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What is a GADT?

• The shape of a GADT structure can depend on the data it contains.
• GADT data constructors can have both input types and return types involving

instances of the data type being defined other than the one being defined.
• Fancier constructor types mean that GADTs can encode more sophisticated

correctness properties.
• Sequences

data Seq : Set→ Set where
const : ∀{A : Set} → A→ Seq A
spair : ∀{A B : Set} → Seq A× Seq B→ Seq (A× B)

Note that spair only constructs sequences of pair types.
• Polynomial expressions with variables of type A and coefficients of type B

data Expr : Set→ Set→ Set where
var : ∀{A B : Set} → A→ Expr A B
iconst : ∀{A : Set} → Int→ Expr A Int
fconst : ∀{A : Set} → Float→ Expr A Float
prod : ∀{A B : Set} → Expr A B→ Expr A B→ Expr A B
iscmult : ∀{A B : Set} → Expr A B→ Int→ Expr A B
fscmult : ∀{A B : Set} → Expr A B→ Float→ Expr A Float

Note that iconst, fconst, and fscmult again construct expressions at instances of
certain forms of types only.



What is a GADT?

• The shape of a GADT structure can depend on the data it contains.
• GADT data constructors can have both input types and return types involving

instances of the data type being defined other than the one being defined.
• Fancier constructor types mean that GADTs can encode more sophisticated

correctness properties.
• Sequences

data Seq : Set→ Set where
const : ∀{A : Set} → A→ Seq A
spair : ∀{A B : Set} → Seq A× Seq B→ Seq (A× B)

Note that spair only constructs sequences of pair types.
• Polynomial expressions with variables of type A and coefficients of type B

data Expr : Set→ Set→ Set where
var : ∀{A B : Set} → A→ Expr A B
iconst : ∀{A : Set} → Int→ Expr A Int
fconst : ∀{A : Set} → Float→ Expr A Float
prod : ∀{A B : Set} → Expr A B→ Expr A B→ Expr A B
iscmult : ∀{A B : Set} → Expr A B→ Int→ Expr A B
fscmult : ∀{A B : Set} → Expr A B→ Float→ Expr A Float

Note that iconst, fconst, and fscmult again construct expressions at instances of
certain forms of types only.



What is a GADT?

• The shape of a GADT structure can depend on the data it contains.
• GADT data constructors can have both input types and return types involving

instances of the data type being defined other than the one being defined.
• Fancier constructor types mean that GADTs can encode more sophisticated

correctness properties.
• Sequences

data Seq : Set→ Set where
const : ∀{A : Set} → A→ Seq A
spair : ∀{A B : Set} → Seq A× Seq B→ Seq (A× B)

Note that spair only constructs sequences of pair types.
• Polynomial expressions with variables of type A and coefficients of type B

data Expr : Set→ Set→ Set where
var : ∀{A B : Set} → A→ Expr A B
iconst : ∀{A : Set} → Int→ Expr A Int
fconst : ∀{A : Set} → Float→ Expr A Float
prod : ∀{A B : Set} → Expr A B→ Expr A B→ Expr A B
iscmult : ∀{A B : Set} → Expr A B→ Int→ Expr A B
fscmult : ∀{A B : Set} → Expr A B→ Float→ Expr A Float

Note that iconst, fconst, and fscmult again construct expressions at instances of
certain forms of types only.



What is a GADT?

• The shape of a GADT structure can depend on the data it contains.
• GADT data constructors can have both input types and return types involving

instances of the data type being defined other than the one being defined.
• Fancier constructor types mean that GADTs can encode more sophisticated

correctness properties.
• Sequences

data Seq : Set→ Set where
const : ∀{A : Set} → A→ Seq A
spair : ∀{A B : Set} → Seq A× Seq B→ Seq (A× B)

Note that spair only constructs sequences of pair types.
• Polynomial expressions with variables of type A and coefficients of type B

data Expr : Set→ Set→ Set where
var : ∀{A B : Set} → A→ Expr A B
iconst : ∀{A : Set} → Int→ Expr A Int
fconst : ∀{A : Set} → Float→ Expr A Float
prod : ∀{A B : Set} → Expr A B→ Expr A B→ Expr A B
iscmult : ∀{A B : Set} → Expr A B→ Int→ Expr A B
fscmult : ∀{A B : Set} → Expr A B→ Float→ Expr A Float

Note that iconst, fconst, and fscmult again construct expressions at instances of
certain forms of types only.



What is a GADT?

• The shape of a GADT structure can depend on the data it contains.
• GADT data constructors can have both input types and return types involving

instances of the data type being defined other than the one being defined.
• Fancier constructor types mean that GADTs can encode more sophisticated

correctness properties.
• Sequences

data Seq : Set→ Set where
const : ∀{A : Set} → A→ Seq A
spair : ∀{A B : Set} → Seq A× Seq B→ Seq (A× B)

Note that spair only constructs sequences of pair types.
• Polynomial expressions with variables of type A and coefficients of type B

data Expr : Set→ Set→ Set where
var : ∀{A B : Set} → A→ Expr A B
iconst : ∀{A : Set} → Int→ Expr A Int
fconst : ∀{A : Set} → Float→ Expr A Float
prod : ∀{A B : Set} → Expr A B→ Expr A B→ Expr A B
iscmult : ∀{A B : Set} → Expr A B→ Int→ Expr A B
fscmult : ∀{A B : Set} → Expr A B→ Float→ Expr A Float

Note that iconst, fconst, and fscmult again construct expressions at instances of
certain forms of types only.



GADTs Are Not Functorial

• GADTs were functorial, they’d have shape-preserving, data-changing map
functions.

• Consider mapSeq : (A→ B)→ Seq A→ Seq B

• The clause of map for const should have

mapSeq f (const x) = const (f x)

• What should the clause of map for spair be? If f : C× D→ E then

mapSeq f (spair s1 s2) = spair ? ?

• What if E 6= U× V?

• What if E = U× V but f 6= (g : C→ U)× (h : D→ V)?

• Similarly, we can’t construct the clause of mapExpr for iconst, fconst, or fscmult.

• GADTs do not support map functions because they are not data types in the usual
container-y sense.

• Question: How do we give initial algebra semantics to GADTs?
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Recovering Functoriality

• There are two ways to recover functoriality. Both can be described in terms of left
Kan extensions.

• The left Kan extension of F : C → D along K : C → E — denoted LanKF —
gives the “best functorial approximation” to F that factors through K.

• Intuitively, this means that LanKF is the smallest functor that both extends the
image of K to D and is such that the extension LanKF ◦K agrees with F on C,
in the sense that there is a natural transformation η from F to LanKF ◦K.

• “Smallest” means that, for any other such extension G, there is a unique natural
transformation δ from LanKF to G such that the two natural transformations η
and γ out of F are related nicely.
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Left Kan Extensions

• If F : C → D and K : C → E are functors, then the left Kan extension of F along
K is a functor LanK F : E → D together with a natural transformation
η : F → LanK F ◦K such that, for every functor G : E → D and natural
transformation γ : F → G ◦K, there exists a unique natural transformation
δ : LanK F → G such that (δK) ◦ η = γ.

• There is an isomorphism of natural transformations

F → G ◦K ∼= LanKF → G

• If we add to our type system a type constructor Lan that is the syntactic reflection
of the categorical Lan, then we can use (the syntactic reflection of) the above
isomorphism to rewrite the syntax of our GADTs.

• This gives a “best approximation” functorial completion of GADT syntax that lets
us rewrite GADT data constructor types in the same form as the types of data
constructors for nested types.

• Functional completion lets us model GADTs as fixpoints of higher-order functors.
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Rewriting GADT Syntax (I)

• We can rewrite Seq as follows:

data Seq : Set→ Set where
const : ∀{A : Set} → A→ Seq A
spair : ∀{A B : Set} → Seq A× Seq B︸ ︷︷ ︸

F A B

→ Seq︸︷︷︸
G

(A×B︸ ︷︷ ︸
K A B

)

spair : ∀{A : Set} → (LanλA B. A×B λA B. Seq A× Seq B)A→ Seq A

• Then Seq can be interpreted as µH for the higher-order functor

H F X = X + (LanλXY.X×Y λXY. FX × FY )X
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Rewriting GADT Syntax (II)

• We can rewrite Expr as follows:

data Expr : Set→ Set→ Set where
var : ∀{A B : Set} → A→ Expr A B
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fscmult : ∀{A B : Set} → (LanλA B.A×Float λA B.Expr A B× Float)A B→ Expr A B

• Then Expr can be interpreted as µH for the higher-order functor

H F X = π1X
+ (LanλX Y.X×Int λX Y. Int)X
+ (LanλX Y.X×Float λX Y.Float)X
+ F X Y × F X Y
+ F X Y × Int
+ (LanλX Y.X×Float λX Y. F X Y × Float)X
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Completion Choices

• At the level of objects, this gives (at least) the syntactic data elements for GADTs.

• But what about morphisms? What about natural transformations?

• There are two obvious choices:

- The discrete category |C| — equivalently, the discrete category I of
interpretations of types in C.

Im I
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η LanK F
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δ

- The full category C.

Cm C
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G
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Simplifying Assumptions

• All of the type arguments of our GADT are treated uniformly.

• All of that GADT’s data constructors are treated uniformly.

• So we assume for now that a GADT of interest takes exactly one type argument
(so m = n = 1) and has exactly one data constructor.

• That is, we assume our GADT has the form

data G : Set→ Set where
c : ∀{A : Set} → F A→ G (K A)

• Then the interpretation G of G is µH, where H J = LanK F , i.e.,

G ∼= µJ.LanK F

• But how do we compute left Kan extensions, and thus semantics of GADTs?
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Computing Left Kan Extensions

• Under the same conditions needed to compute fixpoints of functors using the
TFCA, we can compute left Kan extensions using the following well-known colimit
formula:

If C is locally λ-presentable and F and K are λ-cocontinuous functors on C, then
The left Kan extension of F along K can be computed as the colimit

(LanK F )X = lim−→(A:C0, f :KA→X) FA

• C0 is a set of objects in C from which all others can be generated by colimits.

• The idea is that, under these conditions, the “large” colimit that is a left Kan
extension can actually be computed as a colimit over a “small” set of support.
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Computing Discrete GADT Interpretations

• In Set :

(LanK F )X = lim−→A:I, f :KA→X FA =
( ⋃
A:I, f :KA→X

FA
)
/ ∼

• Elements of the union are triples (A : I, f : KA→ X, y : FA) and ∼ is the
smallest equivalence relation generated by

(A, f, y) ∼ (A′, f ′, y′) iff ∃h : A→ A′ such that f = Kh ◦ f ′ and y′ = Fhy

KA KA′

X

Kh

f f ′

• In the discrete setting, f = f ′ = h = id , so A = A′ and y = y′, so

(LanK F )X =
⋃
A:I, KA=X FA

i.e.,
(LanK F ) (KA) = {y : FA | A : I}

• GADT syntax gives an element c y of G (KA) for every y : FA.
• Moreover, every element in G (KA) is obtained in this way, and instances of G not

of the form KA are not inhabited.
• Discrete GADT interpretations contain exactly that data constructed from syntax.
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Something Amiss?

• This clearly “works”.

• But ADTs and nested types don’t need to invoke discreteness to get functoriality.

• So something seems amiss.

• Question: Can we see GADTs as fixpoints of non-discrete functors? That is, can
we see GADTs as data types in the “normal”, container-y sense, with proper map
functions?
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Computing Fully Functorial Interpretations of
GADTs

• In Set :

(LanK F )X = lim−→A:C0, f :KA→X FA =
( ⋃
A:C0, f :KA→X

FA
)
/ ∼

• It is now harder to compute and mod out by the equivalence generated by

(A, f, y) ∼ (A′, f ′, y′) iff ∃h : A→ A′ such that f = Kh ◦ f ′ and y′ = Fhy

KA KA′

R

Kh

f f ′

• Need restrictions on syntax to ensure functoriality of interpretation G of G:
- Assume GADTs are (hereditarily) polynomial
- Require strict positivity
- No truly nested GADTs (no nested Gs in constructor domains or codomains)

• If F and K are higher-order functors then so is LanK F . So G = µJ.LanK F is
a functor and thus has an associated function mapG.
• Each triple (A : C0, f : KA→ X, y : FA) gives an element mapG f (c y) of GX.
• This is cannot possibly be the interpretation of any term constructed from G’s

syntax unless X = KB for some B.
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The Functorial Interpretation of Seq

• We interpret spair : ∀{A B : Set} → Seq A→ Seq B→ Seq(A× B) as a morphism

lim−→(A,B):C0×C0, f :A×B→X Seq A× Seq B → Seq X

• It is no coincidence that the morphism that f : A×B → X that was missing from
Seq’s map, and thus motivated its discrete semantics, appears in this colimit!

• Thus
mapSeq f (spair t1 t2 )

is in Seq X but is not the interpretation of any term constructed from Seq’s syntax.

• The properly functorial interpretation of Seq thus contains data elements not
constructed from its syntax!

• For ADTs and nested types, map-closure adds no new data elements because the
interpretation of the data type is already a proper functor.

(Technically: K = Id , and a left Kan extension along an identity is an identity, i.e.,
LanIdF = F .)
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Summary

• We have seen that the discrete and fully functorial interpretations of GADTs can
be very different.

• This differs from the discrete and functorial interpretations of ADTs and nested
types, which always contain exactly the same data elements.

• For ADTs and nested types there is only one natural semantics. For GADTs there
are two, and they don’t even contain the same data elements.

(By design, they don’t contain the same morphisms.)

• Question: What practical difference could the difference in semantics possibly
have? We’ll see next time.
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