algebras (Kelly’80)

• If

C is a locally λ-presentable category interpreting types,

0 is the initial object of C,

and

F : C → C is a λ-cocontinuous functor

then F has an initial algebra, and its carrier is the least fixpoint µF of F
computed by

0 ↪→ F 0 ↪→ F (F 0)... ↪→ Fn 0... ↪→ µF

• I will be deliberately vague about the requirements needed on the category
interpreting types and the functors underlying data types.

• For concreteness, take C to be Set and F to be polynomial.
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Semantics of ADTs

•
data Bool : Set where

false : Bool
true : Bool

has F X = 1 + 1, so Bool is interpreted as µF , i.e., as µX. 1 + 1

•
data Nat : Set where

zero : Nat
suc : Nat→ Nat

has F X = 1 +X, so Nat is interpreted as µF , i.e., as µX. 1 +X

•
data List (A : Set) : Set where

[ ] : List A
:: : A→ List A→ List A

has F X = 1 +A×X, so List,A is interpreted as µF , i.e., as µX. 1 +A×X
•

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B

has F X = A+X ×B ×X, so Tree A B is interpreted as µF , i.e., as
µX.A+X ×B ×X
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Syntax of Nested Types (I)

Nested types encode stronger properties, leading to stronger correctness guarantees.

• Perfect trees

data PTree : Set→ Set where
pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

PTree A encodes the constraint that a datum is a list of elements of type A whose
length is a power of 2.

• Bushes
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

Bush A encodes the constraint that a datum is... a bush of elements of type A.

• Constructors can have input types involving instances of the data type being
defined other than the one being defined.

• For truly nested types like Bush A these instances can even involve themselves!

• The return type of every constructor is still the same (variable) instance of the
data type as the one being defined.

• A nested type defines an inductive family of types (not a family of inductive types).
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• A nested type defines an inductive family of types (not a family of inductive types).
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Syntax of Nested Types (II)

• The general form of a nested type is

data D A1 ...An : B1 → ...→ Bm → Set where

c1 : ∀{A1 ...An B1 ...Bm} → T11 → ...→ T1j1 → D A1 ...An B1 ...Bm

...
ck : ∀{A1 ...An B1 ...Bm} → Tk1 → ...→ Tkjk → D A1 ...An B1 ...Bm

where either

Tij is not inductive and does not mention D

or

Tij is inductive and has the form

C1 → ...→ Cp → D A1 ...An V1 ...Vm

where D does not occur in any Ci or any Vi, and each Vi is functorial in B1, ...Bm

• Strict positivity

=⇒ no negative occurrences of D in argument types of constructors

=⇒ D can be interpreted as the least fixpoint of a functor
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Semantics of Nested Types (III)

• Like ADTs, nested types can be interpreted as fixpoints of functors...

...but now the functors must be higher-order!

• If C and D are categories, then the collection of functors from C to D also form a
category. Its objects are functors from C to D and its morphisms are natural
transformations between such functors.

• A natural transformation η : F → G is a collection {ηX : F X → GX}X:C such
that if f : X → Y in C then ηY ◦mapF f = mapG f ◦ ηX

F X GX

F Y GY

ηX

mapF f mapG f

ηY

• The identity on F is the identity natural transformation idF from F to F .

• Composition of natural transformations is componentwise, i.e., if X : C then

(η ◦ µ)X = ηX ◦ µX
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Semantics of Nested Types (IV)

• A higher-order functor H is a functor (on a functor category) so it has an action
on objects (functors) and on morphisms (natural transformations) of that category.

• If F : C → D is a functor, then HF is also a functor from C to D
- if X : C then HFX : D
- if f : X → Y in C then HFf : HFX → HFY in D.

- if η : F → G then mapH η : HF → HG

• mapH must preserve identities and composition (now for natural transformations).

• To give an initial algebra semantics for nested types we must compute fixpoints of
higher-order functors.
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higher-order functors.



Semantics of Nested Types (V)

•
data PTree : Set→ Set where

pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

has H F X = X + F (X ×X), so PTree is interpreted as µH,
i.e., as µF. λX.X + F (X ×X)

•
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

has H F X = 1 +X × F (F X), so Bush is interpreted as µH,
i.e., as µF. λX. 1 +X × F (F X)
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Higher-Order Functorial Semantics of ADTs

• ADTs are uniform in their type parameters, so they also define inductive families.

• That is, we can interpret ADTs as fixpoints of higher-order functors too.

•
data List (A : Set) : Set where

[ ] : List A
:: : A→ List A→ List A

is also
data List : Set→ Set where

[ ] : ∀{A : Set} → List A
:: : ∀{A : Set} → A→ List A→ List A

which has H F X = 1 +X × F X, so List is interpreted as µH,
i.e., as µF. λX. 1 +X × F X
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maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [ ] = [ ]
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.



maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [ ] = [ ]
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.



maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [ ] = [ ]
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.



maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [ ] = [ ]
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.



maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [ ] = [ ]
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.



maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [ ] = [ ]
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.



Naturality Results for ADTs and Nested Types (I)

• Just as their interpretations as fixpoints of higher-order functors give map functions
for ADTs and nested types, these interpretations also give naturality results.

• A natural transformation η : µH → µH′ gives commuting squares: if f : X → Y ,
then

(µH)X (µH′)X

(µH)Y (µH′)Y

ηX

mapµH f mapµH′ f

ηY

• Computationally (i.e., reflecting back into syntax), we can think of natural
transformations as polymorphic functions between data types whose constructors
are interpreted as µH and µH′.

• A polymorphic function (natural transformation) between (interpretations of) data
types alters the shapes of data structures without changing their data elements.

• So natural transformations do the “opposite” of map functions, which act on data
elements without changing the shape of the data structure in which they reside.
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Naturality Results for ADTs and Nested Types (II)

• The naturality square for (the interpretation of) a polymorphic function says that it
doesn’t matter in which order we apply the function and the map operations.
• If the polymorphic function flatten : ∀{A : Set} → PTree A→ List A acts like this

flatten (((a111, a112), (a121, a122)), ((a211, a212), (a221, a222))) =
(a111, a112, a121, a122, a211, a212, a221, a222)

then

PTree A List A

PTree B List B

flatten{A}

mapPTree f mapList f

flatten{B}

((a11, a12), (a21, a22)) (a11, a12, a21, a22)

((fa11, fa12), (fa21, fa22)) (fa11, fa12, fa21, fa22)

flatten{A}

mapPTree f mapList f

flatten{B}

• This can be proved as a consequence of parametricity, but it really derives from the
interpretation of ADTs and nested types as fixpoints of higher-order functors.
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flatten{A}

mapPTree f mapList f

flatten{B}

• This can be proved as a consequence of parametricity, but it really derives from the
interpretation of ADTs and nested types as fixpoints of higher-order functors.



Naturality Results for ADTs and Nested Types (II)

• The naturality square for (the interpretation of) a polymorphic function says that it
doesn’t matter in which order we apply the function and the map operations.
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• This can be proved as a consequence of parametricity, but it really derives from the
interpretation of ADTs and nested types as fixpoints of higher-order functors.



Summary

• Initial algebra semantics gives all of the above gives programming kit — maps,
computation rules for polymorphic functions, folds (stylized recursion operators) —
that we can use to program with, and reason about, ADTs and nested types.

• Next time we’ll introduce GADTs and their semantics, and we’ll see that this is
where things start getting trickier (but also more enlightening!)
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