Reynolds' Parametricity

Patricia Johann
Appalachian State University

cs.appstate.edu/~johannp

Based on joint work with Neil Ghani, Fredrik Nordvall Forsberg, Federico Orsanigo, and Tim Revell

Course Outline

Topic: Reynolds' theory of parametric polymorphism for System F
Goals: - extract the fibrational essence of Reynolds' theory

- generalize Reynolds' construction to very general models
- Lecture 1: Reynolds' theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F

Course Outline

Topic: Reynolds' theory of parametric polymorphism for System F
Goals: - extract the fibrational essence of Reynolds' theory

- generalize Reynolds' construction to very general models
- Lecture 1: Reynolds' theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F

Where Were We?

- In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop

Where Were We?

- In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- Last time we had an introduction to bifibrations, fibred functors, fibred natural transformations

Where Were We?

- In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- Last time we had an introduction to bifibrations, fibred functors, fibred natural transformations
- Today we'll view Reynolds' construction and results through the lens of the relations (bi)fibration on Set

Where Were We?

- In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- Last time we had an introduction to bifibrations, fibred functors, fibred natural transformations
- Today we'll view Reynolds' construction and results through the lens of the relations (bi)fibration on Set
- Next time we'll generalize Reynolds' constructions to bifibrational models of System F for which we can prove (bifibrational versions of) the IEL and Abstraction Theorem

Where Were We?

- In Lecture 1 we recalled Reynolds' standard relational parametricity This is the main inspiration for the bifibrational model of parametricity for System F we will develop
- Last time we had an introduction to bifibrations, fibred functors, fibred natural transformations
- Today we'll view Reynolds' construction and results through the lens of the relations (bi)fibration on Set
- Next time we'll generalize Reynolds' constructions to bifibrational models of System F for which we can prove (bifibrational versions of) the IEL and Abstraction Theorem
- Reynolds' construction is (ignoring size issues) such a model

```
Plan for Today
```

- Introduce the the relations fibration on Set

Plan for Today

- Introduce the the relations fibration on Set
- Recall Reynolds' (attempted) model of parametricity for System F as originally formulated - with no fibrations in sight

Plan for Today

- Introduce the the relations fibration on Set
- Recall Reynolds' (attempted) model of parametricity for System F as originally formulated - with no fibrations in sight
- Re-state Reynolds' construction in terms of the relations fibration on Set

Plan for Today

- Introduce the the relations fibration on Set
- Recall Reynolds' (attempted) model of parametricity for System F as originally formulated - with no fibrations in sight
- Re-state Reynolds' construction in terms of the relations fibration on Set
- Set up infrastructure needed for our generalization

The Category Rel

- An object of Rel is a triple $(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{R})$
$-X$ and Y are sets
$-\boldsymbol{R} \subseteq(X, Y)$, i.e., $\boldsymbol{R} \subseteq X \times Y$

The Category Rel

- An object of Rel is a triple $(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{R})$
- X and Y are sets
$-\boldsymbol{R} \subseteq(X, Y)$, i.e., $\boldsymbol{R} \subseteq X \times Y$
- A morphism $\left(X^{\prime}, Y^{\prime}, R^{\prime}\right) \rightarrow(X, Y, R)$ is a pair (f, g)
$-f: X^{\prime} \rightarrow X$ and $g: Y^{\prime} \rightarrow Y$
- if $\left(x^{\prime}, y^{\prime}\right) \in R^{\prime}$ then $\left(f x^{\prime}, g y^{\prime}\right) \in R$

The Category Rel

- An object of Rel is a triple $(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{R})$
- X and Y are sets
$-\boldsymbol{R} \subseteq(X, Y)$, i.e., $\boldsymbol{R} \subseteq X \times Y$
- A morphism $\left(X^{\prime}, Y^{\prime}, R^{\prime}\right) \rightarrow(X, Y, R)$ is a pair (f, g)
$-f: X^{\prime} \rightarrow X$ and $g: Y^{\prime} \rightarrow Y$
- if $\left(x^{\prime}, y^{\prime}\right) \in R^{\prime}$ then $\left(f x^{\prime}, g y^{\prime}\right) \in R$
- Each set \boldsymbol{X} has an equality relation

$$
\mathrm{Eq} X=\{(x, x) \mid x \in X\}
$$

The Category Rel

- An object of Rel is a triple $(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{R})$
- X and Y are sets
$-\boldsymbol{R} \subseteq(X, Y)$, i.e., $\boldsymbol{R} \subseteq X \times Y$
- A morphism $\left(X^{\prime}, Y^{\prime}, R^{\prime}\right) \rightarrow(X, Y, R)$ is a pair (f, g)
$-f: X^{\prime} \rightarrow X$ and $g: Y^{\prime} \rightarrow Y$
- if $\left(x^{\prime}, y^{\prime}\right) \in R^{\prime}$ then $\left(f x^{\prime}, g y^{\prime}\right) \in R$
- Each set \boldsymbol{X} has an equality relation

$$
\mathrm{Eq} X=\{(x, x) \mid x \in X\}
$$

- This can be extended to an equality functor from Set to Rel in the obvious way

The Relations Fibration on Set

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
$-(X, Y, R)$ to (X, Y)
$-(f, g)$ to itself

The Relations Fibration on Set

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
$-(X, Y, R)$ to (X, Y)
$-(f, g)$ to itself
- U is a fibration: For $R, U R=(X, Y)$, and $(f, g):\left(X^{\prime}, Y^{\prime}\right) \rightarrow(X, Y)$
$-(f, g)^{*} R=\left\{\left(x^{\prime}, y^{\prime}\right) \in\left(X^{\prime}, Y^{\prime}\right) \mid\left(f x^{\prime}, g y^{\prime}\right) \in R\right\}$
$-(f, g):(f, g)^{*} \boldsymbol{R} \rightarrow \boldsymbol{R}$ is cartesian over (f, g)

The Relations Fibration on Set

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
$-(X, Y, R)$ to (X, Y)
$-(f, g)$ to itself
- U is a fibration: For $R, U R=(X, Y)$, and $(f, g):\left(X^{\prime}, Y^{\prime}\right) \rightarrow(X, Y)$
$-(f, g)^{*} R=\left\{\left(x^{\prime}, y^{\prime}\right) \in\left(X^{\prime}, Y^{\prime}\right) \mid\left(f x^{\prime}, g y^{\prime}\right) \in R\right\}$
$-(f, g):(f, g)^{*} \boldsymbol{R} \rightarrow \boldsymbol{R}$ is cartesian over (f, g)
- U is an opfibration: For $R, U R=\left(X^{\prime}, Y^{\prime}\right)$, and $(f, g):\left(X^{\prime}, Y^{\prime}\right) \rightarrow$ $(\boldsymbol{X}, \boldsymbol{Y})$
$-\Sigma_{(f, g)} R=\left\{\left(f x^{\prime}, g y^{\prime}\right) \in(X, Y) \mid\left(x^{\prime}, y^{\prime}\right) \in R^{\prime}\right\}$
$-(f, g):(f, g)^{*} R \rightarrow R$ is opcartesian over (f, g)

The Relations Fibration on Set

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
$-(X, Y, R)$ to (X, Y)
$-(f, g)$ to itself
- U is a fibration: For $R, U R=(X, Y)$, and $(f, g):\left(X^{\prime}, Y^{\prime}\right) \rightarrow(X, Y)$
$-(f, g)^{*} R=\left\{\left(x^{\prime}, y^{\prime}\right) \in\left(X^{\prime}, Y^{\prime}\right) \mid\left(f x^{\prime}, g y^{\prime}\right) \in R\right\}$
$-(f, g):(f, g)^{*} \boldsymbol{R} \rightarrow \boldsymbol{R}$ is cartesian over (f, g)
- U is an opfibration: For $R, U R=\left(X^{\prime}, Y^{\prime}\right)$, and $(f, g):\left(X^{\prime}, Y^{\prime}\right) \rightarrow$ (X, Y)
$-\Sigma_{(f, g)} R=\left\{\left(f x^{\prime}, g y^{\prime}\right) \in(X, Y) \mid\left(x^{\prime}, y^{\prime}\right) \in R^{\prime}\right\}$
$-(f, g):(f, g)^{*} R \rightarrow \boldsymbol{R}$ is opcartesian over (f, g)
- U is (thus) a bifibration

The Relations Fibration on Set

- The relations fibration on Set is the functor U : Rel \rightarrow Set \times Set mapping
$-(X, Y, R)$ to (X, Y)
$-(f, g)$ to itself
- U is a fibration: For $R, U R=(X, Y)$, and $(f, g):\left(X^{\prime}, Y^{\prime}\right) \rightarrow(X, Y)$
$-(f, g)^{*} R=\left\{\left(x^{\prime}, y^{\prime}\right) \in\left(X^{\prime}, Y^{\prime}\right) \mid\left(f x^{\prime}, g y^{\prime}\right) \in R\right\}$
$-(f, g):(f, g)^{*} \boldsymbol{R} \rightarrow \boldsymbol{R}$ is cartesian over (f, g)
- U is an opfibration: For $R, U R=\left(X^{\prime}, Y^{\prime}\right)$, and $(f, g):\left(X^{\prime}, Y^{\prime}\right) \rightarrow$ (X, Y)
$-\Sigma_{(f, g)} R=\left\{\left(f x^{\prime}, g y^{\prime}\right) \in(X, Y) \mid\left(x^{\prime}, y^{\prime}\right) \in R^{\prime}\right\}$
$-(f, g):(f, g)^{*} R \rightarrow \boldsymbol{R}$ is opcartesian over (f, g)
- U is (thus) a bifibration
- $\operatorname{Rel}(X, Y)$ is the fibre over (X, Y)

Reynolds' Semantics of Types, Fibrationally

- Recall: The interdependence of Reynolds' object and relational interpretations for types means that we don't have two semantics, but rather a single interconnected semantics!

Reynolds' Semantics of Types, Fibrationally

- Recall: The interdependence of Reynolds' object and relational interpretations for types means that we don't have two semantics, but rather a single interconnected semantics!
- If each $R_{i}: \operatorname{Rel}\left(X_{i}, Y_{i}\right)$, then $\llbracket \Delta \vdash \tau \rrbracket_{r} \bar{R}: \operatorname{Rel}\left(\llbracket \Delta \vdash \tau \rrbracket_{o} \bar{X}, \llbracket \Delta \vdash \tau \rrbracket_{o} \bar{Y}\right)$

Reynolds' Semantics of Types, Fibrationally

- Recall: The interdependence of Reynolds' object and relational interpretations for types means that we don't have two semantics, but rather a single interconnected semantics!
- If each $R_{i}: \operatorname{Rel}\left(X_{i}, Y_{i}\right)$, then $\llbracket \Delta \vdash \tau \rrbracket_{r} \bar{R}: \operatorname{Rel}\left(\llbracket \Delta \vdash \tau \rrbracket_{o} \bar{X}, \llbracket \Delta \vdash \tau \rrbracket_{o} \bar{Y}\right)$
- Theorem (Reynolds' Semantics of Types, Fibrationally) Let U be the relations fibration on Set. Every judgement $\Delta \vdash \tau$ induces a fibred functor $\llbracket \Delta \vdash \tau \rrbracket:|U|^{|\Delta|} \rightarrow \boldsymbol{U}$.

Reynolds' Semantics of Types, Fibrationally

- Recall: The interdependence of Reynolds' object and relational interpretations for types means that we don't have two semantics, but rather a single interconnected semantics!
- If each $R_{i}: \operatorname{Rel}\left(X_{i}, Y_{i}\right)$, then $\llbracket \Delta \vdash \tau \rrbracket_{r} \bar{R}: \operatorname{Rel}\left(\llbracket \Delta \vdash \tau \rrbracket_{o} \bar{X}, \llbracket \Delta \vdash \tau \rrbracket_{o} \bar{Y}\right)$
- Theorem (Reynolds' Semantics of Types, Fibrationally) Let U be the relations fibration on Set. Every judgement $\Delta \vdash \tau$ induces a fibred functor $\llbracket \Delta \vdash \tau \rrbracket:|U|^{|\Delta|} \rightarrow \boldsymbol{U}$.

- We use discrete categories in the domain of $\llbracket \Delta \vdash \tau \rrbracket$ to reflect the fact that Reynolds did not give a functorial action of types on morphisms

Identity Extension Lemma, Fibrationally

- If $\Delta \vdash \tau$ then

$$
\llbracket \Delta \vdash \tau \rrbracket_{r}\left(\mathrm{Eq} X_{1}, \ldots, \mathrm{Eq} X_{|\Delta|}\right)=\mathrm{Eq}\left(\llbracket \Delta \vdash \tau \rrbracket_{o}\left(X_{1}, \ldots, X_{|\Delta|}\right)\right)
$$

Identity Extension Lemma, Fibrationally

- If $\Delta \vdash \tau$ then

$$
\llbracket \Delta \vdash \tau \rrbracket_{r}\left(\mathrm{Eq} X_{1}, \ldots, \mathrm{Eq} X_{|\Delta|}\right)=\mathrm{Eq}\left(\llbracket \Delta \vdash \tau \rrbracket_{o}\left(X_{1}, \ldots, X_{|\Delta|}\right)\right)
$$

- Theorem (Identity Extension Lemma, Fibrationally) If $\Delta \vdash \tau$ then

$$
\llbracket \Delta \vdash \tau \rrbracket_{r} \circ|\mathrm{Eq}|^{|\Delta|}=\mathrm{Eq} \circ \llbracket \Delta \vdash \tau \rrbracket_{o}
$$

Abstraction Theorem, Fibrationally

- Suppose Reynolds had given relational interpretations for terms such that $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r} \bar{R}$ is over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y}$

Abstraction Theorem, Fibrationally

- Suppose Reynolds had given relational interpretations for terms such that $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r} \bar{R}$ is over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y}$
- Abstraction Theorem Let $\bar{X}, \bar{Y}: \operatorname{Set}^{|\Delta|}, \bar{R}: \operatorname{Rel}^{|\Delta|}(\bar{X}, \bar{Y}), \bar{A} \in \llbracket \Delta \vdash$ $\Gamma \rrbracket_{o} \bar{X}$, and $\bar{B} \in \llbracket \Delta \vdash \Gamma \rrbracket_{o} \bar{Y}$. For every $\Delta ; \Gamma \vdash t: \tau$, if $(\bar{A}, \bar{B}) \in \llbracket \Delta \vdash$ $\Gamma \rrbracket_{r} \bar{R}$, then $\left(\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \bar{A}, \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y} \bar{B}\right) \in \llbracket \Delta \vdash \tau \rrbracket_{r} \bar{R}$.

Abstraction Theorem, Fibrationally

- Suppose Reynolds had given relational interpretations for terms such that $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r} \bar{R}$ is over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y}$
- Abstraction Theorem Let $\bar{X}, \bar{Y}: \operatorname{Set}^{|\Delta|}, \bar{R}: \operatorname{Rel}^{|\Delta|}(\bar{X}, \bar{Y}), \bar{A} \in \llbracket \Delta \vdash$ $\Gamma \rrbracket_{o} \bar{X}$, and $\bar{B} \in \llbracket \Delta \vdash \Gamma \rrbracket_{o} \bar{Y}$. For every $\Delta ; \Gamma \vdash t: \tau$, if $(\bar{A}, \bar{B}) \in \llbracket \Delta \vdash$ $\Gamma \rrbracket_{r} \bar{R}$, then $\left(\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \bar{A}, \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y} \bar{B}\right) \in \llbracket \Delta \vdash \tau \rrbracket_{r} \bar{R}$.
- Theorem (Abstraction Theorem, Fibrationally) Every term $\Delta ; \Gamma \vdash t$: τ is interpreted as a fibred natural transformation

$$
\left(\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}, \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}\right): \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau \rrbracket
$$

Unpacking the Fibrational Abstraction Theorem

- The domains of $\llbracket \Delta \vdash \Gamma \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau \rrbracket_{o}$ are discrete

Unpacking the Fibrational Abstraction Theorem

- The domains of $\llbracket \Delta \vdash \Gamma \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau \rrbracket_{o}$ are discrete
$\bullet \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}: \llbracket \Delta \vdash \Gamma \rrbracket_{o} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{o}$ is a (vacuously) natural transformation

Unpacking the Fibrational Abstraction Theorem

- The domains of $\llbracket \Delta \vdash \Gamma \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau \rrbracket_{o}$ are discrete
$\bullet \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}: \llbracket \Delta \vdash \Gamma \rrbracket_{o} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{o}$ is a (vacuously) natural transformation
$\bullet \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}: \llbracket \Delta \vdash \Gamma \rrbracket_{r} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{r}$ is a (vacuously) natural transformation over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$

Unpacking the Fibrational Abstraction Theorem

- The domains of $\llbracket \Delta \vdash \Gamma \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau \rrbracket_{o}$ are discrete
$\bullet \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}: \llbracket \Delta \vdash \Gamma \rrbracket_{o} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{o}$ is a (vacuously) natural transformation
$\bullet \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}: \llbracket \Delta \vdash \Gamma \rrbracket_{r} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{r}$ is a (vacuously) natural transformation over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$, so each component

$$
\llbracket \Delta \vdash \Gamma \rrbracket_{r} \overline{\boldsymbol{R}} \xrightarrow{\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r} \bar{R}} \llbracket \Delta \vdash \tau \rrbracket_{r} \overline{\boldsymbol{R}}
$$

is a morphism between relations that is over

$$
\llbracket \Delta \vdash \Gamma \rrbracket_{o} \bar{X} \times \llbracket \Delta \vdash \Gamma \rrbracket_{o} \overline{\boldsymbol{Y}} \xrightarrow{\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y}} \llbracket \Delta \vdash \tau \rrbracket_{o} \bar{X} \times \llbracket \Delta \vdash \tau \rrbracket_{o} \overline{\boldsymbol{Y}}
$$

Unpacking the Fibrational Abstraction Theorem

- The domains of $\llbracket \Delta \vdash \Gamma \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau \rrbracket_{o}$ are discrete
$\bullet \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}: \llbracket \Delta \vdash \Gamma \rrbracket_{o} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{o}$ is a (vacuously) natural transformation
$\bullet \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}: \llbracket \Delta \vdash \Gamma \rrbracket_{r} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{r}$ is a (vacuously) natural transformation over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$, so each component

$$
\llbracket \Delta \vdash \Gamma \rrbracket_{r} \overline{\boldsymbol{R}} \xrightarrow{\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r} \bar{R}} \llbracket \Delta \vdash \tau \rrbracket_{r} \overline{\boldsymbol{R}}
$$

is a morphism between relations that is over
$\llbracket \Delta \vdash \Gamma \rrbracket_{o} \bar{X} \times \llbracket \Delta \vdash \Gamma \rrbracket_{o} \bar{Y} \xrightarrow{\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y}} \llbracket \Delta \vdash \tau \rrbracket_{o} \bar{X} \times \llbracket \Delta \vdash \tau \rrbracket_{o} \bar{Y}$

- That is, $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r} \bar{R}$ is a pair of morphisms $\left(\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X}, \llbracket \Delta ; \Gamma \vdash\right.$ $\left.t: \tau \rrbracket_{o} \overline{\boldsymbol{Y}}\right)$ in Set such that

$$
\begin{gathered}
\text { if }(\bar{A}, \bar{B}) \in \llbracket \Delta \vdash \Gamma \rrbracket_{r} \bar{R}, \text { then } \\
\left(\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \bar{A}, \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y} \bar{B}\right) \in \llbracket \Delta \vdash \tau \rrbracket_{r} \bar{R}
\end{gathered}
$$

Unpacking the Fibrational Abstraction Theorem

- The domains of $\llbracket \Delta \vdash \Gamma \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau \rrbracket_{o}$ are discrete
$\bullet \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}: \llbracket \Delta \vdash \Gamma \rrbracket_{o} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{o}$ is a (vacuously) natural transformation
$\bullet \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}: \llbracket \Delta \vdash \Gamma \rrbracket_{r} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{r}$ is a (vacuously) natural transformation over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$, so each component

$$
\llbracket \Delta \vdash \Gamma \rrbracket_{r} \overline{\boldsymbol{R}} \xrightarrow{\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r} \bar{R}} \llbracket \Delta \vdash \tau \rrbracket_{r} \overline{\boldsymbol{R}}
$$

is a morphism between relations that is over
$\llbracket \Delta \vdash \Gamma \rrbracket_{o} \bar{X} \times \llbracket \Delta \vdash \Gamma \rrbracket_{o} \overline{\boldsymbol{Y}} \xrightarrow{\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y}} \llbracket \Delta \vdash \tau \rrbracket_{o} \bar{X} \times \llbracket \Delta \vdash \tau \rrbracket_{o} \overline{\boldsymbol{Y}}$

- That is, $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r} \bar{R}$ is a pair of morphisms $\left(\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X}, \llbracket \Delta ; \Gamma \vdash\right.$ $\left.t: \tau \rrbracket_{o} \bar{Y}\right)$ in Set such that

$$
\begin{gathered}
\text { if }(\bar{A}, \bar{B}) \in \llbracket \Delta \vdash \Gamma \rrbracket_{r} \bar{R}, \text { then } \\
\left(\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{X} \bar{A}, \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \bar{Y} \bar{B}\right) \in \llbracket \Delta \vdash \tau \rrbracket_{r} \bar{R}
\end{gathered}
$$

- This is the conclusion of Reynolds' original statement of the theorem!!!

The Take-Away

- Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$

The Take-Away

- Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$
- But it really states the existence of additional algebraic structure given by the interpretations $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}$ of terms as fibred natural transformations

The Take-Away

- Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$
- But it really states the existence of additional algebraic structure given by the interpretations $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}$ of terms as fibred natural transformations
- This point of view
- exposes this heretofore hidden structure

The Take-Away

- Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$
- But it really states the existence of additional algebraic structure given by the interpretations $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}$ of terms as fibred natural transformations
- This point of view
- exposes this heretofore hidden structure
- opens the way to our generalization of Reynolds' construction

The Take-Away

- Reynolds' original formulation of the Abstraction Theorem seems like it asserts a property of $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$
- But it really states the existence of additional algebraic structure given by the interpretations $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}$ of terms as fibred natural transformations
- This point of view
- exposes this heretofore hidden structure
- opens the way to our generalization of Reynolds' construction
- To generalize $\llbracket-\rrbracket_{o}$ and $\llbracket-\rrbracket_{r}$ in such a way that the Identity Extension Lemma and the Abstraction Theorem hold, we must have sufficient structure to define analogues of all the structure we used in the relations fibration on Set for more general fibrations

Relations Fibrations

- Observe: The relations fibration on Set arises from the subobject fibration over Set by pullback, or change of base

Relations Fibrations

- Observe: The relations fibration on Set arises from the subobject fibration over Set by pullback, or change of base
- If $U: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration and \mathcal{B} has products, then the fibration $\operatorname{Rel}(\mathcal{U}): \operatorname{Rel}(\mathcal{E}) \rightarrow \mathcal{B} \times \mathcal{B}$ is defined by

Relations Fibrations

- Observe: The relations fibration on Set arises from the subobject fibration over Set by pullback, or change of base
- If $U: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration and \mathcal{B} has products, then the fibration $\operatorname{Rel}(U): \operatorname{Rel}(\mathcal{E}) \rightarrow \mathcal{B} \times \mathcal{B}$ is defined by

- $\operatorname{Rel}(U)$ is the relations fibration for U

Relations Fibrations

- Observe: The relations fibration on Set arises from the subobject fibration over Set by pullback, or change of base
- If $U: \mathcal{E} \rightarrow \mathcal{B}$ is a fibration and \mathcal{B} has products, then the fibration $\operatorname{Rel}(U): \operatorname{Rel}(\mathcal{E}) \rightarrow \mathcal{B} \times \mathcal{B}$ is defined by

- $\operatorname{Rel}(U)$ is the relations fibration for U
- The objects of $\operatorname{Rel}(\mathcal{E})$ are called relations on \mathcal{B}

The Truth Functor

- $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ has fibred terminal objects if
- each fibre $\mathcal{E}_{\boldsymbol{X}}$ of \mathcal{E} has a terminal object $\boldsymbol{K}_{\boldsymbol{X}}$

The Truth Functor

- $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ has fibred terminal objects if
- each fibre $\mathcal{E}_{\boldsymbol{X}}$ of \mathcal{E} has a terminal object $\boldsymbol{K}_{\boldsymbol{X}}$
- reindexing preserves terminal objects, i.e., if $f: X \rightarrow Y$ is a morphism in \mathcal{B} implies $\boldsymbol{f}^{*} \boldsymbol{K}_{\boldsymbol{Y}}=\boldsymbol{K}_{\boldsymbol{X}}$

The Truth Functor

- $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ has fibred terminal objects if
- each fibre $\mathcal{E}_{\boldsymbol{X}}$ of \mathcal{E} has a terminal object $\boldsymbol{K}_{\boldsymbol{X}}$
- reindexing preserves terminal objects, i.e., if $f: X \rightarrow Y$ is a morphism in \mathcal{B} implies $\boldsymbol{f}^{*} \boldsymbol{K}_{\boldsymbol{Y}}=\boldsymbol{K}_{\boldsymbol{X}}$

- The map sending each object X of \mathcal{B} to K_{X} extends to a functor $K: \mathcal{B} \rightarrow \mathcal{E}$ called the truth functor for \boldsymbol{U}

The Equality Functor

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_{X} be the diagonal morphism $\delta_{X}: X \rightarrow X \times X$

The Equality Functor

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_{X} be the diagonal morphism $\delta_{X}: X \rightarrow X \times X$
- The map sending each object X of \mathcal{B} to $\Sigma_{\delta_{X}} K X$ extends to a functor $\mathrm{Eq}: \mathcal{B} \rightarrow \operatorname{Rel}(\mathcal{E})$ called the equality functor for $\operatorname{Rel}(\boldsymbol{U})$

The Equality Functor

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_{X} be the diagonal morphism $\delta_{X}: X \rightarrow X \times X$
- The map sending each object X of \mathcal{B} to $\Sigma_{\delta_{X}} K X$ extends to a functor $\mathrm{Eq}: \mathcal{B} \rightarrow \operatorname{Rel}(\mathcal{E})$ called the equality functor for $\operatorname{Rel}(\boldsymbol{U})$

- Intuitively, $\boldsymbol{K} \boldsymbol{X}$ acts like a characteristic function for \boldsymbol{X}

The Equality Functor

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_{X} be the diagonal morphism $\delta_{X}: X \rightarrow X \times X$
- The map sending each object X of \mathcal{B} to $\Sigma_{\delta_{X}} K X$ extends to a functor $\mathrm{Eq}: \mathcal{B} \rightarrow \operatorname{Rel}(\mathcal{E})$ called the equality functor for $\operatorname{Rel}(\boldsymbol{U})$

- Intuitively, $\boldsymbol{K} \boldsymbol{X}$ acts like a characteristic function for \boldsymbol{X}
- So opreindexing $K X$ along δ gives a "binary predicate" - i.e., a relation - that acts like a characteristic function for the diagonal of $\boldsymbol{X} \times \boldsymbol{X}$

The Equality Functor

- Let $U: \mathcal{E} \rightarrow \mathcal{B}$ be a bifibration with fibred terminal objects, suppose \mathcal{B} has products, and let δ_{X} be the diagonal morphism $\delta_{X}: X \rightarrow X \times X$
- The map sending each object X of \mathcal{B} to $\Sigma_{\delta_{X}} K X$ extends to a functor $\mathrm{Eq}: \mathcal{B} \rightarrow \operatorname{Rel}(\mathcal{E})$ called the equality functor for $\operatorname{Rel}(U)$

- Intuitively, $\boldsymbol{K} \boldsymbol{X}$ acts like a characteristic function for \boldsymbol{X}
- So opreindexing $K X$ along δ gives a "binary predicate" - i.e., a relation - that acts like a characteristic function for the diagonal of $\boldsymbol{X} \times \boldsymbol{X}$
- That is, $\Sigma_{\delta_{X}}(\boldsymbol{K} \boldsymbol{X})$ acts like an equality relation on \boldsymbol{X}

Some Observations

- This definition specializes to the function mapping each set X to $\{(x, x) \mid x \in X\}$ when instantiated to the relations fibration on Set

Some Observations

- This definition specializes to the function mapping each set X to $\{(x, x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful

Some Observations

- This definition specializes to the function mapping each set X to $\{(x, x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

Counterexample: Eq for Id : Set \rightarrow Set

Some Observations

- This definition specializes to the function mapping each set X to $\{(x, x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

Counterexample: Eq for Id : Set \rightarrow Set

- For the definition of Eq we only need opreindexing along diagonals δ_{X}

Some Observations

- This definition specializes to the function mapping each set X to $\{(x, x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

Counterexample: Eq for Id : Set \rightarrow Set

- For the definition of Eq we only need opreindexing along diagonals δ_{X}
- But we actually want to have graph relations in our models, so we need to be able to opreindex along arbitrary morphisms

Some Observations

- This definition specializes to the function mapping each set X to $\{(x, x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

Counterexample: Eq for Id : Set \rightarrow Set

- For the definition of Eq we only need opreindexing along diagonals δ_{X}
- But we actually want to have graph relations in our models, so we need to be able to opreindex along arbitrary morphisms
- Also, to recover the standard results about graph relations and initial algebras in parametric models, in the paper we need that Eq is full

Some Observations

- This definition specializes to the function mapping each set X to $\{(x, x) \mid x \in X\}$ when instantiated to the relations fibration on Set
- Eq is faithful
- Eq is not always full

Counterexample: Eq for Id : Set \rightarrow Set

- For the definition of Eq we only need opreindexing along diagonals δ_{X}
- But we actually want to have graph relations in our models, so we need to be able to opreindex along arbitrary morphisms
- Also, to recover the standard results about graph relations and initial algebras in parametric models, in the paper we need that Eq is full
- But these issues will not arise in this course

Generalizing Reynolds' Construction

- Interpret System F types as fibred functors with discrete domains

Generalizing Reynolds' Construction

- Interpret System F types as fibred functors with discrete domains
- Interpret System F terms as fibred natural transformations between such fibred functors

Generalizing Reynolds' Construction

- Interpret System F types as fibred functors with discrete domains
- Interpret System F terms as fibred natural transformations between such fibred functors
- Produce a model of System F for which (fibrational versions of) the IEL and the Abstraction Theorem hold

Generalizing Reynolds' Construction

- Interpret System F types as fibred functors with discrete domains
- Interpret System F terms as fibred natural transformations between such fibred functors
- Produce a model of System F for which (fibrational versions of) the IEL and the Abstraction Theorem hold
- This model is actually a $\lambda 2$-fibration

Generalizing Reynolds' Construction

- Interpret System F types as fibred functors with discrete domains
- Interpret System F terms as fibred natural transformations between such fibred functors
- Produce a model of System F for which (fibrational versions of) the IEL and the Abstraction Theorem hold
- This model is actually a $\lambda 2$-fibration
- Seely showed that we can always interpret System F soundly in such fibrations

Structure for Interpreting Types - arrow types

- Observe:
- Reynolds' definitions of $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{r}$ are derived from the cartesian closed structure of Set and Rel

Structure for Interpreting Types - arrow types

- Observe:
- Reynolds' definitions of $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{r}$ are derived from the cartesian closed structure of Set and Rel
- $U:$ Rel \rightarrow Set \times Set preserves the cartesian closed structure

Structure for Interpreting Types - arrow types

- Observe:
- Reynolds' definitions of $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{r}$ are derived from the cartesian closed structure of Set and Rel
$-\boldsymbol{U}:$ Rel \rightarrow Set \times Set preserves the cartesian closed structure
- Thus $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}$ is over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$ as required by the Abstraction Theorem

Structure for Interpreting Types - arrow types

- Observe:
- Reynolds' definitions of $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{r}$ are derived from the cartesian closed structure of Set and Rel
- $U:$ Rel \rightarrow Set \times Set preserves the cartesian closed structure
- Thus $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}$ is over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$ as required by the Abstraction Theorem
- Conclude: Arrow types can be modeled "parametrically" - i.e., so that the Abstraction Theorem holds - by a fibration $U: \mathcal{E} \rightarrow \mathcal{B}$ if

Structure for Interpreting Types - arrow types

- Observe:
- Reynolds' definitions of $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{r}$ are derived from the cartesian closed structure of Set and Rel
- $U:$ Rel \rightarrow Set \times Set preserves the cartesian closed structure
- Thus $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}$ is over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$ as required by the Abstraction Theorem
- Conclude: Arrow types can be modeled "parametrically" - i.e., so that the Abstraction Theorem holds - by a fibration $U: \mathcal{E} \rightarrow \mathcal{B}$ if
$-\mathcal{E}$ and \mathcal{B} are cartesian closed categories

Structure for Interpreting Types - arrow types

- Observe:
- Reynolds' definitions of $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{o}$ and $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket_{r}$ are derived from the cartesian closed structure of Set and Rel
- $U:$ Rel \rightarrow Set \times Set preserves the cartesian closed structure
- Thus $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}$ is over $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$ as required by the Abstraction Theorem
- Conclude: Arrow types can be modeled "parametrically" - i.e., so that the Abstraction Theorem holds - by a fibration $U: \mathcal{E} \rightarrow \mathcal{B}$ if
$-\mathcal{E}$ and \mathcal{B} are cartesian closed categories
- U preserves the cartesian closed structure

Equality Preserving Arrow Fibrations

- $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ is an arrow fibration if
$-\mathcal{E}$ and \mathcal{B} are cartesian closed
- U preserves the cartesian closed structure

Equality Preserving Arrow Fibrations

- $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ is an arrow fibration if
$-\mathcal{E}$ and \mathcal{B} are cartesian closed
- U preserves the cartesian closed structure
- If $U: \mathcal{E} \rightarrow \mathcal{B}$ and \mathcal{B} is a CCC, then $\operatorname{Rel}(\boldsymbol{U})$ is an equality preserving arrow fibration if

Equality Preserving Arrow Fibrations

- $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ is an arrow fibration if
$-\mathcal{E}$ and \mathcal{B} are cartesian closed
- \boldsymbol{U} preserves the cartesian closed structure
- If $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ and \mathcal{B} is a CCC , then $\operatorname{Rel}(\boldsymbol{U})$ is an equality preserving arrow fibration if
- $\operatorname{Rel}(U)$ is an arrow fibration

Equality Preserving Arrow Fibrations

- $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ is an arrow fibration if
$-\mathcal{E}$ and \mathcal{B} are cartesian closed
- U preserves the cartesian closed structure
- If $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ and \mathcal{B} is a CCC , then $\operatorname{Rel}(\boldsymbol{U})$ is an equality preserving arrow fibration if
$-\operatorname{Rel}(U)$ is an arrow fibration
- for all \boldsymbol{X} and \boldsymbol{Y} in \mathcal{B}

$$
\mathrm{Eq}(X \Rightarrow Y) \cong(\mathrm{Eq} X \Rightarrow \mathrm{Eq} Y)
$$

Equality Preserving Arrow Fibrations

- $\boldsymbol{U}: \mathcal{E} \rightarrow \mathcal{B}$ is an arrow fibration if
$-\mathcal{E}$ and \mathcal{B} are cartesian closed
- U preserves the cartesian closed structure
- If $U: \mathcal{E} \rightarrow \mathcal{B}$ and \mathcal{B} is a CCC, then $\operatorname{Rel}(\boldsymbol{U})$ is an equality preserving arrow fibration if
- $\operatorname{Rel}(U)$ is an arrow fibration
- for all \boldsymbol{X} and \boldsymbol{Y} in \mathcal{B}

$$
\mathrm{Eq}(X \Rightarrow Y) \cong(\mathrm{Eq} X \Rightarrow \mathrm{Eq} Y)
$$

- There are reasonable hypotheses on U making $\operatorname{Rel}(\boldsymbol{U})$ an equality preserving arrow fibration (see MFPS'15 and FoSSaCS'16)

Structure for Interpreting Types - forall types

- The rules for type abstraction and type application suggest interpreting \forall as right adjoint to weakening by a type variable

Structure for Interpreting Types - forall types

- The rules for type abstraction and type application suggest interpreting \forall as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints

Structure for Interpreting Types - forall types

- The rules for type abstraction and type application suggest interpreting \forall as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For U : Rel \rightarrow Set \times Set this gives all polymorphic functions, not just the parametrically polymorphic ones!

Structure for Interpreting Types - forall types

- The rules for type abstraction and type application suggest interpreting \forall as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For U : Rel \rightarrow Set \times Set this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics

Structure for Interpreting Types - forall types

- The rules for type abstraction and type application suggest interpreting \forall as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For U : Rel \rightarrow Set \times Set this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics
- $|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)$ has

Structure for Interpreting Types - forall types

- The rules for type abstraction and type application suggest interpreting \forall as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For U : Rel \rightarrow Set \times Set this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics
- $|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(\boldsymbol{U})$ has
- Objects: equality preserving fibred functors from $|\operatorname{Rel}(U)|^{n}$ to $\operatorname{Rel}(U)$

Structure for Interpreting Types - forall types

- The rules for type abstraction and type application suggest interpreting \forall as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For U : Rel \rightarrow Set \times Set this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics
- $|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(\boldsymbol{U})$ has
- Objects: equality preserving fibred functors from $|\operatorname{Rel}(U)|^{n}$ to $\operatorname{Rel}(U)$
- Morphisms: fibred natural transformations between them

Structure for Interpreting Types - forall types

- The rules for type abstraction and type application suggest interpreting \forall as right adjoint to weakening by a type variable
- Naive Idea: Try to look for such an adjoint on the base category, then another on the total category, and then try to link these adjoints
- This is wrong: For U : Rel \rightarrow Set \times Set this gives all polymorphic functions, not just the parametrically polymorphic ones!
- Instead: Require an adjoint for the combined fibred semantics
- $|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(\boldsymbol{U})$ has
- Objects: equality preserving fibred functors from $|\operatorname{Rel}(U)|^{n}$ to $\operatorname{Rel}(U)$
- Morphisms: fibred natural transformations between them
- Note the use of discrete categories

\forall-Fibrations

- $\operatorname{Rel}(U)$ is a \forall-fibration if
- for every projection $\pi_{n}:|\operatorname{Rel}(U)|^{n+1} \rightarrow|\operatorname{Rel}(U)|^{n}$, the functor

$$
-\circ \pi_{n}:\left(|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right) \rightarrow\left(|\operatorname{Rel}(U)|^{n+1} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right)
$$

has a right adjoint \forall_{n}

\forall-Fibrations

- $\operatorname{Rel}(U)$ is a \forall-fibration if
- for every projection $\pi_{n}:|\operatorname{Rel}(U)|^{n+1} \rightarrow|\operatorname{Rel}(U)|^{n}$, the functor

$$
-\circ \pi_{n}:\left(|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right) \rightarrow\left(|\operatorname{Rel}(U)|^{n+1} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right)
$$

has a right adjoint \forall_{n}

- this family of adjunctions is natural in n

\forall-Fibrations

- $\operatorname{Rel}(U)$ is a \forall-fibration if
- for every projection $\pi_{n}:|\operatorname{Rel}(U)|^{n+1} \rightarrow|\operatorname{Rel}(U)|^{n}$, the functor

$$
-\circ \pi_{n}:\left(|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right) \rightarrow\left(|\operatorname{Rel}(U)|^{n+1} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right)
$$

has a right adjoint \forall_{n}

- this family of adjunctions is natural in n
- Then for all $F:|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)$ and $G:|\operatorname{Rel}(U)|^{n+1} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)$ there is an isomorphism

$$
\varphi_{n}: \operatorname{Hom}\left(F \circ \pi_{n}, G\right) \cong \operatorname{Hom}(F, \forall G)
$$

that is natural in n

Coming Up

- Use relations fibrations that are equality preserving arrow fibrations and \forall-fibrations to interpret System F types as fibred functors and System F terms as fibred natural transformations

References

- Parametric polymorphism - universally. N. Ghani, F. Nordvall Forsberg, and F. Orsanigo. WadlerFest'16.
- Comprehensive parametric polymorphism: categorical models and type theory. N. Ghani, F. Nordvall Forsberg, and A. Simpson. FoSSaCS'16.
- Categorical semantics for higher-order polymorphic lambda calculus. R. A. Seely. Journal of Symbolic Computation, 1987.

