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Where Were We?'

In Lecture 1 we recalled Reynolds’ standard relational parametricity
This is the main inspiration for the bifibrational model of para-

metricity for System F we will develop

Last time we had an introduction to bifibrations, fibred functors, fibred

natural transformations

Today we’ll view Reynolds’ construction and results through the lens
of the relations (bi)fibration on Set

Next time we’ll generalize Reynolds’ constructions to bifibrational

models of System F for which we can prove (bifibrational versions
of) the IEL and Abstraction Theorem

Reynolds’ construction is (ignoring size issues) such a model
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Plan for Today'

Introduce the the relations fibration on Set

Recall Reynolds’ (attempted) model of parametricity for System F as

originally formulated — with no fibrations in sight

Re-state Reynolds’ construction in terms of the relations fibration on
Set

Set up infrastructure needed for our generalization
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The Category ReII

An object of Rel is a triple (X,Y, R)

— X and Y are sets

- RC(X,Y),ie, RCX XY

A morphism (X', Y’,R') —» (X,Y, R) is a pair (f,g)
—f:X"—>Xandg:Y' —»Y

— if (#’,y") € R’ then (fo’,9y’) € R

Each set X has an equality relation

Eq X = {(z,2) | z € X}

This can be extended to an equality functor from Set to Rel in the

obvious way
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e The relations fibration on Set is the functor U : Rel — Set X Set
mapping
- (X,Y,R) to (X,Y)
— (f,g) to itself

e U is a fibration: For R, UR = (X,Y), and (f,g9) : (X, Y’) —» (X,Y)
~ (£,9)" R ={(=¥) € (X, Y")| (f',gy') € R}
- (f,9) : (f,9)*R — R is cartesian over (f,g)

e U is an opfibration: For R, UR = (X',Y’), and (f,g) : (X', Y') —
(X,Y)

- TR ={(fx',9vy') € (X,Y)|(2',y') € R}
- (f,9) : (f,9)*R — R is opcartesian over (f,g)

e U is (thus) a bifibration

e Rel(X,Y) is the fibre over (X,Y)
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Reynolds’ Semantics of Types, Fibrationally'

e Recall: The interdependence of Reynolds’ object and relational in-
terpretations for types means that we don’t have two semantics, but

rather a single interconnected semantics!
e If each R; : Rel(X;,Y;), then [A - 7], R : Rel([A F 7], X, [A F 7],Y)

e Theorem (Reynolds’ Semantics of Types, Fibrationally) Let U be the
relations fibration on Set. Every judgement A F 7 induces a fibred
functor [A + 7] : |U|A - U.

IRel||Al 12l Rel
|U|IAIl U
|A] |A|
|Set|'2! x |Set| S - Set X Set

e We use discrete categories in the domain of [A F 7] to reflect the fact

that Reynolds did not give a functorial action of types on morphisms
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Identity Extension Lemma, Fibrationally'

o If A T then

[[A - T]]r (Eq X3, ..., Eq XlAI) = Eq ([[A = T]]O(Xla ey XlAI))
e Theorem (Identity Extension Lemma, Fibrationally) If A - 7 then

[AF 7] 0 |Eq|IAI =Eqo A+ 7],

Rel|lal 127" Rel
TIEQI'A' Eq]
|Set|!4! Set

[AFT]o
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Abstraction Theorem, Fibrationally'

Suppose Reynolds had given relational interpretations for terms such
that [A;T Ht:7],Risover [A;T Ht:7],X X [A;T+t:7],Y

Abstraction Theorem Let X,Y : Set®l, R : Rel®/(X,Y), A € [A F
I'l,X, and B € [A FT],Y. For every A;T +t: 7, if (A,B) € [A +
I'],R, then ([A;T +t: 7], X A, [A;T+Ht: 7], Y B) € [A}F 7].R.

Theorem (Abstraction Theorem, Fibrationally) Every term A;T"' - ¢ :

T is interpreted as a fibred natural transformation
([AsTHt:7]o X [AsT FHt: 7)o, [A;THE:7],) : [AFT] — [AF 7]

[r]-

/\.
Rell“_ J1. Rel
[T~
U4l U
[TJo X [T]o

-
|Set|IA x |Set|lAl | [tlox[tlo Set X Set
-
[r]oXx[7]o
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[A;THE:T]-R

[A-T].R [A+T].R

is a morphism between relations that is over

[AsTHt:T]0 X X [AsTHE:T] oY

[A F T].X x [AF I],Y [AF 7]oX X [A F 7].Y

e That is, [A;T ¢t : 7], R is a pair of morphisms ([A;T ¢ : 7], X, [A;T
t:7],Y) in Set such that
if (A,B) € [A FT],R, then
([ATHE:T], X A AT HEt:7],Y B) € [A+T].R



Unpacking the Fibrational Abstraction Theorem

The domains of [A FTI'], and [A - 7], are discrete

[AsT Ht: 7], : [AFT]o = [AF 7], is a (vacuously) natural
transformation

AT ¢t 7], ¢ [AFT], - [A F 7], is a (vacuously) natural
transformation over [A;T Ft: 7], X [A;T +t: 7],, so each component

HA;Fl—t:T]]rﬁ

[A +T],R [A - T].R

is a morphism between relations that is over

[A;THt:T]o X X [A;THt:T] oY

[A FI].X X [A F I],Y

[AF7].X X [AFT],Y
That is, [A;T - t : 7], R is a pair of morphisms ([A;T + ¢ : 7], X, [A;T -
t:7],Y) in Set such that

if (A, B) € [A +T],R, then
([ATHt:7], XA [A;THt:7],Y B) € [A+T].R

This is the conclusion of Reynolds’ original statement of the theorem!!!
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The Take—AwayI

Reynolds’ original formulation of the Abstraction Theorem seems like
it asserts a property of [A;T Ft: 7],

But it really states the existence of additional algebraic structure given
by the interpretations [A;I' - ¢t : 7], of terms as fibred natural trans-

formations

This point of view

— exposes this heretofore hidden structure

— opens the way to our generalization of Reynolds’ construction

To generalize [—], and [—], in such a way that the Identity Extension
Lemma and the Abstraction Theorem hold, we must have sufficient

structure to define analogues of all the structure we used in the rela-

tions fibration on Set for more general fibrations
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Relations Fibrations I

Observe: The relations fibration on Set arises from the subobject fi-

bration over Set by pullback, or change of base

If U : £ — B is a fibration and B has products, then the fibration
Rel(U) : Rel(£) — B x B is defined by

Rel(§) 1 —¢&
_
ReI(U)l lU

BxB—B
_X_

Rel(U) is the relations fibration for U

The objects of Rel(€) are called relations on B
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The Truth Functor'

e U : £ — B has fibred terminal objects if
— each fibre £x of £ has a terminal object Kx

— reindexing preserves terminal objects, i.e., if f : X — Y is a mor-

phism in B implies f*Ky = Kx

e The map sending each object X of B to Kx extends to a functor
K : B — £ called the truth functor for U
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The Equality Functor'

Let U : £ — B be a bifibration with fibred terminal objects, suppose B
has products, and let dx be the diagonal morphism dx : X — X X X

The map sending each object X of B to 35, KX extends to a functor
Eq : B — Rel(€) called the equality functor for Rel(U)

E KX 5 E(sX(KX)

U

B X X X X
0x

Intuitively, K X acts like a characteristic function for X

So opreindexing KX along 6 gives a “binary predicate” — i.e., a
relation — that acts like a characteristic function for the diagonal of
X x X

That is, 35, (K X) acts like an equality relation on X
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Some Observations I

This definition specializes to the function mapping each set X to
{(x,x) | x € X} when instantiated to the relations fibration on Set

Eq is faithful

Eqg is not always full

Counterexample: Eq for Id : Set — Set
For the definition of Eq we only need opreindexing along diagonals dx

But we actually want to have graph relations in our models, so we

need to be able to opreindex along arbitrary morphisms

Also, to recover the standard results about graph relations and initial

algebras in parametric models, in the paper we need that Eq is full

But these issues will not arise in this course
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Generalizing Reynolds’ Construction'

Interpret System F types as fibred functors with discrete domains

Interpret System F terms as fibred natural transformations between

such fibred functors

Produce a model of System F for which (fibrational versions of) the
IEL and the Abstraction Theorem hold

This model is actually a A2-fibration

Seely showed that we can always interpret System F soundly in such

fibrations
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— &£ and B are cartesian closed categories

— U preserves the cartesian closed structure
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Equality Preserving Arrow Fibrations'

e U : & — Bis an arrow fibration if
— &£ and B are cartesian closed
— U preserves the cartesian closed structure

e If U : £ — B and B is a CCC, then Rel(U) is an equality preserving
arrow fibration if

— Rel(U) is an arrow fibration

— for all X and Y in B
Eq(X =Y)= (EqX = EqY)

e There are reasonable hypotheses on U making Rel(U) an equality pre-
serving arrow fibration (see MFPS’15 and FoSSaCS’16)
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Structure for Interpreting Types - forall types'

e The rules for type abstraction and type application suggest interpret-

ing V as right adjoint to weakening by a type variable

e Naive Idea: Try to look for such an adjoint on the base category, then

another on the total category, and then try to link these adjoints

e This is wrong: For U : Rel — Set X Set this gives all polymorphic

functions, not just the parametrically polymorphic ones!

e Instead: Require an adjoint for the combined fibred semantics

e |Rel(U)|® —gq Rel(U) has

— Objects: equality preserving fibred functors from |Rel(U)|™ to Rel(U)

— Morphisms: fibred natural transformations between them

e Note the use of discrete categories
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V-Fibrations I

e Rel(U) is a V-fibration if
— for every projection =, : |Rel(U)|*** — |Rel(U)|™, the functor

_om, : (|Rel(U)|™" —gq Rel(U)) — (|Rel(U)|™t! —gq Rel(U))

has a right adjoint V,

— this family of adjunctions is natural in n

e Then for all F : |Rel(U)|™ —gq Rel(U) and G : |Rel(U)|™t! —g, Rel(U)

there is an isomorphism
¢n : Hom(F o m,, G) = Hom(F,VQG)

that is natural in n



Coming UpI

e Use relations fibrations that are equality preserving arrow fibrations
and V-fibrations to interpret System F types as fibred functors and

System F terms as fibred natural transformations
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