Lecture 2 Exercises

1. Prove that $cod : \mathsf{Set}^{\rightarrow} \to \mathsf{Set}$ is a fibration.

2. Generalize the definitions of the slice and arrow categories Set/I and $\mathsf{Set}^{\rightarrow}$ to define the slice category \mathcal{B}/I and the arrow category $\mathcal{B}^{\rightarrow}$ for an arbitrary category \mathcal{B} and an object I of \mathcal{B} . Then generalize the definition of the codomain functor $cod : \mathsf{Set}^{\rightarrow} \to \mathsf{Set}$ to define the codomain functor $cod : \mathcal{B}^{\rightarrow} \to \mathcal{B}$.

- 3. Let $cod : \mathcal{B}^{\rightarrow} \to \mathcal{B}$.
 - a) Show that the fibre \mathcal{B}_I over an object I in \mathcal{B} with respect to *cod* is the slice category \mathcal{B}/I .
 - b) Show that the cartesian morphisms with respect to *cod* in $\mathcal{B}^{\rightarrow}$ coincide with pullback squares in \mathcal{B} .
 - c) Conclude that *cod* is a fibration iff \mathcal{B} has pullbacks. In this case, *cod* is called the *codomain fibration on* \mathcal{B} .
- 4. Let $U: \mathcal{E} \to \mathcal{B}$ be a fibration.
 - a) Show that every morphism in \mathcal{E} factors as a vertical morphism followed by a cartesian morphism.
 - b) Show that a cartesian morphism over an isomorphism is an isomorphism. Conclude that, in particular every vertical cartesian morphism is an isomorphism.
- 5. Let $U: \mathcal{E} \to \mathcal{B}$ be a fibration.
 - a) Show that all isomorphisms in \mathcal{E} are cartesian. Conclude that, in particular, all identity morphisms in \mathcal{E} are cartesian.
 - b) Show that if $f: X \to Y$ and $g: Y \to Z$ are cartesian, then $g \circ f: X \to Z$ is also cartesian.
 - c) Show that if $g: Y \to Z$ and $g \circ f: X \to Z$ are cartesian, then $f: X \to Y$ is also cartesian.

6. Consider the following diagram

Use parts 2 and 3 of Problem 5 to prove the following Pullback Lemmas:

- a) If the left and right squares are pullback squares, then so is the outer square.
- b) If the outer square and the right square are pullback squares, then so is the left square.
- 7. a) Prove that if U is a fibration, then so is |U|.
 - b) Prove that if U is a fibration, then so is U^n for any natural number n.