
Reynolds’ Parametricity

Patricia Johann
Appalachian State University

cs.appstate.edu/∼johannp

Based on joint work with Neil Ghani, Fredrik Nordvall
Forsberg, Federico Orsanigo, and Tim Revell

OPLSS 2016

Course Outline

Topic: Reynolds’ theory of parametric polymorphism for System F

Goals: - extract the fibrational essence of Reynolds’ theory

- generalize Reynolds’ construction to very general models

• Lecture 1: Reynolds’ theory of parametricity for System F

• Lecture 2: Introduction to fibrations

• Lecture 3: A bifibrational view of parametricity

• Lecture 4: Bifibrational parametric models for System F

Course Outline

Topic: Reynolds’ theory of parametric polymorphism for System F

Goals: - extract the fibrational essence of Reynolds’ theory

- generalize Reynolds’ construction to very general models

• Lecture 1: Reynolds’ theory of parametricity for System F

• Lecture 2: Introduction to fibrations

• Lecture 3: A bifibrational view of parametricity

• Lecture 4: Bifibrational parametric models for System F

Where Were We?

• In Lecture 1 we recalled Reynolds’ standard relational parametricity

This is the main inspiration for the bifibrational model of para-

metricity for System F we will develop

Where Were We?

• In Lecture 1 we recalled Reynolds’ standard relational parametricity

This is the main inspiration for the bifibrational model of para-

metricity for System F we will develop

• Last time we had an introduction to bifibrations, fibred functors, fibred

natural transformations

Where Were We?

• In Lecture 1 we recalled Reynolds’ standard relational parametricity

This is the main inspiration for the bifibrational model of para-

metricity for System F we will develop

• Last time we had an introduction to bifibrations, fibred functors, fibred

natural transformations

• Today we’ll view Reynolds’ construction and results through the lens

of the relations (bi)fibration on Set

Where Were We?

• In Lecture 1 we recalled Reynolds’ standard relational parametricity

This is the main inspiration for the bifibrational model of para-

metricity for System F we will develop

• Last time we had an introduction to bifibrations, fibred functors, fibred

natural transformations

• Today we’ll view Reynolds’ construction and results through the lens

of the relations (bi)fibration on Set

• Next time we’ll generalize Reynolds’ constructions to bifibrational

models of System F for which we can prove (bifibrational versions

of) the IEL and Abstraction Theorem

Where Were We?

• In Lecture 1 we recalled Reynolds’ standard relational parametricity

This is the main inspiration for the bifibrational model of para-

metricity for System F we will develop

• Last time we had an introduction to bifibrations, fibred functors, fibred

natural transformations

• Today we’ll view Reynolds’ construction and results through the lens

of the relations (bi)fibration on Set

• Next time we’ll generalize Reynolds’ constructions to bifibrational

models of System F for which we can prove (bifibrational versions

of) the IEL and Abstraction Theorem

• Reynolds’ construction is (ignoring size issues) such a model

Plan for Today

• Introduce the the relations fibration on Set

Plan for Today

• Introduce the the relations fibration on Set

• Recall Reynolds’ (attempted) model of parametricity for System F as

originally formulated — with no fibrations in sight

Plan for Today

• Introduce the the relations fibration on Set

• Recall Reynolds’ (attempted) model of parametricity for System F as

originally formulated — with no fibrations in sight

• Re-state Reynolds’ construction in terms of the relations fibration on

Set

Plan for Today

• Introduce the the relations fibration on Set

• Recall Reynolds’ (attempted) model of parametricity for System F as

originally formulated — with no fibrations in sight

• Re-state Reynolds’ construction in terms of the relations fibration on

Set

• Set up infrastructure needed for our generalization

The Category Rel

• An object of Rel is a triple (X,Y,R)

– X and Y are sets

– R ⊆ (X,Y), i.e., R ⊆ X × Y

The Category Rel

• An object of Rel is a triple (X,Y,R)

– X and Y are sets

– R ⊆ (X,Y), i.e., R ⊆ X × Y

• A morphism (X ′, Y ′, R′)→ (X,Y,R) is a pair (f, g)

– f : X ′ → X and g : Y ′ → Y

– if (x′, y′) ∈ R′ then (fx′, gy′) ∈ R

The Category Rel

• An object of Rel is a triple (X,Y,R)

– X and Y are sets

– R ⊆ (X,Y), i.e., R ⊆ X × Y

• A morphism (X ′, Y ′, R′)→ (X,Y,R) is a pair (f, g)

– f : X ′ → X and g : Y ′ → Y

– if (x′, y′) ∈ R′ then (fx′, gy′) ∈ R

• Each set X has an equality relation

EqX = {(x, x) | x ∈ X}

The Category Rel

• An object of Rel is a triple (X,Y,R)

– X and Y are sets

– R ⊆ (X,Y), i.e., R ⊆ X × Y

• A morphism (X ′, Y ′, R′)→ (X,Y,R) is a pair (f, g)

– f : X ′ → X and g : Y ′ → Y

– if (x′, y′) ∈ R′ then (fx′, gy′) ∈ R

• Each set X has an equality relation

EqX = {(x, x) | x ∈ X}

• This can be extended to an equality functor from Set to Rel in the

obvious way

The Relations Fibration on Set

• The relations fibration on Set is the functor U : Rel → Set × Set

mapping

– (X,Y,R) to (X,Y)

– (f, g) to itself

The Relations Fibration on Set

• The relations fibration on Set is the functor U : Rel → Set × Set

mapping

– (X,Y,R) to (X,Y)

– (f, g) to itself

• U is a fibration: For R, UR = (X,Y), and (f, g) : (X ′, Y ′)→ (X,Y)

– (f, g)∗R = {(x′, y′) ∈ (X ′, Y ′) | (fx′, gy′) ∈ R}
– (f, g) : (f, g)∗R→ R is cartesian over (f, g)

The Relations Fibration on Set

• The relations fibration on Set is the functor U : Rel → Set × Set

mapping

– (X,Y,R) to (X,Y)

– (f, g) to itself

• U is a fibration: For R, UR = (X,Y), and (f, g) : (X ′, Y ′)→ (X,Y)

– (f, g)∗R = {(x′, y′) ∈ (X ′, Y ′) | (fx′, gy′) ∈ R}
– (f, g) : (f, g)∗R→ R is cartesian over (f, g)

• U is an opfibration: For R, UR = (X ′, Y ′), and (f, g) : (X ′, Y ′) →
(X,Y)

– Σ(f,g)R = {(fx′, gy′) ∈ (X,Y) | (x′, y′) ∈ R′}
– (f, g) : (f, g)∗R→ R is opcartesian over (f, g)

The Relations Fibration on Set

• The relations fibration on Set is the functor U : Rel → Set × Set

mapping

– (X,Y,R) to (X,Y)

– (f, g) to itself

• U is a fibration: For R, UR = (X,Y), and (f, g) : (X ′, Y ′)→ (X,Y)

– (f, g)∗R = {(x′, y′) ∈ (X ′, Y ′) | (fx′, gy′) ∈ R}
– (f, g) : (f, g)∗R→ R is cartesian over (f, g)

• U is an opfibration: For R, UR = (X ′, Y ′), and (f, g) : (X ′, Y ′) →
(X,Y)

– Σ(f,g)R = {(fx′, gy′) ∈ (X,Y) | (x′, y′) ∈ R′}
– (f, g) : (f, g)∗R→ R is opcartesian over (f, g)

• U is (thus) a bifibration

The Relations Fibration on Set

• The relations fibration on Set is the functor U : Rel → Set × Set

mapping

– (X,Y,R) to (X,Y)

– (f, g) to itself

• U is a fibration: For R, UR = (X,Y), and (f, g) : (X ′, Y ′)→ (X,Y)

– (f, g)∗R = {(x′, y′) ∈ (X ′, Y ′) | (fx′, gy′) ∈ R}
– (f, g) : (f, g)∗R→ R is cartesian over (f, g)

• U is an opfibration: For R, UR = (X ′, Y ′), and (f, g) : (X ′, Y ′) →
(X,Y)

– Σ(f,g)R = {(fx′, gy′) ∈ (X,Y) | (x′, y′) ∈ R′}
– (f, g) : (f, g)∗R→ R is opcartesian over (f, g)

• U is (thus) a bifibration

• Rel(X,Y) is the fibre over (X,Y)

Reynolds’ Semantics of Types, Fibrationally

• Recall: The interdependence of Reynolds’ object and relational in-

terpretations for types means that we don’t have two semantics, but

rather a single interconnected semantics!

Reynolds’ Semantics of Types, Fibrationally

• Recall: The interdependence of Reynolds’ object and relational in-

terpretations for types means that we don’t have two semantics, but

rather a single interconnected semantics!

• If each Ri : Rel(Xi, Yi), then [[∆ ` τ]]rR : Rel([[∆ ` τ]]oX, [[∆ ` τ]]oY)

Reynolds’ Semantics of Types, Fibrationally

• Recall: The interdependence of Reynolds’ object and relational in-

terpretations for types means that we don’t have two semantics, but

rather a single interconnected semantics!

• If each Ri : Rel(Xi, Yi), then [[∆ ` τ]]rR : Rel([[∆ ` τ]]oX, [[∆ ` τ]]oY)

• Theorem (Reynolds’ Semantics of Types, Fibrationally) Let U be the

relations fibration on Set. Every judgement ∆ ` τ induces a fibred

functor [[∆ ` τ]] : |U ||∆| → U .

|Rel||∆| [[∆`τ]]r //

|U ||∆|
��

Rel

U

��
|Set||∆| × |Set||∆|

[[∆`τ]]o×[[∆`τ]]o
// Set× Set

Reynolds’ Semantics of Types, Fibrationally

• Recall: The interdependence of Reynolds’ object and relational in-

terpretations for types means that we don’t have two semantics, but

rather a single interconnected semantics!

• If each Ri : Rel(Xi, Yi), then [[∆ ` τ]]rR : Rel([[∆ ` τ]]oX, [[∆ ` τ]]oY)

• Theorem (Reynolds’ Semantics of Types, Fibrationally) Let U be the

relations fibration on Set. Every judgement ∆ ` τ induces a fibred

functor [[∆ ` τ]] : |U ||∆| → U .

|Rel||∆| [[∆`τ]]r //

|U ||∆|
��

Rel

U

��
|Set||∆| × |Set||∆|

[[∆`τ]]o×[[∆`τ]]o
// Set× Set

• We use discrete categories in the domain of [[∆ ` τ]] to reflect the fact

that Reynolds did not give a functorial action of types on morphisms

Identity Extension Lemma, Fibrationally

• If ∆ ` τ then

[[∆ ` τ]]r (EqX1, ...,EqX|∆|) = Eq ([[∆ ` τ]]o(X1, ..., X|∆|))

Identity Extension Lemma, Fibrationally

• If ∆ ` τ then

[[∆ ` τ]]r (EqX1, ...,EqX|∆|) = Eq ([[∆ ` τ]]o(X1, ..., X|∆|))

• Theorem (Identity Extension Lemma, Fibrationally) If ∆ ` τ then

[[∆ ` τ]]r ◦ |Eq||∆| = Eq ◦ [[∆ ` τ]]o

|Rel||∆| [[∆`τ]]r // Rel

|Set||∆|
|Eq||∆|
OO

[[∆`τ]]o
// Set

Eq

OO

Abstraction Theorem, Fibrationally

• Suppose Reynolds had given relational interpretations for terms such

that [[∆; Γ ` t : τ]]rR is over [[∆; Γ ` t : τ]]oX × [[∆; Γ ` t : τ]]oY

Abstraction Theorem, Fibrationally

• Suppose Reynolds had given relational interpretations for terms such

that [[∆; Γ ` t : τ]]rR is over [[∆; Γ ` t : τ]]oX × [[∆; Γ ` t : τ]]oY

• Abstraction Theorem Let X,Y : Set|∆|, R : Rel|∆|(X,Y), A ∈ [[∆ `
Γ]]oX, and B ∈ [[∆ ` Γ]]oY . For every ∆; Γ ` t : τ , if (A,B) ∈ [[∆ `
Γ]]rR, then ([[∆; Γ ` t : τ]]o X A, [[∆; Γ ` t : τ]]o Y B) ∈ [[∆ ` τ]]rR.

Abstraction Theorem, Fibrationally

• Suppose Reynolds had given relational interpretations for terms such

that [[∆; Γ ` t : τ]]rR is over [[∆; Γ ` t : τ]]oX × [[∆; Γ ` t : τ]]oY

• Abstraction Theorem Let X,Y : Set|∆|, R : Rel|∆|(X,Y), A ∈ [[∆ `
Γ]]oX, and B ∈ [[∆ ` Γ]]oY . For every ∆; Γ ` t : τ , if (A,B) ∈ [[∆ `
Γ]]rR, then ([[∆; Γ ` t : τ]]o X A, [[∆; Γ ` t : τ]]o Y B) ∈ [[∆ ` τ]]rR.

• Theorem (Abstraction Theorem, Fibrationally) Every term ∆; Γ ` t :

τ is interpreted as a fibred natural transformation

([[∆; Γ ` t : τ]]o × [[∆; Γ ` t : τ]]o, [[∆; Γ ` t : τ]]r) : [[∆ ` Γ]]→ [[∆ ` τ]]

|Rel||∆|
[[Γ]]r

,,

[[τ]]r

22�� [[t]]r

|U ||∆|

��

Rel

U

��
|Set||∆| × |Set||∆|

[[Γ]]o×[[Γ]]o
,,

[[τ]]o×[[τ]]o

22�� [[t]]o×[[t]]o Set× Set

Unpacking the Fibrational Abstraction Theorem

• The domains of [[∆ ` Γ]]o and [[∆ ` τ]]o are discrete

Unpacking the Fibrational Abstraction Theorem

• The domains of [[∆ ` Γ]]o and [[∆ ` τ]]o are discrete

• [[∆; Γ ` t : τ]]o : [[∆ ` Γ]]o → [[∆ ` τ]]o is a (vacuously) natural

transformation

Unpacking the Fibrational Abstraction Theorem

• The domains of [[∆ ` Γ]]o and [[∆ ` τ]]o are discrete

• [[∆; Γ ` t : τ]]o : [[∆ ` Γ]]o → [[∆ ` τ]]o is a (vacuously) natural

transformation

• [[∆; Γ ` t : τ]]r : [[∆ ` Γ]]r → [[∆ ` τ]]r is a (vacuously) natural

transformation over [[∆; Γ ` t : τ]]o × [[∆; Γ ` t : τ]]o

Unpacking the Fibrational Abstraction Theorem

• The domains of [[∆ ` Γ]]o and [[∆ ` τ]]o are discrete

• [[∆; Γ ` t : τ]]o : [[∆ ` Γ]]o → [[∆ ` τ]]o is a (vacuously) natural

transformation

• [[∆; Γ ` t : τ]]r : [[∆ ` Γ]]r → [[∆ ` τ]]r is a (vacuously) natural

transformation over [[∆; Γ ` t : τ]]o×[[∆; Γ ` t : τ]]o, so each component

[[∆ ` Γ]]rR
[[∆;Γ`t:τ]]rR // [[∆ ` τ]]rR

is a morphism between relations that is over

[[∆ ` Γ]]oX × [[∆ ` Γ]]oY
[[∆;Γ`t:τ]]oX×[[∆;Γ`t:τ]]oY // [[∆ ` τ]]oX × [[∆ ` τ]]oY

Unpacking the Fibrational Abstraction Theorem

• The domains of [[∆ ` Γ]]o and [[∆ ` τ]]o are discrete

• [[∆; Γ ` t : τ]]o : [[∆ ` Γ]]o → [[∆ ` τ]]o is a (vacuously) natural

transformation

• [[∆; Γ ` t : τ]]r : [[∆ ` Γ]]r → [[∆ ` τ]]r is a (vacuously) natural

transformation over [[∆; Γ ` t : τ]]o×[[∆; Γ ` t : τ]]o, so each component

[[∆ ` Γ]]rR
[[∆;Γ`t:τ]]rR // [[∆ ` τ]]rR

is a morphism between relations that is over

[[∆ ` Γ]]oX × [[∆ ` Γ]]oY
[[∆;Γ`t:τ]]oX×[[∆;Γ`t:τ]]oY // [[∆ ` τ]]oX × [[∆ ` τ]]oY

• That is, [[∆; Γ ` t : τ]]rR is a pair of morphisms ([[∆; Γ ` t : τ]]oX, [[∆; Γ `
t : τ]]oY) in Set such that

if (A,B) ∈ [[∆ ` Γ]]rR, then

([[∆; Γ ` t : τ]]oXA, [[∆; Γ ` t : τ]]o Y B) ∈ [[∆ ` τ]]rR

Unpacking the Fibrational Abstraction Theorem

• The domains of [[∆ ` Γ]]o and [[∆ ` τ]]o are discrete

• [[∆; Γ ` t : τ]]o : [[∆ ` Γ]]o → [[∆ ` τ]]o is a (vacuously) natural

transformation

• [[∆; Γ ` t : τ]]r : [[∆ ` Γ]]r → [[∆ ` τ]]r is a (vacuously) natural

transformation over [[∆; Γ ` t : τ]]o×[[∆; Γ ` t : τ]]o, so each component

[[∆ ` Γ]]rR
[[∆;Γ`t:τ]]rR // [[∆ ` τ]]rR

is a morphism between relations that is over

[[∆ ` Γ]]oX × [[∆ ` Γ]]oY
[[∆;Γ`t:τ]]oX×[[∆;Γ`t:τ]]oY // [[∆ ` τ]]oX × [[∆ ` τ]]oY

• That is, [[∆; Γ ` t : τ]]rR is a pair of morphisms ([[∆; Γ ` t : τ]]oX, [[∆; Γ `
t : τ]]oY) in Set such that

if (A,B) ∈ [[∆ ` Γ]]rR, then

([[∆; Γ ` t : τ]]oXA, [[∆; Γ ` t : τ]]o Y B) ∈ [[∆ ` τ]]rR

• This is the conclusion of Reynolds’ original statement of the theorem!!!

The Take-Away

• Reynolds’ original formulation of the Abstraction Theorem seems like

it asserts a property of [[∆; Γ ` t : τ]]o

The Take-Away

• Reynolds’ original formulation of the Abstraction Theorem seems like

it asserts a property of [[∆; Γ ` t : τ]]o

• But it really states the existence of additional algebraic structure given

by the interpretations [[∆; Γ ` t : τ]]r of terms as fibred natural trans-

formations

The Take-Away

• Reynolds’ original formulation of the Abstraction Theorem seems like

it asserts a property of [[∆; Γ ` t : τ]]o

• But it really states the existence of additional algebraic structure given

by the interpretations [[∆; Γ ` t : τ]]r of terms as fibred natural trans-

formations

• This point of view

– exposes this heretofore hidden structure

The Take-Away

• Reynolds’ original formulation of the Abstraction Theorem seems like

it asserts a property of [[∆; Γ ` t : τ]]o

• But it really states the existence of additional algebraic structure given

by the interpretations [[∆; Γ ` t : τ]]r of terms as fibred natural trans-

formations

• This point of view

– exposes this heretofore hidden structure

– opens the way to our generalization of Reynolds’ construction

The Take-Away

• Reynolds’ original formulation of the Abstraction Theorem seems like

it asserts a property of [[∆; Γ ` t : τ]]o

• But it really states the existence of additional algebraic structure given

by the interpretations [[∆; Γ ` t : τ]]r of terms as fibred natural trans-

formations

• This point of view

– exposes this heretofore hidden structure

– opens the way to our generalization of Reynolds’ construction

• To generalize [[−]]o and [[−]]r in such a way that the Identity Extension

Lemma and the Abstraction Theorem hold, we must have sufficient

structure to define analogues of all the structure we used in the rela-

tions fibration on Set for more general fibrations

Relations Fibrations

• Observe: The relations fibration on Set arises from the subobject fi-

bration over Set by pullback, or change of base

Relations Fibrations

• Observe: The relations fibration on Set arises from the subobject fi-

bration over Set by pullback, or change of base

• If U : E → B is a fibration and B has products, then the fibration

Rel(U) : Rel(E)→ B × B is defined by

Rel(E)
q //

Rel(U)

��

E
U
��

B × B ×
// B

Relations Fibrations

• Observe: The relations fibration on Set arises from the subobject fi-

bration over Set by pullback, or change of base

• If U : E → B is a fibration and B has products, then the fibration

Rel(U) : Rel(E)→ B × B is defined by

Rel(E)
q //

Rel(U)

��

E
U
��

B × B ×
// B

• Rel(U) is the relations fibration for U

Relations Fibrations

• Observe: The relations fibration on Set arises from the subobject fi-

bration over Set by pullback, or change of base

• If U : E → B is a fibration and B has products, then the fibration

Rel(U) : Rel(E)→ B × B is defined by

Rel(E)
q //

Rel(U)

��

E
U
��

B × B ×
// B

• Rel(U) is the relations fibration for U

• The objects of Rel(E) are called relations on B

The Truth Functor

• U : E → B has fibred terminal objects if

– each fibre EX of E has a terminal object KX

The Truth Functor

• U : E → B has fibred terminal objects if

– each fibre EX of E has a terminal object KX

– reindexing preserves terminal objects, i.e., if f : X → Y is a mor-

phism in B implies f∗KY = KX

U

E KX KY
f∗

B fX Y

The Truth Functor

• U : E → B has fibred terminal objects if

– each fibre EX of E has a terminal object KX

– reindexing preserves terminal objects, i.e., if f : X → Y is a mor-

phism in B implies f∗KY = KX

U

E KX KY
f∗

B fX Y

• The map sending each object X of B to KX extends to a functor

K : B → E called the truth functor for U

The Equality Functor

• Let U : E → B be a bifibration with fibred terminal objects, suppose B
has products, and let δX be the diagonal morphism δX : X → X ×X

The Equality Functor

• Let U : E → B be a bifibration with fibred terminal objects, suppose B
has products, and let δX be the diagonal morphism δX : X → X ×X

• The map sending each object X of B to ΣδXKX extends to a functor

Eq : B → Rel(E) called the equality functor for Rel(U)

E

U

��

KX
(δX)§

// ΣδX(KX)

B X
δX

//X ×X

The Equality Functor

• Let U : E → B be a bifibration with fibred terminal objects, suppose B
has products, and let δX be the diagonal morphism δX : X → X ×X

• The map sending each object X of B to ΣδXKX extends to a functor

Eq : B → Rel(E) called the equality functor for Rel(U)

E

U

��

KX
(δX)§

// ΣδX(KX)

B X
δX

//X ×X

• Intuitively, KX acts like a characteristic function for X

The Equality Functor

• Let U : E → B be a bifibration with fibred terminal objects, suppose B
has products, and let δX be the diagonal morphism δX : X → X ×X

• The map sending each object X of B to ΣδXKX extends to a functor

Eq : B → Rel(E) called the equality functor for Rel(U)

E

U

��

KX
(δX)§

// ΣδX(KX)

B X
δX

//X ×X

• Intuitively, KX acts like a characteristic function for X

• So opreindexing KX along δ gives a “binary predicate” — i.e., a

relation — that acts like a characteristic function for the diagonal of

X ×X

The Equality Functor

• Let U : E → B be a bifibration with fibred terminal objects, suppose B
has products, and let δX be the diagonal morphism δX : X → X ×X

• The map sending each object X of B to ΣδXKX extends to a functor

Eq : B → Rel(E) called the equality functor for Rel(U)

E

U

��

KX
(δX)§

// ΣδX(KX)

B X
δX

//X ×X

• Intuitively, KX acts like a characteristic function for X

• So opreindexing KX along δ gives a “binary predicate” — i.e., a

relation — that acts like a characteristic function for the diagonal of

X ×X

• That is, ΣδX(KX) acts like an equality relation on X

Some Observations

• This definition specializes to the function mapping each set X to

{(x, x) |x ∈ X} when instantiated to the relations fibration on Set

Some Observations

• This definition specializes to the function mapping each set X to

{(x, x) |x ∈ X} when instantiated to the relations fibration on Set

• Eq is faithful

Some Observations

• This definition specializes to the function mapping each set X to

{(x, x) |x ∈ X} when instantiated to the relations fibration on Set

• Eq is faithful

• Eq is not always full

Counterexample: Eq for Id : Set→ Set

Some Observations

• This definition specializes to the function mapping each set X to

{(x, x) |x ∈ X} when instantiated to the relations fibration on Set

• Eq is faithful

• Eq is not always full

Counterexample: Eq for Id : Set→ Set

• For the definition of Eq we only need opreindexing along diagonals δX

Some Observations

• This definition specializes to the function mapping each set X to

{(x, x) |x ∈ X} when instantiated to the relations fibration on Set

• Eq is faithful

• Eq is not always full

Counterexample: Eq for Id : Set→ Set

• For the definition of Eq we only need opreindexing along diagonals δX

• But we actually want to have graph relations in our models, so we

need to be able to opreindex along arbitrary morphisms

Some Observations

• This definition specializes to the function mapping each set X to

{(x, x) |x ∈ X} when instantiated to the relations fibration on Set

• Eq is faithful

• Eq is not always full

Counterexample: Eq for Id : Set→ Set

• For the definition of Eq we only need opreindexing along diagonals δX

• But we actually want to have graph relations in our models, so we

need to be able to opreindex along arbitrary morphisms

• Also, to recover the standard results about graph relations and initial

algebras in parametric models, in the paper we need that Eq is full

Some Observations

• This definition specializes to the function mapping each set X to

{(x, x) |x ∈ X} when instantiated to the relations fibration on Set

• Eq is faithful

• Eq is not always full

Counterexample: Eq for Id : Set→ Set

• For the definition of Eq we only need opreindexing along diagonals δX

• But we actually want to have graph relations in our models, so we

need to be able to opreindex along arbitrary morphisms

• Also, to recover the standard results about graph relations and initial

algebras in parametric models, in the paper we need that Eq is full

• But these issues will not arise in this course

Generalizing Reynolds’ Construction

• Interpret System F types as fibred functors with discrete domains

Generalizing Reynolds’ Construction

• Interpret System F types as fibred functors with discrete domains

• Interpret System F terms as fibred natural transformations between

such fibred functors

Generalizing Reynolds’ Construction

• Interpret System F types as fibred functors with discrete domains

• Interpret System F terms as fibred natural transformations between

such fibred functors

• Produce a model of System F for which (fibrational versions of) the

IEL and the Abstraction Theorem hold

Generalizing Reynolds’ Construction

• Interpret System F types as fibred functors with discrete domains

• Interpret System F terms as fibred natural transformations between

such fibred functors

• Produce a model of System F for which (fibrational versions of) the

IEL and the Abstraction Theorem hold

• This model is actually a λ2-fibration

Generalizing Reynolds’ Construction

• Interpret System F types as fibred functors with discrete domains

• Interpret System F terms as fibred natural transformations between

such fibred functors

• Produce a model of System F for which (fibrational versions of) the

IEL and the Abstraction Theorem hold

• This model is actually a λ2-fibration

• Seely showed that we can always interpret System F soundly in such

fibrations

Structure for Interpreting Types - arrow types

• Observe:

– Reynolds’ definitions of [[∆ ` τ1 → τ2]]o and [[∆ ` τ1 → τ2]]r are

derived from the cartesian closed structure of Set and Rel

Structure for Interpreting Types - arrow types

• Observe:

– Reynolds’ definitions of [[∆ ` τ1 → τ2]]o and [[∆ ` τ1 → τ2]]r are

derived from the cartesian closed structure of Set and Rel

– U : Rel→ Set× Set preserves the cartesian closed structure

Structure for Interpreting Types - arrow types

• Observe:

– Reynolds’ definitions of [[∆ ` τ1 → τ2]]o and [[∆ ` τ1 → τ2]]r are

derived from the cartesian closed structure of Set and Rel

– U : Rel→ Set× Set preserves the cartesian closed structure

– Thus [[∆; Γ ` t : τ]]r is over [[∆; Γ ` t : τ]]o × [[∆; Γ ` t : τ]]o as

required by the Abstraction Theorem

Structure for Interpreting Types - arrow types

• Observe:

– Reynolds’ definitions of [[∆ ` τ1 → τ2]]o and [[∆ ` τ1 → τ2]]r are

derived from the cartesian closed structure of Set and Rel

– U : Rel→ Set× Set preserves the cartesian closed structure

– Thus [[∆; Γ ` t : τ]]r is over [[∆; Γ ` t : τ]]o × [[∆; Γ ` t : τ]]o as

required by the Abstraction Theorem

• Conclude: Arrow types can be modeled “parametrically” — i.e., so

that the Abstraction Theorem holds — by a fibration U : E → B if

Structure for Interpreting Types - arrow types

• Observe:

– Reynolds’ definitions of [[∆ ` τ1 → τ2]]o and [[∆ ` τ1 → τ2]]r are

derived from the cartesian closed structure of Set and Rel

– U : Rel→ Set× Set preserves the cartesian closed structure

– Thus [[∆; Γ ` t : τ]]r is over [[∆; Γ ` t : τ]]o × [[∆; Γ ` t : τ]]o as

required by the Abstraction Theorem

• Conclude: Arrow types can be modeled “parametrically” — i.e., so

that the Abstraction Theorem holds — by a fibration U : E → B if

– E and B are cartesian closed categories

Structure for Interpreting Types - arrow types

• Observe:

– Reynolds’ definitions of [[∆ ` τ1 → τ2]]o and [[∆ ` τ1 → τ2]]r are

derived from the cartesian closed structure of Set and Rel

– U : Rel→ Set× Set preserves the cartesian closed structure

– Thus [[∆; Γ ` t : τ]]r is over [[∆; Γ ` t : τ]]o × [[∆; Γ ` t : τ]]o as

required by the Abstraction Theorem

• Conclude: Arrow types can be modeled “parametrically” — i.e., so

that the Abstraction Theorem holds — by a fibration U : E → B if

– E and B are cartesian closed categories

– U preserves the cartesian closed structure

Equality Preserving Arrow Fibrations

• U : E → B is an arrow fibration if

– E and B are cartesian closed

– U preserves the cartesian closed structure

Equality Preserving Arrow Fibrations

• U : E → B is an arrow fibration if

– E and B are cartesian closed

– U preserves the cartesian closed structure

• If U : E → B and B is a CCC, then Rel(U) is an equality preserving

arrow fibration if

Equality Preserving Arrow Fibrations

• U : E → B is an arrow fibration if

– E and B are cartesian closed

– U preserves the cartesian closed structure

• If U : E → B and B is a CCC, then Rel(U) is an equality preserving

arrow fibration if

– Rel(U) is an arrow fibration

Equality Preserving Arrow Fibrations

• U : E → B is an arrow fibration if

– E and B are cartesian closed

– U preserves the cartesian closed structure

• If U : E → B and B is a CCC, then Rel(U) is an equality preserving

arrow fibration if

– Rel(U) is an arrow fibration

– for all X and Y in B

Eq (X ⇒ Y) ∼= (EqX ⇒ EqY)

Equality Preserving Arrow Fibrations

• U : E → B is an arrow fibration if

– E and B are cartesian closed

– U preserves the cartesian closed structure

• If U : E → B and B is a CCC, then Rel(U) is an equality preserving

arrow fibration if

– Rel(U) is an arrow fibration

– for all X and Y in B

Eq (X ⇒ Y) ∼= (EqX ⇒ EqY)

• There are reasonable hypotheses on U making Rel(U) an equality pre-

serving arrow fibration (see MFPS’15 and FoSSaCS’16)

Structure for Interpreting Types - forall types

• The rules for type abstraction and type application suggest interpret-

ing ∀ as right adjoint to weakening by a type variable

Structure for Interpreting Types - forall types

• The rules for type abstraction and type application suggest interpret-

ing ∀ as right adjoint to weakening by a type variable

• Naive Idea: Try to look for such an adjoint on the base category, then

another on the total category, and then try to link these adjoints

Structure for Interpreting Types - forall types

• The rules for type abstraction and type application suggest interpret-

ing ∀ as right adjoint to weakening by a type variable

• Naive Idea: Try to look for such an adjoint on the base category, then

another on the total category, and then try to link these adjoints

• This is wrong: For U : Rel → Set × Set this gives all polymorphic

functions, not just the parametrically polymorphic ones!

Structure for Interpreting Types - forall types

• The rules for type abstraction and type application suggest interpret-

ing ∀ as right adjoint to weakening by a type variable

• Naive Idea: Try to look for such an adjoint on the base category, then

another on the total category, and then try to link these adjoints

• This is wrong: For U : Rel → Set × Set this gives all polymorphic

functions, not just the parametrically polymorphic ones!

• Instead: Require an adjoint for the combined fibred semantics

Structure for Interpreting Types - forall types

• The rules for type abstraction and type application suggest interpret-

ing ∀ as right adjoint to weakening by a type variable

• Naive Idea: Try to look for such an adjoint on the base category, then

another on the total category, and then try to link these adjoints

• This is wrong: For U : Rel → Set × Set this gives all polymorphic

functions, not just the parametrically polymorphic ones!

• Instead: Require an adjoint for the combined fibred semantics

• |Rel(U)|n →Eq Rel(U) has

Structure for Interpreting Types - forall types

• The rules for type abstraction and type application suggest interpret-

ing ∀ as right adjoint to weakening by a type variable

• Naive Idea: Try to look for such an adjoint on the base category, then

another on the total category, and then try to link these adjoints

• This is wrong: For U : Rel → Set × Set this gives all polymorphic

functions, not just the parametrically polymorphic ones!

• Instead: Require an adjoint for the combined fibred semantics

• |Rel(U)|n →Eq Rel(U) has

– Objects: equality preserving fibred functors from |Rel(U)|n to Rel(U)

Structure for Interpreting Types - forall types

• The rules for type abstraction and type application suggest interpret-

ing ∀ as right adjoint to weakening by a type variable

• Naive Idea: Try to look for such an adjoint on the base category, then

another on the total category, and then try to link these adjoints

• This is wrong: For U : Rel → Set × Set this gives all polymorphic

functions, not just the parametrically polymorphic ones!

• Instead: Require an adjoint for the combined fibred semantics

• |Rel(U)|n →Eq Rel(U) has

– Objects: equality preserving fibred functors from |Rel(U)|n to Rel(U)

– Morphisms: fibred natural transformations between them

Structure for Interpreting Types - forall types

• The rules for type abstraction and type application suggest interpret-

ing ∀ as right adjoint to weakening by a type variable

• Naive Idea: Try to look for such an adjoint on the base category, then

another on the total category, and then try to link these adjoints

• This is wrong: For U : Rel → Set × Set this gives all polymorphic

functions, not just the parametrically polymorphic ones!

• Instead: Require an adjoint for the combined fibred semantics

• |Rel(U)|n →Eq Rel(U) has

– Objects: equality preserving fibred functors from |Rel(U)|n to Rel(U)

– Morphisms: fibred natural transformations between them

• Note the use of discrete categories

∀-Fibrations

• Rel(U) is a ∀-fibration if

– for every projection πn : |Rel(U)|n+1 → |Rel(U)|n, the functor

◦ πn : (|Rel(U)|n →Eq Rel(U))→ (|Rel(U)|n+1 →Eq Rel(U))

has a right adjoint ∀n

∀-Fibrations

• Rel(U) is a ∀-fibration if

– for every projection πn : |Rel(U)|n+1 → |Rel(U)|n, the functor

◦ πn : (|Rel(U)|n →Eq Rel(U))→ (|Rel(U)|n+1 →Eq Rel(U))

has a right adjoint ∀n
– this family of adjunctions is natural in n

∀-Fibrations

• Rel(U) is a ∀-fibration if

– for every projection πn : |Rel(U)|n+1 → |Rel(U)|n, the functor

◦ πn : (|Rel(U)|n →Eq Rel(U))→ (|Rel(U)|n+1 →Eq Rel(U))

has a right adjoint ∀n
– this family of adjunctions is natural in n

• Then for all F : |Rel(U)|n →Eq Rel(U) and G : |Rel(U)|n+1 →Eq Rel(U)

there is an isomorphism

ϕn : Hom(F ◦ πn, G) ∼= Hom(F, ∀G)

that is natural in n

Coming Up

• Use relations fibrations that are equality preserving arrow fibrations

and ∀-fibrations to interpret System F types as fibred functors and

System F terms as fibred natural transformations

References

• Parametric polymorphism — universally. N. Ghani, F. Nordvall Fors-

berg, and F. Orsanigo. WadlerFest’16.

• Comprehensive parametric polymorphism: categorical models and type

theory. N. Ghani, F. Nordvall Forsberg, and A. Simpson. FoSSaCS’16.

• Categorical semantics for higher-order polymorphic lambda calculus.

R. A. Seely. Journal of Symbolic Computation, 1987.

