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Where Were We?

• Last time we recalled Reynolds’ standard relational parametricity

• This is the main inspiration for the bifibrational model of parametricity

for System F we will develop

• View Reynolds’ construction and results through the lens of the rela-

tions (bi)fibration on Set

• Generalize Reynolds’ constructions to bifibrational models of System

F for which we can prove (bifibrational versions of) the IEL and Ab-

straction Theorem

• Reynolds’ construction is (ignoring size issues) such a model
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• A fibration captures a family (EB)B∈B of categories EB indexed over

objects of a(nother) category B

• A fibration is a functor U : E → B
– B is the base category of U

– E is the total category of U

Intuitively, E =
⋃
B∈B EB

• U must have some additional properties for describing indexing

• We are interested in indexing because Reynolds’ interpretations are

type-indexed
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Display Maps

• Simple case: Indexing for sets

– B is a set I of indices,

– E is X =
⋃
i∈I Xi, where (Xi)i∈I is a (wlog, disjoint) family of sets

– U : X → I maps each x ∈ X to the index i ∈ I such that x ∈ Xi

• U is called the display map for (Xi)i∈I

• It is customary to draw it vertically, like this:

X

U
��
I

• The set

Xi = U−1(i) = {x ∈ X| Ux = i}

is called the fibre of X over i
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• The arrow category Set→

– An object of Set→ is a function U : X → I in Set for some index

set I

– A morphism from U ′ : Y → J to U : X → I in Set→ is a pair

(g : Y → X, f : J → I) of functions in Set such that U ◦ g = f ◦U ′

Y
g //

U ′

��

X

U
��

J
f // I

• We can view g as a family of functions (gj)j∈J , where gj : Yj → Xf(j)

(since g(y) ∈ U−1(f(j)) for any y ∈ Yj = U ′−1(j) )

• Identities and composition are componentwise inherited from Set.

• Set→ induces a codomain functor cod : Set→ → Set mapping

U : X → I to I and (g, f) to f
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Substitution

• Consider U : X → I for X = (Xi)i∈I for some index set I

• Substitution along f : J → I turns the family (Xi)i∈I into a family

(Yj)j∈J such that Yj = Xf(j)

• (Yj)j∈J is obtained by pullback of U along f

Y
g //

U ′

��

X

U
��

J
f
// I

• Y = {(j, x) ∈ J×X | U(x) = f(j)} with projection functions g and U ′

• U ′ : Y → J gives a new family of sets (Yj)j∈J whose fibres are

Yj = U ′−1(j) = {x ∈ X |U(x) = f(j)} = U−1(f(j)) = Xf(j)

• We usually write f∗(U) for the display map U ′
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• Let f be an element f : {∗} → I

• Then f picks out an element i of I (i.e., f(∗) = i)

• Y∗ = U ′−1(∗) = {x ∈ X |U(x) = i} = U−1(i) = Xi

• Thus Y =
⋃
j∈{∗} Yj = Y∗ = Xi

• So substituting along a particular element of I selects the fibre of X

over that element
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• So Y =
⋃
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• Then, for every pair (i, j),

Y(i,j) = U ′−1(i, j) = {x ∈ X |U(x) = i} = U−1(i) = Xi
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(i,j)∈I×J Y(i,j) =
⋃

(i,j)∈I×J Xi = Xi × J

• There is a “dummy” index j in the family f∗(U) that plays no role

• Logically speaking, substitution along a projection is weakening
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• Let f be a diagonal map f : I → I × I

• Then, for every i ∈ I,

Yi = U ′−1(i) = {x ∈ X |U(x) = (i, i)} = U−1(i, i) = X(i,i)

• So Y =
⋃
i∈I Yi =

⋃
(i,i)∈I×I X(i,i)

• In other words, Y is restriction of
⋃

(i,i′)∈I×I X(i,i′) to the diagonal i = i′

• Logically speaking, substitution along a diagonal is contraction
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• The pair (g, f) in the pullback diagram

Y
g //

f∗(U)
��

X

U
��

J
f
// I

is a morphism from f∗(U) to U in the arrow category Set→

• We call (g, f) a substitution morphism from f∗(U) to U
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• (g, f) is such that if

– U ′′ : Z → K is any object in Set→

– (g′, f ′) : U ′′ → U is a morphism in Set→

– f ′ : K → I factors through f : J → I via v : K → J (i.e., f ′ = f◦v)
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• (g, f) is such that if

– U ′′ : Z → K is any object in Set→

– (g′, f ′) : U ′′ → U is a morphism in Set→

– f ′ : K → I factors through f : J → I via v : K → J (i.e., f ′ = f◦v)

then there exists a unique h : Z → Y in Set→ such that

– cod(h, v) = v for cod : Set→ → Set

– g ◦ h = g′

Z
g′

--
h

//

U ′′

��

Y g
//

f∗(U)
��

X

U
��

K
f ′

11v // J
f // I

• That is, (g, f) is the best substitution morphism from f∗(U) to U

• The existence of such best substitution morphisms is what makes cod :

Set→ → Set a fibration
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• A morphism g : Q→ P in E is cartesian over f : X → Y in B if

– Ug = f

– for every g′ : Q′ → P in E with Ug′ = f ◦ v for some v : UQ′ → X,

there exists a unique h : Q′ → Q with Uh = v and g′ = g ◦ h
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Opcartesian Morphisms

• Let U : E → B be a functor

• A morphism g : P → Q in E is opcartesian over f : X → Y in B if

– Ug = f

– for every g′ : P → Q′ in E with Ug′ = v ◦ f for some v : Y → UQ′,

there exists a unique h : Q→ Q′ with Uh = v and g′ = h ◦ g

E

U

��

Q′

h
��

g′

((

Q′

Q g
// P P

g′
66

g
//Q

h

OO

UQ′

v
��

Ug′

((

UQ′

B X
f

// Y X

Ug′
66

f
// Y

v

OO
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Observations and Notation

• Let P in E and f : X → Y with UP = Y

• (Op)cartesian morphisms over f wrt P are unique up to isomorphism

• f§P is the cartesian morphism over f with codomain P

• fP§ is the opcartesian morphism over f with domain P

• f∗P is the domain of f§P

• ΣfP is the codomain of fP§
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Fibrations and Opfibrations

• U : E → B is a fibration if for every object P of E and every f : X →
UP in B, there is a cartesian morphism f§P : Q→ P in E over f

• U : E → B is an opfibration if for every object P of E and every

f : UP → Y in B, there is an opcartesian morphism fP§ : P → Q in E
over f

• U : E → B is a bifibration if it is both a fibration and an opfibration

• If U : E → B is a fibration, opfibration, or bifibration, then an object

P in E is over its image UP and similarly for morphisms

• A morphism is vertical if it is over id

• The fibre EX over an object X in B is the subcategory of E of objects

over X and morphisms over idX
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Indexing and Reindexing Functors

• The function mapping each object P of E to f∗P extends to the rein-

dexing functor f∗ : EY → EX along f mapping each k : P → P ′ in EY
to the (unique) morphism f∗k such that k ◦ f§P = f§P ′ ◦ f∗k

• The function mapping each object P of E to ΣfP extends to the oprein-

dexing functor Σf : EX → EY along f mapping each k : P → P ′ in EX
to the (unique) morphism Σfk such that Σfk ◦ fP§ = fP

′

§ ◦ k

U

E
f∗

Σf

B fX Y
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New Fibrations from Old

• |C| is the discrete category of C

• The discrete functor |U | : |E| → |B| is induced by the restriction of

U : E → B to |E|

• Cn is the n-fold product of C (in Cat)

• The n-fold product of U : E → B, denoted Un : En → Bn, is given by

Un(X1, ..., Xn) = (UX1, ..., UXn) and Un(f1, ..., fn) = (Uf1, ..., Ufn)

• Lemma

1. If U : E → B is a functor, then |U | : |E| → |B| is a bifibration,

called the discrete fibration for U

2. If U is a (bi)fibration then so is Un : En → Bn for any n ∈ Nat
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Fibred Functors

• Let U : E → B and U ′ : E ′ → B′ be fibrations

• A fibred functor F : U ′ → U comprises two functors

Fo : B′ → B and Fr : E ′ → E

such that

– U ◦ Fr = Fo ◦ U ′

E ′ Fr //

U ′

��

E
U
��

B′ Fo // B

– cartesian morphisms are preserved, i.e., if f in E ′ is cartesian over

g in B′ then Frf in E is cartesian over Fog in B
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Fibred Natural Transformations

• Let F, F ′ : U ′ → U be fibred functors

• A fibred natural transformation η : F ′ → F comprises two natural

transformations

ηo : F ′o → Fo and ηr : F ′r → Fr

such that U ◦ ηr = ηo ◦ U ′

F ′rX

U ′

��

ηrX //

F ′rf

��

FrX

U

��

Frf

��
F ′rY

ηrY // FrY

F ′oU
′X

ηoUX //

F ′oU
′f

��

FoUX

FoUf

��
F ′oU

′Y
ηoUY // FoUY



Coming Up

• View Reynolds’ construction and results through the lens of the rela-

tions (bi)fibration on Set



Coming Up

• View Reynolds’ construction and results through the lens of the rela-

tions (bi)fibration on Set

• Generalize Reynolds’ constructions to (bi)fibrational models of Sys-

tem F for which we can prove (fibrational versions of) the IEL and

Abstraction Theorem Reynolds’ construction is (ignoring size issues)

an instance



Coming Up

• View Reynolds’ construction and results through the lens of the rela-

tions (bi)fibration on Set

• Generalize Reynolds’ constructions to (bi)fibrational models of Sys-

tem F for which we can prove (fibrational versions of) the IEL and

Abstraction Theorem Reynolds’ construction is (ignoring size issues)

an instance

• Reynolds’ construction is (ignoring size issues) such a model
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