Reynolds' Parametricity

Patricia Johann
Appalachian State University

cs.appstate.edu/~johannp

Based on joint work with Neil Ghani, Fredrik Nordvall Forsberg, Federico Orsanigo, and Tim Revell

Course Outline

Topic: Reynolds' theory of parametric polymorphism for System F
Goals: - extract the fibrational essence of Reynolds' theory

- generalize Reynolds' construction to very general models
- Lecture 1: Reynolds' theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F

Course Outline

Topic: Reynolds' theory of parametric polymorphism for System F
Goals: - extract the fibrational essence of Reynolds' theory

- generalize Reynolds' construction to very general models
- Lecture 1: Reynolds' theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F

Where Were We?

- Last time we recalled Reynolds' standard relational parametricity

Where Were We?

- Last time we recalled Reynolds' standard relational parametricity
- This is the main inspiration for the bifibrational model of parametricity for System F we will develop

Where Were We?

- Last time we recalled Reynolds' standard relational parametricity
- This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- View Reynolds' construction and results through the lens of the relations (bi)fibration on Set

Where Were We?

- Last time we recalled Reynolds' standard relational parametricity
- This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- View Reynolds' construction and results through the lens of the relations (bi)fibration on Set
- Generalize Reynolds’ constructions to bifibrational models of System F for which we can prove (bifibrational versions of) the IEL and Abstraction Theorem

Where Were We?

- Last time we recalled Reynolds' standard relational parametricity
- This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- View Reynolds' construction and results through the lens of the relations (bi)fibration on Set
- Generalize Reynolds’ constructions to bifibrational models of System F for which we can prove (bifibrational versions of) the IEL and Abstraction Theorem
- Reynolds' construction is (ignoring size issues) such a model

Motivation: Indexed Families of Sets

- A fibration captures a family $\left(\mathcal{E}_{B}\right)_{B \in \mathcal{B}}$ of categories \mathcal{E}_{B} indexed over objects of a(nother) category \mathcal{B}

Motivation: Indexed Families of Sets

- A fibration captures a family $\left(\mathcal{E}_{B}\right)_{B \in \mathcal{B}}$ of categories \mathcal{E}_{B} indexed over objects of a(nother) category \mathcal{B}
- A fibration is a functor $U: \mathcal{E} \rightarrow \mathcal{B}$
$-\mathcal{B}$ is the base category of \boldsymbol{U}
$-\mathcal{E}$ is the total category of U

Motivation: Indexed Families of Sets

- A fibration captures a family $\left(\mathcal{E}_{B}\right)_{B \in \mathcal{B}}$ of categories \mathcal{E}_{B} indexed over objects of a(nother) category \mathcal{B}
- A fibration is a functor $U: \mathcal{E} \rightarrow \mathcal{B}$
$-\mathcal{B}$ is the base category of \boldsymbol{U}
$-\mathcal{E}$ is the total category of U
Intuitively, $\mathcal{E}=\bigcup_{B \in \mathcal{B}} \mathcal{E}_{B}$

Motivation: Indexed Families of Sets

- A fibration captures a family $\left(\mathcal{E}_{B}\right)_{B \in \mathcal{B}}$ of categories \mathcal{E}_{B} indexed over objects of a(nother) category \mathcal{B}
- A fibration is a functor $U: \mathcal{E} \rightarrow \mathcal{B}$
$-\mathcal{B}$ is the base category of \boldsymbol{U}
$-\mathcal{E}$ is the total category of U
Intuitively, $\mathcal{E}=\bigcup_{B \in \mathcal{B}} \mathcal{E}_{B}$
- U must have some additional properties for describing indexing

Motivation: Indexed Families of Sets

- A fibration captures a family $\left(\mathcal{E}_{B}\right)_{B \in \mathcal{B}}$ of categories \mathcal{E}_{B} indexed over objects of a(nother) category \mathcal{B}
- A fibration is a functor $U: \mathcal{E} \rightarrow \mathcal{B}$
$-\mathcal{B}$ is the base category of \boldsymbol{U}
$-\mathcal{E}$ is the total category of \boldsymbol{U}
Intuitively, $\mathcal{E}=\bigcup_{B \in \mathcal{B}} \mathcal{E}_{B}$
- U must have some additional properties for describing indexing
- We are interested in indexing because Reynolds' interpretations are type-indexed

Display Maps

- Simple case: Indexing for sets
$-\mathcal{B}$ is a set I of indices,
$-\mathcal{E}$ is $X=\bigcup_{i \in I} X_{i}$, where $\left(X_{i}\right)_{i \in I}$ is a (wlog, disjoint) family of sets
$-U: X \rightarrow I$ maps each $x \in X$ to the index $i \in I$ such that $x \in X_{i}$

Display Maps

- Simple case: Indexing for sets
$-\mathcal{B}$ is a set I of indices,
$-\mathcal{E}$ is $X=\bigcup_{i \in I} X_{i}$, where $\left(X_{i}\right)_{i \in I}$ is a (wlog, disjoint) family of sets
$-U: X \rightarrow I$ maps each $x \in X$ to the index $i \in I$ such that $x \in X_{i}$
- \boldsymbol{U} is called the display map for $\left(\boldsymbol{X}_{\boldsymbol{i}}\right)_{i \in I}$

Display Maps

- Simple case: Indexing for sets
$-\mathcal{B}$ is a set I of indices,
$-\mathcal{E}$ is $X=\bigcup_{i \in I} X_{i}$, where $\left(X_{i}\right)_{i \in I}$ is a (wlog, disjoint) family of sets
$-U: X \rightarrow I$ maps each $x \in X$ to the index $i \in I$ such that $x \in X_{i}$
- \boldsymbol{U} is called the display map for $\left(\boldsymbol{X}_{\boldsymbol{i}}\right)_{i \in I}$
- It is customary to draw it vertically, like this:

Display Maps

- Simple case: Indexing for sets
$-\mathcal{B}$ is a set I of indices,
$-\mathcal{E}$ is $X=\bigcup_{i \in I} X_{i}$, where $\left(X_{i}\right)_{i \in I}$ is a (wlog, disjoint) family of sets
$-U: X \rightarrow I$ maps each $x \in X$ to the index $i \in I$ such that $x \in X_{i}$
- \boldsymbol{U} is called the display map for $\left(\boldsymbol{X}_{\boldsymbol{i}}\right)_{i \in I}$
- It is customary to draw it vertically, like this:

- The set

$$
X_{i}=U^{-1}(i)=\{x \in X \mid U x=i\}
$$

is called the fibre of X over i

Categories from Indexed Families - Example I

- The slice category Set/I

Categories from Indexed Families - Example I

- The slice category Set/I
- An object in Set/I is a function $U: X \rightarrow I$ in Set

Categories from Indexed Families - Example I

- The slice category Set/I
- An object in Set/I is a function $U: X \rightarrow I$ in Set
- A morphism from $U^{\prime}: X^{\prime} \rightarrow I$ and $U: X \rightarrow I$ in Set $/ I$ is a function $g: X^{\prime} \rightarrow X$ in Set such that $U \circ g=U^{\prime}$

Categories from Indexed Families - Example I

- The slice category Set/I
- An object in Set/I is a function $U: X \rightarrow I$ in Set
- A morphism from $U^{\prime}: X^{\prime} \rightarrow I$ and $U: X \rightarrow I$ in Set $/ I$ is a function $g: X^{\prime} \rightarrow X$ in Set such that $U \circ g=U^{\prime}$

- We can view g as a family of functions $\left(g_{i}\right)_{i \in I}$, where $g_{i}: X_{i}^{\prime} \rightarrow X_{i}$

Categories from Indexed Families - Example I

- The slice category Set/I
- An object in Set/I is a function $U: X \rightarrow I$ in Set
- A morphism from $U^{\prime}: X^{\prime} \rightarrow I$ and $U: X \rightarrow I$ in Set $/ I$ is a function $g: X^{\prime} \rightarrow X$ in Set such that $U \circ g=U^{\prime}$

- We can view g as a family of functions $\left(g_{i}\right)_{i \in I}$, where $g_{i}: X_{i}^{\prime} \rightarrow X_{i}$
- Identities and composition are inherited from Set

Categories from Indexed Families - Example II

- The arrow category Set ${ }^{\rightarrow}$

Categories from Indexed Families - Example II

- The arrow category Set ${ }^{\rightarrow}$
- An object of Set ${ }^{\rightarrow}$ is a function $U: X \rightarrow I$ in Set for some index set I

Categories from Indexed Families - Example II

- The arrow category Set ${ }^{\rightarrow}$
- An object of Set ${ }^{\rightarrow}$ is a function $U: X \rightarrow I$ in Set for some index set I
- A morphism from $U^{\prime}: Y \rightarrow J$ to $U: X \rightarrow I$ in Set ${ }^{\rightarrow}$ is a pair $(g: Y \rightarrow X, f: J \rightarrow I)$ of functions in Set such that $U \circ g=f \circ U^{\prime}$

Categories from Indexed Families - Example II

- The arrow category Set ${ }^{\rightarrow}$
- An object of Set ${ }^{\rightarrow}$ is a function $U: X \rightarrow I$ in Set for some index set I
- A morphism from $U^{\prime}: Y \rightarrow J$ to $U: X \rightarrow I$ in Set ${ }^{\rightarrow}$ is a pair $(g: Y \rightarrow X, f: J \rightarrow I)$ of functions in Set such that $U \circ g=f \circ U^{\prime}$

- We can view g as a family of functions $\left(g_{j}\right)_{j \in J}$, where $g_{j}: Y_{j} \rightarrow X_{f(j)}$ (since $g(y) \in U^{-1}(f(j))$ for any $y \in Y_{j}=U^{\prime-1}(j)$)

Categories from Indexed Families - Example II

- The arrow category Set ${ }^{\rightarrow}$
- An object of Set ${ }^{\rightarrow}$ is a function $U: X \rightarrow I$ in Set for some index set I
- A morphism from $U^{\prime}: Y \rightarrow J$ to $U: X \rightarrow I$ in Set ${ }^{\rightarrow}$ is a pair $(g: Y \rightarrow X, f: J \rightarrow I)$ of functions in Set such that $U \circ g=f \circ U^{\prime}$

- We can view g as a family of functions $\left(g_{j}\right)_{j \in J}$, where $g_{j}: Y_{j} \rightarrow X_{f(j)}$ (since $g(y) \in U^{-1}(f(j))$ for any $y \in Y_{j}=U^{\prime-1}(j)$)
- Identities and composition are componentwise inherited from Set.

Categories from Indexed Families - Example II

- The arrow category Set ${ }^{\rightarrow}$
- An object of Set ${ }^{\rightarrow}$ is a function $U: X \rightarrow I$ in Set for some index set I
- A morphism from $U^{\prime}: Y \rightarrow J$ to $U: X \rightarrow I$ in Set ${ }^{\rightarrow}$ is a pair $(g: Y \rightarrow X, f: J \rightarrow I)$ of functions in Set such that $U \circ g=f \circ U^{\prime}$

- We can view g as a family of functions $\left(g_{j}\right)_{j \in J}$, where $g_{j}: Y_{j} \rightarrow X_{f(j)}$ (since $g(y) \in U^{-1}(f(j))$ for any $y \in Y_{j}=U^{\prime-1}(j)$)
- Identities and composition are componentwise inherited from Set.
- Set ${ }^{\rightarrow}$ induces a codomain functor $\operatorname{cod}:$ Set $^{\rightarrow} \rightarrow$ Set mapping

$$
U: X \rightarrow I \text { to } I \quad \text { and } \quad(g, f) \text { to } f
$$

Substitution

- Consider $U: X \rightarrow I$ for $X=\left(X_{i}\right)_{i \in I}$ for some index set I

Substitution

- Consider $\boldsymbol{U}: \boldsymbol{X} \rightarrow \boldsymbol{I}$ for $\boldsymbol{X}=\left(\boldsymbol{X}_{i}\right)_{i \in I}$ for some index set I
- Substitution along $f: J \rightarrow I$ turns the family $\left(X_{i}\right)_{i \in I}$ into a family $\left(Y_{j}\right)_{j \in J}$ such that $Y_{j}=X_{f(j)}$

Substitution

- Consider $\boldsymbol{U}: X \rightarrow I$ for $X=\left(X_{i}\right)_{i \in I}$ for some index set I
- Substitution along $f: J \rightarrow I$ turns the family $\left(X_{i}\right)_{i \in I}$ into a family $\left(Y_{j}\right)_{j \in J}$ such that $Y_{j}=X_{f(j)}$
- $\left(\boldsymbol{Y}_{j}\right)_{j \in J}$ is obtained by pullback of \boldsymbol{U} along f

Substitution

- Consider $\boldsymbol{U}: X \rightarrow I$ for $X=\left(X_{i}\right)_{i \in I}$ for some index set I
- Substitution along $f: J \rightarrow I$ turns the family $\left(X_{i}\right)_{i \in I}$ into a family $\left(Y_{j}\right)_{j \in J}$ such that $Y_{j}=X_{f(j)}$
- $\left(\boldsymbol{Y}_{j}\right)_{j \in J}$ is obtained by pullback of \boldsymbol{U} along f

- $\boldsymbol{Y}=\{(j, x) \in J \times X \mid U(x)=f(j)\}$ with projection functions g and U^{\prime}

Substitution

- Consider $\boldsymbol{U}: X \rightarrow I$ for $X=\left(X_{i}\right)_{i \in I}$ for some index set I
- Substitution along $f: J \rightarrow I$ turns the family $\left(X_{i}\right)_{i \in I}$ into a family $\left(Y_{j}\right)_{j \in J}$ such that $Y_{j}=X_{f(j)}$
- $\left(\boldsymbol{Y}_{j}\right)_{j \in J}$ is obtained by pullback of \boldsymbol{U} along f

- $\boldsymbol{Y}=\{(j, x) \in J \times X \mid U(x)=f(j)\}$ with projection functions g and U^{\prime}
- $U^{\prime}: Y \rightarrow J$ gives a new family of sets $\left(Y_{j}\right)_{j \in J}$ whose fibres are

$$
Y_{j}=U^{\prime-1}(j)=\{x \in X \mid U(x)=f(j)\}=U^{-1}(f(j))=X_{f(j)}
$$

Substitution

- Consider $\boldsymbol{U}: X \rightarrow I$ for $X=\left(X_{i}\right)_{i \in I}$ for some index set I
- Substitution along $f: J \rightarrow I$ turns the family $\left(X_{i}\right)_{i \in I}$ into a family $\left(Y_{j}\right)_{j \in J}$ such that $Y_{j}=X_{f(j)}$
- $\left(\boldsymbol{Y}_{j}\right)_{j \in J}$ is obtained by pullback of \boldsymbol{U} along f

- $Y=\{(j, x) \in J \times X \mid U(x)=f(j)\}$ with projection functions g and U^{\prime}
- $U^{\prime}: Y \rightarrow J$ gives a new family of sets $\left(Y_{j}\right)_{j \in J}$ whose fibres are

$$
Y_{j}=U^{\prime-1}(j)=\{x \in X \mid U(x)=f(j)\}=U^{-1}(f(j))=X_{f(j)}
$$

- We usually write $f^{*}(\boldsymbol{U})$ for the display map \boldsymbol{U}^{\prime}

- Let f be an element $f:\{*\} \rightarrow I$

- Let f be an element $f:\{*\} \rightarrow I$
- Then f picks out an element i of I (i.e., $f(*)=i$)

Substitution - Example 1

- Let f be an element $f:\{*\} \rightarrow I$
- Then f picks out an element i of I (i.e., $f(*)=i$)
- $Y_{*}=U^{-1}(*)=\{x \in X \mid U(x)=i\}=U^{-1}(i)=X_{i}$

Substitution - Example 1

- Let f be an element $f:\{*\} \rightarrow I$
- Then f picks out an element i of I (i.e., $f(*)=i$)
- $Y_{*}=U^{\prime-1}(*)=\{x \in X \mid U(x)=i\}=U^{-1}(i)=X_{i}$
- Thus $Y=\bigcup_{j \in\{*\}} Y_{j}=Y_{*}=X_{i}$

Substitution - Example 1

- Let f be an element $f:\{*\} \rightarrow I$
- Then f picks out an element i of I (i.e., $f(*)=i$)
- $Y_{*}=U^{\prime-1}(*)=\{x \in X \mid U(x)=i\}=U^{-1}(i)=X_{i}$
- Thus $Y=\bigcup_{j \in\{*\}} \boldsymbol{Y}_{j}=\boldsymbol{Y}_{*}=X_{i}$
- So substituting along a particular element of I selects the fibre of X over that element

- Let f be a non-indexed set $f: J \rightarrow\{*\}$

Substitution - Example 2

- Let f be a non-indexed set $f: J \rightarrow\{*\}$
- Then, for every $j \in J$,

$$
Y_{j}=U^{\prime-1}(j)=\{x \in X \mid U(x)=*\}=U^{-1}(*)=X_{*}=X
$$

Substitution - Example 2

- Let f be a non-indexed set $f: J \rightarrow\{*\}$
- Then, for every $j \in J$,

$$
Y_{j}=U^{\prime-1}(j)=\{x \in X \mid U(x)=*\}=U^{-1}(*)=X_{*}=X
$$

- So $Y=\bigcup_{j \in J} Y_{j}=J \times X$ (since the Y_{j} are disjoint)

- Let f be a projection $f: I \times J \rightarrow I$

Substitution - Example 3

- Let f be a projection $f: I \times J \rightarrow I$
- Then, for every pair (i, j),

$$
Y_{(i, j)}=U^{\prime-1}(i, j)=\{x \in X \mid U(x)=i\}=U^{-1}(i)=X_{i}
$$

Substitution - Example 3

- Let f be a projection $f: I \times J \rightarrow I$
- Then, for every pair (i, j),

$$
Y_{(i, j)}=U^{\prime-1}(i, j)=\{x \in X \mid U(x)=i\}=U^{-1}(i)=X_{i}
$$

- So $Y=\bigcup_{(i, j) \in I \times J} Y_{(i, j)}=\bigcup_{(i, j) \in I \times J} X_{i}=X_{i} \times J$

Substitution - Example 3

- Let f be a projection $f: I \times J \rightarrow I$
- Then, for every pair (i, j),

$$
Y_{(i, j)}=U^{\prime-1}(i, j)=\{x \in X \mid U(x)=i\}=U^{-1}(i)=X_{i}
$$

- So $\boldsymbol{Y}=\bigcup_{(i, j) \in I \times J} Y_{(i, j)}=\bigcup_{(i, j) \in I \times J} X_{i}=X_{i} \times J$
- There is a "dummy" index j in the family $f^{*}(U)$ that plays no role

Substitution - Example 3

- Let f be a projection $f: I \times J \rightarrow I$
- Then, for every pair (i, j),

$$
Y_{(i, j)}=U^{\prime-1}(i, j)=\{x \in X \mid U(x)=i\}=U^{-1}(i)=X_{i}
$$

- So $\boldsymbol{Y}=\bigcup_{(i, j) \in I \times J} Y_{(i, j)}=\bigcup_{(i, j) \in I \times J} X_{i}=X_{i} \times J$
- There is a "dummy" index j in the family $f^{*}(U)$ that plays no role
- Logically speaking, substitution along a projection is weakening

- Let f be a diagonal map $f: I \rightarrow I \times I$

Substitution - Example 4

- Let f be a diagonal map $f: I \rightarrow I \times I$
- Then, for every $i \in I$,

$$
Y_{i}=U^{\prime-1}(i)=\{x \in X \mid U(x)=(i, i)\}=U^{-1}(i, i)=X_{(i, i)}
$$

Substitution - Example 4

- Let f be a diagonal map $f: I \rightarrow I \times I$
- Then, for every $i \in I$,

$$
Y_{i}=U^{\prime-1}(i)=\{x \in X \mid U(x)=(i, i)\}=U^{-1}(i, i)=X_{(i, i)}
$$

- So $\boldsymbol{Y}=\bigcup_{i \in I} \boldsymbol{Y}_{i}=\bigcup_{(i, i) \in I \times I} X_{(i, i)}$

Substitution - Example 4

- Let f be a diagonal map $f: I \rightarrow I \times I$
- Then, for every $i \in I$,

$$
Y_{i}=U^{\prime-1}(i)=\{x \in X \mid U(x)=(i, i)\}=U^{-1}(i, i)=X_{(i, i)}
$$

- So $\boldsymbol{Y}=\bigcup_{i \in I} \boldsymbol{Y}_{i}=\bigcup_{(i, i) \in I \times I} X_{(i, i)}$
- In other words, Y is restriction of $\bigcup_{\left(i, i^{\prime}\right) \in I \times I} X_{\left(i, i^{\prime}\right)}$ to the diagonal $i=i^{\prime}$

Substitution - Example 4

- Let f be a diagonal map $f: I \rightarrow I \times I$
- Then, for every $i \in I$,

$$
Y_{i}=U^{\prime-1}(i)=\{x \in X \mid U(x)=(i, i)\}=U^{-1}(i, i)=X_{(i, i)}
$$

- So $\boldsymbol{Y}=\bigcup_{i \in I} \boldsymbol{Y}_{i}=\bigcup_{(i, i) \in I \times I} X_{(i, i)}$
- In other words, Y is restriction of $\bigcup_{\left(i, i^{\prime}\right) \in I \times I} X_{\left(i, i^{\prime}\right)}$ to the diagonal $i=i^{\prime}$
- Logically speaking, substitution along a diagonal is contraction

Best Substitution Morphisms - Part I

- The pair (g, f) in the pullback diagram

is a morphism from $f^{*}(U)$ to U in the arrow category Set ${ }^{\rightarrow}$

Best Substitution Morphisms - Part I

- The pair (g, f) in the pullback diagram

is a morphism from $f^{*}(U)$ to U in the arrow category Set ${ }^{\rightarrow}$
- We call (g, f) a substitution morphism from $f^{*}(U)$ to U

Best Substitution Morphisms - Part II

- (g, f) is such that if
$-U^{\prime \prime}: Z \rightarrow K$ is any object in Set ${ }^{\rightarrow}$
$-\left(g^{\prime}, f^{\prime}\right): U^{\prime \prime} \rightarrow U$ is a morphism in Set ${ }^{\rightarrow}$
$-f^{\prime}: K \rightarrow I$ factors through $f: J \rightarrow I$ via $v: K \rightarrow J$ (i.e., $f^{\prime}=f \circ v$)

Best Substitution Morphisms - Part II

- (g, f) is such that if
$-U^{\prime \prime}: Z \rightarrow K$ is any object in Set ${ }^{\rightarrow}$
$-\left(g^{\prime}, f^{\prime}\right): U^{\prime \prime} \rightarrow U$ is a morphism in Set ${ }^{\rightarrow}$
$-f^{\prime}: K \rightarrow I$ factors through $f: J \rightarrow I$ via $v: K \rightarrow J$ (i.e., $f^{\prime}=f \circ v$)
then there exists a unique $h: Z \rightarrow Y$ in Set ${ }^{\rightarrow}$ such that
$-\operatorname{cod}(h, v)=v$ for $\operatorname{cod}:$ Set $^{\rightarrow} \rightarrow$ Set
$-g \circ h=g^{\prime}$

Best Substitution Morphisms - Part II

- (g, f) is such that if
$-U^{\prime \prime}: Z \rightarrow K$ is any object in Set ${ }^{\rightarrow}$
$-\left(g^{\prime}, f^{\prime}\right): U^{\prime \prime} \rightarrow U$ is a morphism in Set ${ }^{\rightarrow}$
$-f^{\prime}: K \rightarrow I$ factors through $f: J \rightarrow I$ via $v: K \rightarrow J$ (i.e., $f^{\prime}=f \circ v$)
then there exists a unique $h: Z \rightarrow Y$ in Set ${ }^{\rightarrow}$ such that
$-\operatorname{cod}(h, v)=v$ for $\operatorname{cod}:$ Set $^{\rightarrow} \rightarrow$ Set
$-g \circ h=g^{\prime}$

- That is, (g, f) is the best substitution morphism from $f^{*}(U)$ to U

Best Sulbstitution Morphisms - Part II

- (g, f) is such that if
$-U^{\prime \prime}: Z \rightarrow K$ is any object in Set ${ }^{\rightarrow}$
$-\left(g^{\prime}, f^{\prime}\right): U^{\prime \prime} \rightarrow \boldsymbol{U}$ is a morphism in Set ${ }^{\rightarrow}$
$-f^{\prime}: K \rightarrow I$ factors through $f: J \rightarrow I$ via $v: K \rightarrow J$ (i.e., $f^{\prime}=f \circ v$)
then there exists a unique $h: Z \rightarrow Y$ in Set ${ }^{\rightarrow}$ such that
$-\operatorname{cod}(h, v)=v$ for $\operatorname{cod}:$ Set $^{\rightarrow} \rightarrow$ Set
$-\boldsymbol{g} \circ \boldsymbol{h}=\boldsymbol{g}^{\prime}$

- That is, (g, f) is the best substitution morphism from $f^{*}(U)$ to U
- The existence of such best substitution morphisms is what makes cod : Set ${ }^{\rightarrow} \rightarrow$ Set a fibration

Cartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor

Cartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor
- A morphism $g: Q \rightarrow P$ in \mathcal{E} is cartesian over $f: X \rightarrow Y$ in \mathcal{B} if

Cartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor
- A morphism $g: Q \rightarrow P$ in \mathcal{E} is cartesian over $f: X \rightarrow Y$ in \mathcal{B} if
$-\boldsymbol{U g}=\boldsymbol{f}$

Cartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor
- A morphism $g: Q \rightarrow P$ in \mathcal{E} is cartesian over $f: X \rightarrow Y$ in \mathcal{B} if
$-\boldsymbol{U g}=f$
- for every $\boldsymbol{g}^{\prime}: Q^{\prime} \rightarrow P$ in \mathcal{E} with $U g^{\prime}=f \circ v$ for some $v: U Q^{\prime} \rightarrow X$, there exists a unique $h: Q^{\prime} \rightarrow Q$ with $U h=v$ and $g^{\prime}=g \circ h$

Cartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor
- A morphism $g: Q \rightarrow P$ in \mathcal{E} is cartesian over $f: X \rightarrow Y$ in \mathcal{B} if
$-\boldsymbol{U g}=f$
- for every $\boldsymbol{g}^{\prime}: Q^{\prime} \rightarrow P$ in \mathcal{E} with $\boldsymbol{U} g^{\prime}=f \circ v$ for some $v: U Q^{\prime} \rightarrow X$, there exists a unique $h: Q^{\prime} \rightarrow Q$ with $U h=v$ and $g^{\prime}=g \circ h$

Opcartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor

Opcartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor
- A morphism $g: P \rightarrow Q$ in \mathcal{E} is opcartesian over $f: X \rightarrow Y$ in \mathcal{B} if

Opcartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor
- A morphism $g: P \rightarrow Q$ in \mathcal{E} is opcartesian over $f: X \rightarrow Y$ in \mathcal{B} if
$-\boldsymbol{U g}=\boldsymbol{f}$

Opcartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor
- A morphism $g: P \rightarrow Q$ in \mathcal{E} is opcartesian over $f: X \rightarrow Y$ in \mathcal{B} if
- $\boldsymbol{U g}=\boldsymbol{f}$
- for every $\boldsymbol{g}^{\prime}: P \rightarrow Q^{\prime}$ in \mathcal{E} with $U g^{\prime}=\boldsymbol{v} \circ f$ for some $\boldsymbol{v}: Y \rightarrow U Q^{\prime}$, there exists a unique $h: Q \rightarrow Q^{\prime}$ with $U h=v$ and $g^{\prime}=h \circ g$

Opcartesian Morphisms

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a functor
- A morphism $g: P \rightarrow Q$ in \mathcal{E} is opcartesian over $f: X \rightarrow Y$ in \mathcal{B} if
$-\boldsymbol{U g}=\boldsymbol{f}$
- for every $\boldsymbol{g}^{\prime}: P \rightarrow Q^{\prime}$ in \mathcal{E} with $U g^{\prime}=v \circ f$ for some $v: Y \rightarrow U Q^{\prime}$, there exists a unique $h: Q \rightarrow Q^{\prime}$ with $U h=v$ and $g^{\prime}=h \circ g$

Observations and Notation

- Let P in \mathcal{E} and $f: X \rightarrow Y$ with $U P=Y$

Observations and Notation

- Let P in \mathcal{E} and $f: X \rightarrow Y$ with $U P=Y$
- (Op)cartesian morphisms over f wrt P are unique up to isomorphism

Observations and Notation

- Let P in \mathcal{E} and $f: X \rightarrow Y$ with $U P=Y$
- (Op)cartesian morphisms over f wrt P are unique up to isomorphism
- f_{P}^{\S} is the cartesian morphism over f with codomain P

Observations and Notation

- Let P in \mathcal{E} and $f: X \rightarrow Y$ with $U P=Y$
- (Op)cartesian morphisms over f wrt P are unique up to isomorphism
- f_{P}^{\S} is the cartesian morphism over f with codomain P
- f_{\S}^{P} is the opcartesian morphism over f with domain P

Observations and Notation

- Let P in \mathcal{E} and $f: X \rightarrow Y$ with $U P=Y$
- (Op)cartesian morphisms over f wrt P are unique up to isomorphism
- f_{P}^{\S} is the cartesian morphism over f with codomain P
- f_{\S}^{P} is the opcartesian morphism over f with domain P
- $f^{*} P$ is the domain of f_{P}^{\S}

Observations and Notation

- Let P in \mathcal{E} and $f: X \rightarrow Y$ with $U P=Y$
- (Op)cartesian morphisms over f wrt P are unique up to isomorphism
- f_{P}^{\S} is the cartesian morphism over f with codomain P
- f_{\S}^{P} is the opcartesian morphism over f with domain P
- $f^{*} P$ is the domain of f_{P}^{\S}
- $\Sigma_{f} P$ is the codomain of f_{\S}^{P}

Fibrations and Opfibrations

- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration if for every object P of \mathcal{E} and every $f: X \rightarrow$ $U P$ in \mathcal{B}, there is a cartesian morphism $f_{P}^{\S}: Q \rightarrow P$ in \mathcal{E} over f

Fibrations and Opfibrations

- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration if for every object P of \mathcal{E} and every $f: X \rightarrow$ $U P$ in \mathcal{B}, there is a cartesian morphism $f_{P}^{\S}: Q \rightarrow P$ in \mathcal{E} over f
- $U: \mathcal{E} \rightarrow \mathcal{B}$ is an opfibration if for every object P of \mathcal{E} and every $f: U P \rightarrow Y$ in \mathcal{B}, there is an opcartesian morphism $f_{\S}^{P}: P \rightarrow Q$ in \mathcal{E} over f

Fibrations and Opfibrations

- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration if for every object P of \mathcal{E} and every $f: X \rightarrow$ $U P$ in \mathcal{B}, there is a cartesian morphism $f_{P}^{\S}: Q \rightarrow P$ in \mathcal{E} over f
- $U: \mathcal{E} \rightarrow \mathcal{B}$ is an opfibration if for every object P of \mathcal{E} and every $f: U P \rightarrow Y$ in \mathcal{B}, there is an opcartesian morphism $f_{\S}^{P}: P \rightarrow Q$ in \mathcal{E} over f
- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a bifibration if it is both a fibration and an opfibration

Fibrations and Opfibrations

- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration if for every object P of \mathcal{E} and every $f: X \rightarrow$ $U P$ in \mathcal{B}, there is a cartesian morphism $f_{P}^{\S}: Q \rightarrow P$ in \mathcal{E} over f
- $U: \mathcal{E} \rightarrow \mathcal{B}$ is an opfibration if for every object P of \mathcal{E} and every $f: U P \rightarrow Y$ in \mathcal{B}, there is an opcartesian morphism $f_{\S}^{P}: P \rightarrow Q$ in \mathcal{E} over f
- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a bifibration if it is both a fibration and an opfibration
- If $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration, opfibration, or bifibration, then an object \boldsymbol{P} in \mathcal{E} is over its image $\boldsymbol{U} \boldsymbol{P}$ and similarly for morphisms

Fibrations and Opfibrations

- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration if for every object P of \mathcal{E} and every $f: X \rightarrow$ $\boldsymbol{U} \boldsymbol{P}$ in \mathcal{B}, there is a cartesian morphism $f_{P}^{\S}: Q \rightarrow P$ in \mathcal{E} over f
- $U: \mathcal{E} \rightarrow \mathcal{B}$ is an opfibration if for every object P of \mathcal{E} and every $f: U P \rightarrow Y$ in \mathcal{B}, there is an opcartesian morphism $f_{\S}^{P}: P \rightarrow Q$ in \mathcal{E} over f
- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a bifibration if it is both a fibration and an opfibration
- If $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration, opfibration, or bifibration, then an object \boldsymbol{P} in \mathcal{E} is over its image $\boldsymbol{U} \boldsymbol{P}$ and similarly for morphisms
- A morphism is vertical if it is over id

Fibrations and Opfibrations

- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration if for every object P of \mathcal{E} and every $f: X \rightarrow$ $U P$ in \mathcal{B}, there is a cartesian morphism $f_{P}^{\S}: Q \rightarrow P$ in \mathcal{E} over f
- $U: \mathcal{E} \rightarrow \mathcal{B}$ is an opfibration if for every object P of \mathcal{E} and every $f: U P \rightarrow Y$ in \mathcal{B}, there is an opcartesian morphism $f_{\S}^{P}: P \rightarrow Q$ in \mathcal{E} over f
- $U: \mathcal{E} \rightarrow \mathcal{B}$ is a bifibration if it is both a fibration and an opfibration
- If $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration, opfibration, or bifibration, then an object \boldsymbol{P} in \mathcal{E} is over its image $\boldsymbol{U} \boldsymbol{P}$ and similarly for morphisms
- A morphism is vertical if it is over $i d$
- The fibre \mathcal{E}_{X} over an object X in \mathcal{B} is the subcategory of \mathcal{E} of objects over X and morphisms over $i d_{X}$

Indexing and Reindexing Functors

- The function mapping each object P of \mathcal{E} to $f^{*} P$ extends to the reindexing functor $f^{*}: \mathcal{E}_{Y} \rightarrow \mathcal{E}_{X}$ along f mapping each $k: P \rightarrow P^{\prime}$ in \mathcal{E}_{Y} to the (unique) morphism $f^{*} k$ such that $k \circ f_{P}^{\S}=f_{P^{\prime}}^{\S} \circ f^{*} k$

Indexing and Reindexing Functors

- The function mapping each object P of \mathcal{E} to $f^{*} P$ extends to the reindexing functor $f^{*}: \mathcal{E}_{Y} \rightarrow \mathcal{E}_{X}$ along f mapping each $k: P \rightarrow P^{\prime}$ in \mathcal{E}_{Y} to the (unique) morphism $f^{*} k$ such that $k \circ f_{P}^{\S}=f_{P^{\prime}}^{\S} \circ f^{*} k$
- The function mapping each object P of \mathcal{E} to $\Sigma_{f} P$ extends to the opreindexing functor $\Sigma_{f}: \mathcal{E}_{X} \rightarrow \mathcal{E}_{Y}$ along f mapping each $k: P \rightarrow P^{\prime}$ in \mathcal{E}_{X} to the (unique) morphism $\Sigma_{f} k$ such that $\Sigma_{f} k \circ f_{\S}^{P}=f_{\S}^{P^{\prime}} \circ k$

New Fibrations from Old

- $|\mathcal{C}|$ is the discrete category of \mathcal{C}

New Fibrations from Old

- $|\mathcal{C}|$ is the discrete category of \mathcal{C}
- The discrete functor $|\mathcal{U}|:|\mathcal{E}| \rightarrow|\mathcal{B}|$ is induced by the restriction of $U: \mathcal{E} \rightarrow \mathcal{B}$ to $|\mathcal{E}|$

New Fibrations from Old

- $|\mathcal{C}|$ is the discrete category of \mathcal{C}
- The discrete functor $|\boldsymbol{U}|:|\mathcal{E}| \rightarrow|\mathcal{B}|$ is induced by the restriction of $U: \mathcal{E} \rightarrow \mathcal{B}$ to $|\mathcal{E}|$
- \mathcal{C}^{n} is the n-fold product of \mathcal{C} (in Cat)

New Fibrations from Old

- $|\mathcal{C}|$ is the discrete category of \mathcal{C}
- The discrete functor $|\boldsymbol{U}|:|\mathcal{E}| \rightarrow|\mathcal{B}|$ is induced by the restriction of $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ to $|\mathcal{E}|$
- \mathcal{C}^{n} is the n-fold product of \mathcal{C} (in Cat)
- The n-fold product of $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$, denoted $U^{n}: \mathcal{E}^{n} \rightarrow \mathcal{B}^{n}$, is given by $U^{n}\left(X_{1}, \ldots, X_{n}\right)=\left(U X_{1}, \ldots, U X_{n}\right)$ and $U^{n}\left(f_{1}, \ldots, f_{n}\right)=\left(U f_{1}, \ldots, U f_{n}\right)$

New Fibrations from Old

- $|\mathcal{C}|$ is the discrete category of \mathcal{C}
- The discrete functor $|\boldsymbol{U}|:|\mathcal{E}| \rightarrow|\mathcal{B}|$ is induced by the restriction of $U: \mathcal{E} \rightarrow \mathcal{B}$ to $|\mathcal{E}|$
- \mathcal{C}^{n} is the n-fold product of \mathcal{C} (in Cat)
- The n-fold product of $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$, denoted $U^{n}: \mathcal{E}^{n} \rightarrow \mathcal{B}^{n}$, is given by $U^{n}\left(X_{1}, \ldots, X_{n}\right)=\left(U X_{1}, \ldots, U X_{n}\right)$ and $U^{n}\left(f_{1}, \ldots, f_{n}\right)=\left(U f_{1}, \ldots, U f_{n}\right)$
- Lemma

1. If $U: \mathcal{E} \rightarrow \mathcal{B}$ is a functor, then $|\boldsymbol{U}|:|\mathcal{E}| \rightarrow|\mathcal{B}|$ is a bifibration, called the discrete fibration for U
2. If U is a (bi)fibration then so is $U^{n}: \mathcal{E}^{n} \rightarrow \mathcal{B}^{n}$ for any $n \in N a t$

Fibred Functors

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ and $U^{\prime}: \mathcal{E}^{\prime} \rightarrow \mathcal{B}^{\prime}$ be fibrations

Fibred Functors

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ and $U^{\prime}: \mathcal{E}^{\prime} \rightarrow \mathcal{B}^{\prime}$ be fibrations
- A fibred functor $\boldsymbol{F}: \boldsymbol{U}^{\prime} \rightarrow \boldsymbol{U}$ comprises two functors

$$
F_{o}: \mathcal{B}^{\prime} \rightarrow \mathcal{B} \quad \text { and } \quad F_{r}: \mathcal{E}^{\prime} \rightarrow \mathcal{E}
$$

such that

Fibred Functors

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ and $U^{\prime}: \mathcal{E}^{\prime} \rightarrow \mathcal{B}^{\prime}$ be fibrations
- A fibred functor $\boldsymbol{F}: \boldsymbol{U}^{\prime} \rightarrow \boldsymbol{U}$ comprises two functors

$$
F_{o}: \mathcal{B}^{\prime} \rightarrow \mathcal{B} \quad \text { and } \quad F_{r}: \mathcal{E}^{\prime} \rightarrow \mathcal{E}
$$

such that
$-\boldsymbol{U} \circ \boldsymbol{F}_{r}=\boldsymbol{F}_{o} \circ \boldsymbol{U}^{\prime}$

Fibred Functors

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ and $\boldsymbol{U}^{\prime}: \mathcal{E}^{\prime} \rightarrow \mathcal{B}^{\prime}$ be fibrations
- A fibred functor $\boldsymbol{F}: \boldsymbol{U}^{\prime} \rightarrow \boldsymbol{U}$ comprises two functors

$$
F_{o}: \mathcal{B}^{\prime} \rightarrow \mathcal{B} \quad \text { and } \quad F_{r}: \mathcal{E}^{\prime} \rightarrow \mathcal{E}
$$

such that
$-\boldsymbol{U} \circ \boldsymbol{F}_{r}=\boldsymbol{F}_{o} \circ \boldsymbol{U}^{\prime}$

- cartesian morphisms are preserved, i.e., if f in \mathcal{E}^{\prime} is cartesian over g in \mathcal{B}^{\prime} then $F_{r} f$ in \mathcal{E} is cartesian over $F_{o} g$ in \mathcal{B}

Fibred Natural Transformations

- Let $\boldsymbol{F}, \boldsymbol{F}^{\prime}: \boldsymbol{U}^{\prime} \rightarrow \boldsymbol{U}$ be fibred functors

Fibred Natural Transformations

- Let $\boldsymbol{F}, \boldsymbol{F}^{\prime}: \boldsymbol{U}^{\prime} \rightarrow \boldsymbol{U}$ be fibred functors
- A fibred natural transformation $\boldsymbol{\eta}: \boldsymbol{F}^{\boldsymbol{\prime}} \rightarrow \boldsymbol{F}$ comprises two natural transformations

$$
\eta_{o}: F_{o}^{\prime} \rightarrow F_{o} \quad \text { and } \quad \eta_{r}: F_{r}^{\prime} \rightarrow F_{r}
$$

Fibred Natural Transformations

- Let $\boldsymbol{F}, \boldsymbol{F}^{\prime}: \boldsymbol{U}^{\prime} \rightarrow \boldsymbol{U}$ be fibred functors
- A fibred natural transformation $\boldsymbol{\eta}: \boldsymbol{F}^{\boldsymbol{\prime}} \rightarrow \boldsymbol{F}$ comprises two natural transformations

$$
\eta_{o}: F_{o}^{\prime} \rightarrow F_{o} \quad \text { and } \quad \eta_{r}: F_{r}^{\prime} \rightarrow F_{r}
$$

such that $U \circ \eta_{r}=\eta_{o} \circ U^{\prime}$

Fibred Natural Transformations

- Let $\boldsymbol{F}, \boldsymbol{F}^{\prime}: \boldsymbol{U}^{\prime} \rightarrow \boldsymbol{U}$ be fibred functors
- A fibred natural transformation $\boldsymbol{\eta}: \boldsymbol{F}^{\prime} \rightarrow \boldsymbol{F}$ comprises two natural transformations

$$
\eta_{o}: F_{o}^{\prime} \rightarrow F_{o} \quad \text { and } \quad \eta_{r}: F_{r}^{\prime} \rightarrow F_{r}
$$

such that $U \circ \eta_{r}=\eta_{o} \circ U^{\prime}$

Coming Up

- View Reynolds' construction and results through the lens of the relations (bi)fibration on Set

Coming Up

- View Reynolds' construction and results through the lens of the relations (bi)fibration on Set
- Generalize Reynolds' constructions to (bi)fibrational models of System F for which we can prove (fibrational versions of) the IEL and Abstraction Theorem Reynolds' construction is (ignoring size issues) an instance

Coming Up

- View Reynolds' construction and results through the lens of the relations (bi)fibration on Set
- Generalize Reynolds' constructions to (bi)fibrational models of System F for which we can prove (fibrational versions of) the IEL and Abstraction Theorem Reynolds' construction is (ignoring size issues) an instance
- Reynolds' construction is (ignoring size issues) such a model

References

- Categorical Logic and Type Theory. B. Jacobs. Elsevier, 1999.
- Bifibrational functorial semantics for parametric polymorphism. N. Ghani, P. Johann, F. Nordvall Forsberg, F. Orsanigo, and T. Revell. MFPS'15.

