Reynolds' Parametricity

Patricia Johann Appalachian State University

 $\texttt{cs.appstate.edu/}{\sim}\texttt{johannp}$

Based on joint work with Neil Ghani, Fredrik Nordvall Forsberg, Federico Orsanigo, and Tim Revell

OPLSS 2016

Course Outline

Topic: Reynolds' theory of parametric polymorphism for System F Goals: - extract the fibrational essence of Reynolds' theory

- generalize Reynolds' construction to very general models
- Lecture 1: Reynolds' theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F

Course Outline

Topic: Reynolds' theory of parametric polymorphism for System F Goals: - extract the fibrational essence of Reynolds' theory

- generalize Reynolds' construction to very general models
- Lecture 1: Reynolds' theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F

• In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop

- In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- Last time we had an introduction to bifibrations, fibred functors, fibred natural transformations

- In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- Last time we had an introduction to bifibrations, fibred functors, fibred natural transformations
- Today we'll view Reynolds' construction and results through the lens of the relations (bi)fibration on **Set**

- In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- Last time we had an introduction to bifibrations, fibred functors, fibred natural transformations
- Today we'll view Reynolds' construction and results through the lens of the relations (bi)fibration on **Set**
- Next time we'll generalize Reynolds' constructions to bifibrational models of System F for which we can prove (bifibrational versions of) the IEL and Abstraction Theorem

- In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- Last time we had an introduction to bifibrations, fibred functors, fibred natural transformations
- Today we'll view Reynolds' construction and results through the lens of the relations (bi)fibration on **Set**
- Next time we'll generalize Reynolds' constructions to bifibrational models of System F for which we can prove (bifibrational versions of) the IEL and Abstraction Theorem
- Reynolds' construction is (ignoring size issues) such a model

• Introduce the the relations fibration on **Set**

Plan for Today

- Introduce the the relations fibration on **Set**
- Recall Reynolds' (attempted) model of parametricity for System F as originally formulated with no fibrations in sight

Plan for Today

- Introduce the the relations fibration on **Set**
- Recall Reynolds' (attempted) model of parametricity for System F as originally formulated with no fibrations in sight
- Re-state Reynolds' construction in terms of the relations fibration on **Set**

Plan for Today

- Introduce the the relations fibration on **Set**
- Recall Reynolds' (attempted) model of parametricity for System F as originally formulated with no fibrations in sight
- Re-state Reynolds' construction in terms of the relations fibration on **Set**
- Set up infrastructure needed for our generalization

- An object of Rel is a triple (X, Y, R)
 - X and Y are sets
 - $\ R \subseteq (X,Y), ext{ i.e., } R \subseteq X imes Y$

- An object of Rel is a triple (X, Y, R)
 - X and Y are sets
 - $\ R \subseteq (X,Y), ext{ i.e.}, \ R \subseteq X imes Y$
- A morphism $(X', Y', R') \to (X, Y, R)$ is a pair (f, g)
 - $f: X' \to X$ and $g: Y' \to Y$
 - $ext{ if } (x',y') \in R' ext{ then } (fx',gy') \in R$

- An object of Rel is a triple (X, Y, R)
 - X and Y are sets
 - $\ R \subseteq (X,Y), ext{ i.e.}, \ R \subseteq X imes Y$
- A morphism $(X',Y',R') \to (X,Y,R)$ is a pair (f,g)
 - $\ f: X' o X \ ext{and} \ g: Y' o Y$
 - $ext{ if } (x',y') \in R' ext{ then } (fx',gy') \in R$
- Each set X has an equality relation

$$\mathsf{Eq}\, X = \{(x,x) \mid x \in X\}$$

- An object of Rel is a triple (X, Y, R)
 - X and Y are sets
 - $\ R \subseteq (X,Y), ext{ i.e.}, \ R \subseteq X imes Y$
- A morphism $(X',Y',R') \to (X,Y,R)$ is a pair (f,g)
 - $f: X' \to X ext{ and } g: Y' \to Y$
 - $ext{ if } (x',y') \in R' ext{ then } (fx',gy') \in R$
- Each set X has an equality relation

$$\mathsf{Eq}\, X = \{(x,x) \mid x \in X\}$$

• This can be extended to an equality functor from **Set** to **Rel** in the obvious way

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
 - (X, Y, R) to (X, Y)
 - -(f,g) to itself

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
 - -(X,Y,R) to (X,Y)
 - (f,g) to itself
- U is a fibration: For R, UR = (X, Y), and $(f, g) : (X', Y') \to (X, Y)$
 - $\ (f,g)^*R = \{(x',y') \in (X',Y') \, | \, (fx',gy') \in R\}$
 - $\ (f,g): (f,g)^*R o R ext{ is cartesian over } (f,g)$

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
 - -(X,Y,R) to (X,Y)
 - -(f,g) to itself
- U is a fibration: For R, UR = (X, Y), and $(f, g) : (X', Y') \to (X, Y)$
 - $\ (f,g)^*R = \{(x',y') \in (X',Y') \, | \, (fx',gy') \in R\}$
 - $-(f,g):(f,g)^*R \to R$ is cartesian over (f,g)
- U is an opfibration: For R, UR = (X', Y'), and $(f,g) : (X',Y') \rightarrow (X,Y)$
 - $egin{aligned} &- \Sigma_{(f,g)}R = \{(fx',gy') \in (X,Y) \,|\, (x',y') \in R'\} \ &- (f,g): (f,g)^*R o R ext{ is opeartesian over } (f,g) \end{aligned}$

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
 - -(X,Y,R) to (X,Y)
 - (f,g) to itself
- U is a fibration: For R, UR = (X, Y), and $(f, g) : (X', Y') \to (X, Y)$
 - $\ (f,g)^*R = \{(x',y') \in (X',Y') \, | \, (fx',gy') \in R\}$
 - $-(f,g):(f,g)^*R \to R$ is cartesian over (f,g)
- U is an opfibration: For R, UR = (X', Y'), and $(f,g) : (X',Y') \rightarrow (X,Y)$
 - $egin{aligned} &- \Sigma_{(f,g)}R = \{(fx',gy') \in (X,Y) \,|\, (x',y') \in R'\} \ &- (f,g): (f,g)^*R o R ext{ is opeartesian over } (f,g) \end{aligned}$
- U is (thus) a bifibration

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
 - -(X,Y,R) to (X,Y)
 - (f,g) to itself
- U is a fibration: For R, UR = (X, Y), and $(f, g) : (X', Y') \to (X, Y)$
 - $\ (f,g)^*R = \{(x',y') \in (X',Y') \, | \, (fx',gy') \in R\}$
 - $-(f,g):(f,g)^*R
 ightarrow R$ is cartesian over (f,g)
- U is an opfibration: For R, UR = (X', Y'), and $(f,g) : (X',Y') \rightarrow (X,Y)$

$$egin{aligned} &- \Sigma_{(f,g)}R = \{(fx',gy') \in (X,Y) \,|\, (x',y') \in R'\} \ &- (f,g): (f,g)^*R o R ext{ is opeartesian over } (f,g) \end{aligned}$$

- U is (thus) a bifibration
- $\operatorname{Rel}(X, Y)$ is the fibre over (X, Y)

• Recall: The interdependence of Reynolds' object and relational interpretations for types means that we don't have two semantics, but rather a single interconnected semantics!

- Recall: The interdependence of Reynolds' object and relational interpretations for types means that we don't have two semantics, but rather a single interconnected semantics!
- If each $R_i : \mathsf{Rel}(X_i, Y_i)$, then $\llbracket \Delta \vdash \tau \rrbracket_r \overline{R} : \mathsf{Rel}(\llbracket \Delta \vdash \tau \rrbracket_o \overline{X}, \llbracket \Delta \vdash \tau \rrbracket_o \overline{Y})$

- Recall: The interdependence of Reynolds' object and relational interpretations for types means that we don't have two semantics, but rather a single interconnected semantics!
- If each $R_i : \mathsf{Rel}(X_i, Y_i)$, then $\llbracket \Delta \vdash \tau \rrbracket_r \overline{R} : \mathsf{Rel}(\llbracket \Delta \vdash \tau \rrbracket_o \overline{X}, \llbracket \Delta \vdash \tau \rrbracket_o \overline{Y})$
- Theorem (Reynolds' Semantics of Types, Fibrationally) Let U be the relations fibration on Set. Every judgement $\Delta \vdash \tau$ induces a fibred functor $[\![\Delta \vdash \tau]\!] : |U|^{|\Delta|} \to U$.

- Recall: The interdependence of Reynolds' object and relational interpretations for types means that we don't have two semantics, but rather a single interconnected semantics!
- If each $R_i : \mathsf{Rel}(X_i, Y_i)$, then $\llbracket \Delta \vdash \tau \rrbracket_r \overline{R} : \mathsf{Rel}(\llbracket \Delta \vdash \tau \rrbracket_o \overline{X}, \llbracket \Delta \vdash \tau \rrbracket_o \overline{Y})$
- Theorem (Reynolds' Semantics of Types, Fibrationally) Let U be the relations fibration on Set. Every judgement $\Delta \vdash \tau$ induces a fibred functor $[\![\Delta \vdash \tau]\!] : |U|^{|\Delta|} \to U$.

• We use discrete categories in the domain of $[\![\Delta \vdash \tau]\!]$ to reflect the fact that Reynolds did not give a functorial action of types on morphisms

Identity Extension Lemma, Fibrationally

• If $\Delta \vdash \tau$ then

 $\llbracket \Delta \vdash \tau \rrbracket_r \left(\mathsf{Eq} \, X_1, ..., \mathsf{Eq} \, X_{|\Delta|} \right) = \mathsf{Eq} \left(\llbracket \Delta \vdash \tau \rrbracket_o(X_1, ..., X_{|\Delta|}) \right)$

Identity Extension Lemma, Fibrationally

• If $\Delta \vdash \tau$ then

$$\llbracket \Delta \vdash \tau \rrbracket_r \left(\mathsf{Eq} \, X_1, ..., \mathsf{Eq} \, X_{|\Delta|} \right) = \mathsf{Eq} \left(\llbracket \Delta \vdash \tau \rrbracket_o(X_1, ..., X_{|\Delta|}) \right)$$

• Theorem (Identity Extension Lemma, Fibrationally) If $\Delta \vdash \tau$ then

$$\llbracket \Delta \vdash \tau
rbracket_r \circ |\mathsf{Eq}|^{|\Delta|} = \mathsf{Eq} \circ \llbracket \Delta \vdash \tau
rbracket_o$$

$$|\operatorname{Rel}|^{|\Delta|} \xrightarrow{\llbracket \Delta \vdash \tau \rrbracket_r} \operatorname{Rel} \\ \uparrow^{||\operatorname{Eq}|^{|\Delta|}} \xrightarrow{\operatorname{Eq}} \\ |\operatorname{Set}|^{|\Delta|} \xrightarrow{\llbracket \Delta \vdash \tau \rrbracket_o} \operatorname{Set}$$

Abstraction Theorem, Fibrationally

• Suppose Reynolds had given relational interpretations for terms such that $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r \overline{R}$ is over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{X} \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{Y}$

Abstraction Theorem, Fibrationally

- Suppose Reynolds had given relational interpretations for terms such that $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r \overline{R}$ is over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{X} \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{Y}$
- Abstraction Theorem Let $\overline{X}, \overline{Y} : \mathsf{Set}^{|\Delta|}, \overline{R} : \mathsf{Rel}^{|\Delta|}(\overline{X}, \overline{Y}), \overline{A} \in \llbracket \Delta \vdash \Gamma \rrbracket_o \overline{X}, \text{ and } \overline{B} \in \llbracket \Delta \vdash \Gamma \rrbracket_o \overline{Y}.$ For every $\Delta; \Gamma \vdash t : \tau$, if $(\overline{A}, \overline{B}) \in \llbracket \Delta \vdash \Gamma \rrbracket_r \overline{R},$ then $(\llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{X} \overline{A}, \llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{Y} \overline{B}) \in \llbracket \Delta \vdash \tau \rrbracket_r \overline{R}.$

Abstraction Theorem, Fibrationally

- Suppose Reynolds had given relational interpretations for terms such that $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r \overline{R}$ is over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{X} \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{Y}$
- Abstraction Theorem Let $\overline{X}, \overline{Y} : \mathsf{Set}^{|\Delta|}, \overline{R} : \mathsf{Rel}^{|\Delta|}(\overline{X}, \overline{Y}), \overline{A} \in \llbracket \Delta \vdash \Gamma \rrbracket_o \overline{X}, \text{ and } \overline{B} \in \llbracket \Delta \vdash \Gamma \rrbracket_o \overline{Y}.$ For every $\Delta; \Gamma \vdash t : \tau$, if $(\overline{A}, \overline{B}) \in \llbracket \Delta \vdash \Gamma \rrbracket_r \overline{R},$ then $(\llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{X} \overline{A}, \llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{Y} \overline{B}) \in \llbracket \Delta \vdash \tau \rrbracket_r \overline{R}.$
- Theorem (Abstraction Theorem, Fibrationally) Every term $\Delta; \Gamma \vdash t$: τ is interpreted as a fibred natural transformation

 $(\llbracket\Delta;\Gamma\vdash t:\tau\rrbracket_o\times\llbracket\Delta;\Gamma\vdash t:\tau\rrbracket_o,\llbracket\Delta;\Gamma\vdash t:\tau\rrbracket_r):\llbracket\Delta\vdash\Gamma\rrbracket\to\llbracket\Delta\vdash\tau\rrbracket$

• The domains of $[\![\Delta \vdash \Gamma]\!]_o$ and $[\![\Delta \vdash \tau]\!]_o$ are discrete

- The domains of $[\![\Delta \vdash \Gamma]\!]_o$ and $[\![\Delta \vdash \tau]\!]_o$ are discrete
- $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o : \llbracket\Delta \vdash \Gamma \rrbracket_o \to \llbracket\Delta \vdash \tau \rrbracket_o$ is a (vacuously) natural transformation

- The domains of $[\![\Delta \vdash \Gamma]\!]_o$ and $[\![\Delta \vdash \tau]\!]_o$ are discrete
- $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o : \llbracket\Delta \vdash \Gamma \rrbracket_o \to \llbracket\Delta \vdash \tau \rrbracket_o$ is a (vacuously) natural transformation
- $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r : \llbracket\Delta \vdash \Gamma \rrbracket_r \to \llbracket\Delta \vdash \tau \rrbracket_r$ is a (vacuously) natural transformation over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o$

- The domains of $[\![\Delta \vdash \Gamma]\!]_o$ and $[\![\Delta \vdash \tau]\!]_o$ are discrete
- $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o : \llbracket\Delta \vdash \Gamma \rrbracket_o \to \llbracket\Delta \vdash \tau \rrbracket_o$ is a (vacuously) natural transformation
- $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r : \llbracket\Delta \vdash \Gamma \rrbracket_r \to \llbracket\Delta \vdash \tau \rrbracket_r$ is a (vacuously) natural transformation over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o$, so each component

$$\llbracket \Delta \vdash \Gamma
rbracket_r \overline{R} \ \stackrel{\llbracket \Delta; \Gamma \vdash t: au
rbracket_r \overline{R}}{\longrightarrow} \llbracket \Delta \vdash au
rbracket_r \overline{R}$$

is a morphism between relations that is over

$$\llbracket \Delta \vdash \Gamma \rrbracket_o \overline{X} \times \llbracket \Delta \vdash \Gamma \rrbracket_o \overline{Y} \xrightarrow{\llbracket \Delta; \Gamma \vdash t: \tau \rrbracket_o \overline{X} \times \llbracket \Delta; \Gamma \vdash t: \tau \rrbracket_o \overline{Y}} \llbracket \Delta \vdash \tau \rrbracket_o \overline{X} \times \llbracket \Delta \vdash \tau \rrbracket_o \overline{Y}$$

- The domains of $[\![\Delta \vdash \Gamma]\!]_o$ and $[\![\Delta \vdash \tau]\!]_o$ are discrete
- $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o : \llbracket\Delta \vdash \Gamma \rrbracket_o \to \llbracket\Delta \vdash \tau \rrbracket_o$ is a (vacuously) natural transformation
- $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r : \llbracket\Delta \vdash \Gamma \rrbracket_r \to \llbracket\Delta \vdash \tau \rrbracket_r$ is a (vacuously) natural transformation over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o$, so each component

$$\llbracket \Delta \vdash \Gamma
rbracket_r \overline{R} \xrightarrow{\llbracket \Delta; \Gamma \vdash t: au
rbracket_r \overline{R}} \llbracket \Delta \vdash au
rbracket_r \overline{R}$$

is a morphism between relations that is over

$$[\Delta \vdash \Gamma]\!]_o \overline{X} \times \llbracket \Delta \vdash \Gamma]\!]_o \overline{Y} \xrightarrow{\llbracket \Delta; \Gamma \vdash t: \tau]\!]_o \overline{X} \times \llbracket \Delta; \Gamma \vdash t: \tau]\!]_o \overline{Y}} \llbracket \Delta \vdash \tau]\!]_o \overline{X} \times \llbracket \Delta \vdash \tau]\!]_o \overline{Y}$$

• That is, $\llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_r \overline{R}$ is a pair of morphisms $(\llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{X}, \llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{Y})$ in Set such that

$$\begin{array}{l} \text{if } (\overline{A},\overline{B}) \in \llbracket \Delta \vdash \Gamma \rrbracket_r \overline{R}, \text{ then} \\ (\llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{X} \, \overline{A}, \llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{Y} \, \overline{B}) \in \llbracket \Delta \vdash \tau \rrbracket_r \overline{R} \end{array} \end{array}$$

- The domains of $\llbracket \Delta \vdash \Gamma \rrbracket_o$ and $\llbracket \Delta \vdash \tau \rrbracket_o$ are discrete
- $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o : \llbracket\Delta \vdash \Gamma \rrbracket_o \to \llbracket\Delta \vdash \tau \rrbracket_o$ is a (vacuously) natural transformation
- $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r : \llbracket\Delta \vdash \Gamma \rrbracket_r \to \llbracket\Delta \vdash \tau \rrbracket_r$ is a (vacuously) natural transformation over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o$, so each component

$$\llbracket \Delta \vdash \Gamma \rrbracket_r \overline{R} \quad \xrightarrow{\llbracket \Delta; \Gamma \vdash t: \tau \rrbracket_r \overline{R}} \llbracket \Delta \vdash \tau \rrbracket_r \overline{R}$$

is a morphism between relations that is over

$$\llbracket \Delta \vdash \Gamma \rrbracket_o \overline{X} \times \llbracket \Delta \vdash \Gamma \rrbracket_o \overline{Y} \xrightarrow{\llbracket \Delta; \Gamma \vdash t: \tau \rrbracket_o \overline{X} \times \llbracket \Delta; \Gamma \vdash t: \tau \rrbracket_o \overline{Y}} \llbracket \Delta \vdash \tau \rrbracket_o \overline{X} \times \llbracket \Delta \vdash \tau \rrbracket_o \overline{Y}$$

• That is, $\llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_r \overline{R}$ is a pair of morphisms $(\llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{X}, \llbracket \Delta; \Gamma \vdash t : \tau \rrbracket_o \overline{Y})$ in **Set** such that

$$\begin{array}{l} \text{if } (\overline{A},\overline{B}) \in \llbracket \Delta \vdash \Gamma \rrbracket_r \overline{R}, \text{ then} \\ (\llbracket \Delta; \Gamma \vdash t: \tau \rrbracket_o \overline{X} \, \overline{A}, \llbracket \Delta; \Gamma \vdash t: \tau \rrbracket_o \overline{Y} \, \overline{B}) \in \llbracket \Delta \vdash \tau \rrbracket_r \overline{R} \end{array}$$

• This is the conclusion of Reynolds' original statement of the theorem!!!

• Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $[\![\Delta;\Gamma \vdash t:\tau]\!]_o$

- Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $[\![\Delta; \Gamma \vdash t : \tau]\!]_o$
- But it really states the existence of additional algebraic structure given by the interpretations $[\![\Delta; \Gamma \vdash t : \tau]\!]_r$ of terms as fibred natural transformations

The Take-Away

- Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $[\![\Delta; \Gamma \vdash t : \tau]\!]_o$
- But it really states the existence of additional algebraic structure given by the interpretations $[\![\Delta; \Gamma \vdash t : \tau]\!]_r$ of terms as fibred natural transformations
- This point of view
 - exposes this heretofore hidden structure

The Take-Away

- Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $[\![\Delta; \Gamma \vdash t : \tau]\!]_o$
- But it really states the existence of additional algebraic structure given by the interpretations $[\![\Delta; \Gamma \vdash t : \tau]\!]_r$ of terms as fibred natural transformations
- This point of view
 - exposes this heretofore hidden structure
 - opens the way to our generalization of Reynolds' construction

The Take-Away

- Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $[\![\Delta; \Gamma \vdash t : \tau]\!]_o$
- But it really states the existence of additional algebraic structure given by the interpretations $[\![\Delta; \Gamma \vdash t : \tau]\!]_r$ of terms as fibred natural transformations
- This point of view
 - exposes this heretofore hidden structure
 - opens the way to our generalization of Reynolds' construction
- To generalize $[-]_o$ and $[-]_r$ in such a way that the Identity Extension Lemma and the Abstraction Theorem hold, we must have sufficient structure to define analogues of all the structure we used in the relations fibration on **Set** for more general fibrations

• Observe: The relations fibration on **Set** arises from the subobject fibration over **Set** by pullback, or change of base

- Observe: The relations fibration on **Set** arises from the subobject fibration over **Set** by pullback, or change of base
- If $U : \mathcal{E} \to \mathcal{B}$ is a fibration and \mathcal{B} has products, then the fibration $\operatorname{\mathsf{Rel}}(U) : \operatorname{\mathsf{Rel}}(\mathcal{E}) \to \mathcal{B} \times \mathcal{B}$ is defined by

$$\begin{array}{c} \mathsf{Rel}(\mathcal{E}) \xrightarrow{q} \mathcal{E} \\ \\ \mathsf{Rel}(U) \downarrow^{-} & \downarrow^{U} \\ \mathcal{B} \times \mathcal{B} \xrightarrow{}_{-\times_{-}} \mathcal{B} \end{array}$$

- Observe: The relations fibration on **Set** arises from the subobject fibration over **Set** by pullback, or change of base
- If $U : \mathcal{E} \to \mathcal{B}$ is a fibration and \mathcal{B} has products, then the fibration $\operatorname{\mathsf{Rel}}(U) : \operatorname{\mathsf{Rel}}(\mathcal{E}) \to \mathcal{B} \times \mathcal{B}$ is defined by

$$\begin{array}{c} \mathsf{Rel}(\mathcal{E}) \xrightarrow{q} \mathcal{E} \\ \\ \mathsf{Rel}(U) \Big|^{-} & \Big| U \\ \mathcal{B} \times \mathcal{B} \xrightarrow{}_{- \times_{-}} \mathcal{B} \end{array}$$

• $\operatorname{Rel}(U)$ is the relations fibration for U

- Observe: The relations fibration on **Set** arises from the subobject fibration over **Set** by pullback, or change of base
- If $U : \mathcal{E} \to \mathcal{B}$ is a fibration and \mathcal{B} has products, then the fibration $\mathsf{Rel}(U) : \mathsf{Rel}(\mathcal{E}) \to \mathcal{B} \times \mathcal{B}$ is defined by

- $\operatorname{Rel}(U)$ is the relations fibration for U
- The objects of $\mathsf{Rel}(\mathcal{E})$ are called relations on \mathcal{B}

The Truth Functor

- $U: \mathcal{E} \to \mathcal{B}$ has fibred terminal objects if
 - each fibre \mathcal{E}_X of \mathcal{E} has a terminal object K_X

The Truth Functor

- $U: \mathcal{E} \to \mathcal{B}$ has fibred terminal objects if
 - each fibre \mathcal{E}_X of \mathcal{E} has a terminal object K_X
 - reindexing preserves terminal objects, i.e., if $f:X \to Y$ is a morphism in $\mathcal B$ implies $f^*K_Y = K_X$

The Truth Functor

- $U: \mathcal{E} \to \mathcal{B}$ has fibred terminal objects if
 - each fibre \mathcal{E}_X of \mathcal{E} has a terminal object K_X
 - reindexing preserves terminal objects, i.e., if $f:X \to Y$ is a morphism in $\mathcal B$ implies $f^*K_Y = K_X$

• The map sending each object X of \mathcal{B} to K_X extends to a functor $K: \mathcal{B} \to \mathcal{E}$ called the truth functor for U

• Let $U: \mathcal{E} \to \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_X be the diagonal morphism $\delta_X: X \to X \times X$

- Let $U : \mathcal{E} \to \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_X be the diagonal morphism $\delta_X : X \to X \times X$
- The map sending each object X of \mathcal{B} to $\Sigma_{\delta_X} KX$ extends to a functor $\mathsf{Eq}: \mathcal{B} \to \mathsf{Rel}(\mathcal{E})$ called the equality functor for $\mathsf{Rel}(U)$

$$\begin{array}{ccc} \mathcal{E} & KX \xrightarrow{(\delta_X)_{\S}} \Sigma_{\delta_X}(KX) \\ & & \\ U \\ & & \\ \mathcal{B} & X \xrightarrow{(\delta_X)} X \times X \end{array}$$

- Let $U : \mathcal{E} \to \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_X be the diagonal morphism $\delta_X : X \to X \times X$
- The map sending each object X of \mathcal{B} to $\Sigma_{\delta_X} KX$ extends to a functor $\mathsf{Eq}: \mathcal{B} \to \mathsf{Rel}(\mathcal{E})$ called the equality functor for $\mathsf{Rel}(U)$

$$\begin{array}{ccc} \mathcal{E} & & KX \xrightarrow{(\delta_X)_{\S}} \Sigma_{\delta_X}(KX) \\ & & & \\ \mathcal{B} & & X \xrightarrow{(\delta_X)} X \times X \end{array}$$

• Intuitively, KX acts like a characteristic function for X

- Let $U : \mathcal{E} \to \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_X be the diagonal morphism $\delta_X : X \to X \times X$
- The map sending each object X of \mathcal{B} to $\Sigma_{\delta_X} KX$ extends to a functor $\mathsf{Eq}: \mathcal{B} \to \mathsf{Rel}(\mathcal{E})$ called the equality functor for $\mathsf{Rel}(U)$

$$\begin{array}{ccc} \mathcal{E} & & KX \xrightarrow{(\delta_X)_{\S}} \Sigma_{\delta_X}(KX) \\ & & & \\ U & & \\ & & \\ \mathcal{B} & & X \xrightarrow{\delta_X} X \times X \end{array}$$

- Intuitively, KX acts like a characteristic function for X
- So opreind exing KX along δ gives a "binary predicate" — i.e., a relation — that acts like a characteristic function for the diagonal of $X \times X$

- Let $U : \mathcal{E} \to \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_X be the diagonal morphism $\delta_X : X \to X \times X$
- The map sending each object X of \mathcal{B} to $\Sigma_{\delta_X} KX$ extends to a functor $\mathsf{Eq} : \mathcal{B} \to \mathsf{Rel}(\mathcal{E})$ called the equality functor for $\mathsf{Rel}(U)$

$$\begin{array}{ccc} \mathcal{E} & & KX \xrightarrow{(\delta_X)_{\S}} \Sigma_{\delta_X}(KX) \\ & & & \\ U & & \\ \mathcal{B} & & X \xrightarrow{(\delta_X)} X \times X \end{array}$$

- Intuitively, KX acts like a characteristic function for X
- So opreindexing KX along δ gives a "binary predicate" i.e., a relation that acts like a characteristic function for the diagonal of $X \times X$
- That is, $\Sigma_{\delta_X}(KX)$ acts like an equality relation on X

• This definition specializes to the function mapping each set X to $\{(x,x) \mid x \in X\}$ when instantiated to the relations fibration on Set

- This definition specializes to the function mapping each set X to $\{(x,x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful

- This definition specializes to the function mapping each set X to $\{(x,x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

- This definition specializes to the function mapping each set X to $\{(x,x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

Counterexample: Eq for $\mathsf{Id}:\mathsf{Set}\to\mathsf{Set}$

• For the definition of Eq we only need opreindexing along diagonals δ_X

- This definition specializes to the function mapping each set X to $\{(x,x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

- For the definition of Eq we only need opreindexing along diagonals δ_X
- But we actually want to have graph relations in our models, so we need to be able to opreindex along arbitrary morphisms

- This definition specializes to the function mapping each set X to $\{(x,x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

- For the definition of Eq we only need opreindexing along diagonals δ_X
- But we actually want to have graph relations in our models, so we need to be able to opreindex along arbitrary morphisms
- Also, to recover the standard results about graph relations and initial algebras in parametric models, in the paper we need that **Eq** is full

- This definition specializes to the function mapping each set X to $\{(x,x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

- For the definition of Eq we only need opreindexing along diagonals δ_X
- But we actually want to have graph relations in our models, so we need to be able to opreindex along arbitrary morphisms
- Also, to recover the standard results about graph relations and initial algebras in parametric models, in the paper we need that **Eq** is full
- But these issues will not arise in this course

• Interpret System F types as fibred functors with discrete domains

- Interpret System F types as fibred functors with discrete domains
- Interpret System F terms as fibred natural transformations between such fibred functors

- Interpret System F types as fibred functors with discrete domains
- Interpret System F terms as fibred natural transformations between such fibred functors
- Produce a model of System F for which (fibrational versions of) the IEL and the Abstraction Theorem hold

- Interpret System F types as fibred functors with discrete domains
- Interpret System F terms as fibred natural transformations between such fibred functors
- Produce a model of System F for which (fibrational versions of) the IEL and the Abstraction Theorem hold
- This model is actually a λ 2-fibration

- Interpret System F types as fibred functors with discrete domains
- Interpret System F terms as fibred natural transformations between such fibred functors
- Produce a model of System F for which (fibrational versions of) the IEL and the Abstraction Theorem hold
- This model is actually a λ 2-fibration
- Seely showed that we can always interpret System F soundly in such fibrations

- Observe:
 - Reynolds' definitions of $[\![\Delta \vdash \tau_1 \to \tau_2]\!]_o$ and $[\![\Delta \vdash \tau_1 \to \tau_2]\!]_r$ are derived from the cartesian closed structure of **Set** and **Rel**

- Observe:
 - Reynolds' definitions of $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_o$ and $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_r$ are derived from the cartesian closed structure of **Set** and **Rel**
 - $U: \mathsf{Rel} \to \mathsf{Set} \times \mathsf{Set}$ preserves the cartesian closed structure

- Observe:
 - Reynolds' definitions of $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_o$ and $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_r$ are derived from the cartesian closed structure of **Set** and **Rel**
 - $U: \mathsf{Rel} \to \mathsf{Set} \times \mathsf{Set}$ preserves the cartesian closed structure
 - Thus $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r$ is over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o$ as required by the Abstraction Theorem

- Observe:
 - Reynolds' definitions of $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_o$ and $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_r$ are derived from the cartesian closed structure of **Set** and **Rel**
 - $U: \mathsf{Rel} \to \mathsf{Set} \times \mathsf{Set}$ preserves the cartesian closed structure
 - Thus $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r$ is over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o$ as required by the Abstraction Theorem
- Conclude: Arrow types can be modeled "parametrically" i.e., so that the Abstraction Theorem holds by a fibration $U: \mathcal{E} \to \mathcal{B}$ if

- Observe:
 - Reynolds' definitions of $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_o$ and $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_r$ are derived from the cartesian closed structure of **Set** and **Rel**
 - $U: \mathsf{Rel} \to \mathsf{Set} \times \mathsf{Set}$ preserves the cartesian closed structure
 - Thus $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r$ is over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o$ as required by the Abstraction Theorem
- Conclude: Arrow types can be modeled "parametrically" i.e., so that the Abstraction Theorem holds by a fibration $U: \mathcal{E} \to \mathcal{B}$ if
 - ${\cal E}$ and ${\cal B}$ are cartesian closed categories

- Observe:
 - Reynolds' definitions of $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_o$ and $[\![\Delta \vdash \tau_1 \rightarrow \tau_2]\!]_r$ are derived from the cartesian closed structure of **Set** and **Rel**
 - $U: \mathsf{Rel} \to \mathsf{Set} \times \mathsf{Set}$ preserves the cartesian closed structure
 - Thus $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_r$ is over $\llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o \times \llbracket\Delta; \Gamma \vdash t : \tau \rrbracket_o$ as required by the Abstraction Theorem
- Conclude: Arrow types can be modeled "parametrically" i.e., so that the Abstraction Theorem holds by a fibration $U: \mathcal{E} \to \mathcal{B}$ if
 - \mathcal{E} and \mathcal{B} are cartesian closed categories
 - U preserves the cartesian closed structure

Equality Preserving Arrow Fibrations

- $U: \mathcal{E} \to \mathcal{B}$ is an arrow fibration if
 - \mathcal{E} and \mathcal{B} are cartesian closed
 - U preserves the cartesian closed structure
- $U: \mathcal{E} \to \mathcal{B}$ is an arrow fibration if
 - \mathcal{E} and \mathcal{B} are cartesian closed
 - U preserves the cartesian closed structure
- If $U : \mathcal{E} \to \mathcal{B}$ and \mathcal{B} is a CCC, then Rel(U) is an equality preserving arrow fibration if

- $U: \mathcal{E} \to \mathcal{B}$ is an arrow fibration if
 - ${\boldsymbol{\mathcal{E}}}$ and ${\boldsymbol{\mathcal{B}}}$ are cartesian closed
 - U preserves the cartesian closed structure
- If $U : \mathcal{E} \to \mathcal{B}$ and \mathcal{B} is a CCC, then Rel(U) is an equality preserving arrow fibration if
 - $\operatorname{Rel}(U)$ is an arrow fibration

- $U: \mathcal{E} \to \mathcal{B}$ is an arrow fibration if
 - ${\boldsymbol{\mathcal{E}}}$ and ${\boldsymbol{\mathcal{B}}}$ are cartesian closed
 - U preserves the cartesian closed structure
- If $U : \mathcal{E} \to \mathcal{B}$ and \mathcal{B} is a CCC, then $\mathsf{Rel}(U)$ is an equality preserving arrow fibration if
 - $\operatorname{\mathsf{Rel}}(U)$ is an arrow fibration
 - for all X and Y in \mathcal{B}

$$\mathsf{Eq}\,(X \Rightarrow Y) \cong (\mathsf{Eq}\,X \Rightarrow \mathsf{Eq}\,Y)$$

- $U: \mathcal{E} \to \mathcal{B}$ is an arrow fibration if
 - ${\cal E}$ and ${\cal B}$ are cartesian closed
 - U preserves the cartesian closed structure
- If $U : \mathcal{E} \to \mathcal{B}$ and \mathcal{B} is a CCC, then Rel(U) is an equality preserving arrow fibration if
 - $\operatorname{Rel}(U)$ is an arrow fibration
 - for all X and Y in \mathcal{B}

 $\mathsf{Eq}\,(X\Rightarrow Y)\cong(\mathsf{Eq}\,X\Rightarrow\mathsf{Eq}\,Y)$

• There are reasonable hypotheses on U making Rel(U) an equality preserving arrow fibration (see MFPS'15 and FoSSaCS'16)

• The rules for type abstraction and type application suggest interpreting ∀ as right adjoint to weakening by a type variable

- The rules for type abstraction and type application suggest interpreting ∀ as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints

- The rules for type abstraction and type application suggest interpreting ∀ as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For $U : \text{Rel} \to \text{Set} \times \text{Set}$ this gives all polymorphic functions, not just the parametrically polymorphic ones!

- The rules for type abstraction and type application suggest interpreting ∀ as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For $U : \text{Rel} \to \text{Set} \times \text{Set}$ this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics

- The rules for type abstraction and type application suggest interpreting ∀ as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For $U : \text{Rel} \to \text{Set} \times \text{Set}$ this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics
- $|\mathsf{Rel}(U)|^n \to_{\mathsf{Eq}} \mathsf{Rel}(U)$ has

- The rules for type abstraction and type application suggest interpreting ∀ as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For $U : \text{Rel} \to \text{Set} \times \text{Set}$ this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics
- $|\mathsf{Rel}(U)|^n \to_{\mathsf{Eq}} \mathsf{Rel}(U)$ has
 - Objects: equality preserving fibred functors from $|\mathsf{Rel}(U)|^n$ to $\mathsf{Rel}(U)$

- The rules for type abstraction and type application suggest interpreting ∀ as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For $U : \text{Rel} \to \text{Set} \times \text{Set}$ this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics
- $|\mathsf{Rel}(U)|^n \to_{\mathsf{Eq}} \mathsf{Rel}(U)$ has
 - Objects: equality preserving fibred functors from $|\mathsf{Rel}(U)|^n$ to $\mathsf{Rel}(U)$
 - Morphisms: fibred natural transformations between them

- The rules for type abstraction and type application suggest interpreting ∀ as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For $U : \text{Rel} \to \text{Set} \times \text{Set}$ this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics
- $|\mathsf{Rel}(U)|^n \to_{\mathsf{Eq}} \mathsf{Rel}(U)$ has
 - Objects: equality preserving fibred functors from $|\mathsf{Rel}(U)|^n$ to $\mathsf{Rel}(U)$
 - Morphisms: fibred natural transformations between them
- Note the use of discrete categories

∀-Fibrations

- $\operatorname{Rel}(U)$ is a \forall -fibration if
 - for every projection $\pi_n: |\mathsf{Rel}(U)|^{n+1} \to |\mathsf{Rel}(U)|^n$, the functor

$$_{-} \circ \pi_n : (|\mathsf{Rel}(U)|^n \to_{\mathsf{Eq}} \mathsf{Rel}(U)) \to (|\mathsf{Rel}(U)|^{n+1} \to_{\mathsf{Eq}} \mathsf{Rel}(U))$$

has a right adjoint \forall_n

∀-Fibrations

- $\mathsf{Rel}(U)$ is a \forall -fibration if
 - for every projection $\pi_n: |\mathsf{Rel}(U)|^{n+1} \to |\mathsf{Rel}(U)|^n$, the functor

$$_{-} \circ \pi_n : (|\mathsf{Rel}(U)|^n \to_{\mathsf{Eq}} \mathsf{Rel}(U)) \to (|\mathsf{Rel}(U)|^{n+1} \to_{\mathsf{Eq}} \mathsf{Rel}(U))$$

has a right adjoint \forall_n

- this family of adjunctions is natural in n

∀-Fibrations

- $\operatorname{Rel}(U)$ is a \forall -fibration if
 - for every projection $\pi_n: |\mathsf{Rel}(U)|^{n+1} \to |\mathsf{Rel}(U)|^n$, the functor

$$_{-} \circ \pi_n : (|\mathsf{Rel}(U)|^n o_{\mathsf{Eq}} \mathsf{Rel}(U)) o (|\mathsf{Rel}(U)|^{n+1} o_{\mathsf{Eq}} \mathsf{Rel}(U))$$

has a right adjoint \forall_n

- this family of adjunctions is natural in n
- Then for all $F : |\mathsf{Rel}(U)|^n \to_{\mathsf{Eq}} \mathsf{Rel}(U)$ and $G : |\mathsf{Rel}(U)|^{n+1} \to_{\mathsf{Eq}} \mathsf{Rel}(U)$ there is an isomorphism

$$\varphi_n$$
 : Hom $(F \circ \pi_n, G) \cong$ Hom $(F, \forall G)$

that is natural in n

• Use relations fibrations that are equality preserving arrow fibrations and ∀-fibrations to interpret System F types as fibred functors and System F terms as fibred natural transformations

- Parametric polymorphism universally. N. Ghani, F. Nordvall Forsberg, and F. Orsanigo. WadlerFest'16.
- Comprehensive parametric polymorphism: categorical models and type theory. N. Ghani, F. Nordvall Forsberg, and A. Simpson. FoSSaCS'16.
- Categorical semantics for higher-order polymorphic lambda calculus. R. A. Seely. Journal of Symbolic Computation, 1987.