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Lecture 3:
Parametricity for ADTs and Nested Types

• Question: Can advanced data types be included in languages that otherwise
support parametricity?
• Relational parametricity was introduced by Reynolds to model type uniformity, or

representation independence, in functional languages.
• Reynolds developed parametricity for System F. It has now been developed for

many extensions of System F.
• Parametricity formalizes the intuition that a polymorphic program must act

uniformly on all of its possible type instantiations.
• It requires that every polymorphic program preserves all relations between pairs of

types at which it is instantiated.
• Wadler popularized Reynolds’ parametricity as “theorems for free” — “for free”

because it can deduce properties of programs from just their types, with no
knowledge whatsoever of the text of the programs involved.
• Wadler only considered lists (and, implicitly, other ADTs). And most of the free

theorems he gives for them in his paper are actually consequences of naturality
rather than parametricity.
• There was no reason to distinguish since, for ADTs, they coincide!
• We recently gave a parametric model for nested types. Again, there is no reason to

distinguish between consequences of naturality and of parametricity more generally.
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The Polymorphism Balance Sheet

+ Polymorphic functions can be instantiated to any types whatsoever, so they are
very general.

- Polymorphic functions must “work for” (i.e., be instantiable to) all types, so they
cannot perform type-specific operations. So, in another sense, polymorphic
functions are not very general at all.

+++ But this means that we can tell a lot about polymorphic functions just by knowing
their types...

... without knowing anything about their definitions!
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Parametricity Informally

• Consider
filter : ∀{A : Set} → (A→ Bool)→ List A→ List A

• If filter is the “real” filter function on lists, then it satisfies

filter p (map f xs) = map f (filter (p ◦ f) xs)

for f : A→ B and p : B→ Bool.

• But even without knowing if filter is the “real” filter function on lists, if it has the
type given it will satisfy the same theorem!
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Free Theorem for filter’s Type, Informally

• filter : ∀{A : Set} → (A→ Bool)→ List A→ List A must work uniformly on all
instantiations of A.

• The output list can only contain elements from the input list xs.

• Which elements, in which order, and with which multiplicity can only be decided
based on xs and the input predicate p.

• This can be decided based only on the length of xs and on the results of applying p
to the elements of xs.

• The lists map f xs and xs always have the same length.

• Applying p to an element of map f xs always has the same outcome as applying
p ◦ f to the corresponding element of xs.

• filter p always chooses “the same” elements from map f xs for output as
filter (p ◦ f) chooses from xs, except that f must still be applied to each of them to
get the same results.

• So map f (filter (p ◦ f) xs) must be equal to filter p (map f xs).

• Note that this free theorem does not just follow from the fact that List can be
interpreted as the fixpoint of a higher-order functor.

• That is, this free theorem is not a consequence of naturality.
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Some Questions

• How can we formalize this intuition? (By constructing parametric models for
calculi in which ADTs have functorial semantics.)

• What other kinds of free theorems do such parametric models give?

- Type inhabitation results — e.g., in System F, the only inhabitants of the type
∀{A : Set} → A→ A are the polymorphic identity function and bottom.

- Enforcement of abstraction barriers — e.g., ensuring that classes really are
abstract, in the sense that a client cannot distinguish different implementations of
an interface.

- Enforcement of program invariants — e.g., invariants ensuring privacy, security,
correct compilation, ...

- Proving correctness of program transformations — e.g., the free theorem for
the type ∀{A B : Set} → (A→ B→ B)→ B→ B gives a transformation that can
turn the (standard) quadratic reverse function into a linear one.

• Can we construct a parametric model in which nested types have functorial
semantics? (Yes. See “Parametricity for Primitive Nested Types”.)

• Can we construct a parametric model in which GADTs have functorial semantics?
(No, at least not a traditional parametric semantics. Stay tuned for Lecture 4.)
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Formalizing Parametricity

• To formalize parametricity, we give two interpretations for the calculus of interest.
In particular, we give two interpretations for every type in the calculus — including
any ADTs, nested types, and GADTs it supports.

• Every type T[A] with one free type variable A is given a set interpretation T0
taking sets to sets as we have already discussed.

• Every such type T[A] also has a relational interpretation T1 taking relations
R : Rel(A,B) to relations T1R : Rel(T0 A, T0B).

• Each term t(A, x) : T[A] with one free term variable x : F[A] is given a set
interpretation as a map t0 associating to each set A a morphism
t0 A : F0 A→ T0 A in Set .

• These interpretations are given inductively on the structures of T[A] and t(A, x) in
such way that they imply two fundamental theorems:

- An Identity Extension Lemma, which states that T1 EqA = EqT0A.

- An Abstraction Theorem, which states that, for any R : Rel(A,B), (t0 A, t0B)
is a morphism of relations from (F0 A,F0B,F1R) to (T0 A, T0B, T1R).

• Similar theorems are required for types and terms with any number of free type
and term variables. (In particular, if t is closed, then t0 A : T0 A.)
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The Category Rel

• A relation (A,B,R), or R : Rel(A,B), is given by

- A : Set (domain) and B : Set (codomain)

- R ⊆ A×B (so R relates a and b if (a, b) ∈ R)

• A morphism of relations (f, g) : (A1, B1, R)→ (A2, B2, S) is given by:

- f : A1 → A2

- g : B1 → B2

such that if (a, b) ∈ R then (f a, g b) ∈ S.

• The identity morphism on (A,B,R) is (idA, idB).

• Composition of morphisms in Rel is given by componentwise composition in Set .

• We can interpret the type constructors >, ⊥, sums, and products in Rel whenever
we can interpret them in Set .

• We can also take fixpoints in Rel whenever we can take them in Set .
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Interpreting Type Constructors

• The interpretations of ⊥, >, sums, and products all preserve relatedness, as does
the fixpoint operator.

• The initial object of Rel is (∅, ∅, ∅), where the third component is the empty
relation on the empty set.

• The terminal object of Rel is (1, 1, 1× 1), where 1 is the terminal object of Set ,
i.e., is “the” singleton set.

• The sum (A1, B1, R1) + (A2, B2, R2) is (A1 +A2, B1 +B2, R), where

R = {(inl a1, inl b1) | (a1, b1) ∈ R1} ∪ {(inr a2, inr b2) | (a2, b2) ∈ R2}

• The product (A1, B1, R1)× (A2, B2, R2) is (A1 ×A2, B1 ×B2, R), where

R = {((a1, a2), (b1, b2)) | (a1, b1) ∈ R1 and (a2, b2) ∈ R2}

• The relational interpretation of each operation type constructor transforms its
argument relations R : Rel(A,B) into a relation that relates elements obtained by
applying the set interpretation of the operation to elements in A to elements
obtained by applying the set interpretation of the operation to B.
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Relation Transformers

• A k-ary relation transformer is a triple F = (F 1, F 2, F ∗) where

- F 1 and F 2 are ω-cocontinuous functors from Setk to Set and F ∗ is a
ω-cocontinuous functor from Relk to Rel .

- if R1 : Rel(A1, B1), ..., Rk : Rel(Ak, Bk) then F ∗R : Rel(F 1A,F 2B).

- if (α1, β1) : R1 → S1, ..., (αk, βk) : Rk → Sk then F ∗(α, β) = (F 1α, F 2β).

• Define FR = F ∗R and F (α, β) = F ∗(α, β).
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Functors on Categories of Relation

Transformers

• A functor H on RTk is a triple H = (H1, H2, H∗) where

- H1 and H2 are functors from [Setk,Set ] to [Setk,Set ].

- H∗ is a functor from RTk to [Relk,Rel ].

- For all R : Rel(A,B),

π1((H
∗(δ1, δ2))R) = (H1δ1)A and π2((H

∗(δ1, δ2))R) = (H2δ2)B

- The action of H on objects is given by

H (F 1, F 2, F ∗) = (H1F 1, H2F 2, H∗(F 1, F 2, F ∗))

- The action of H on morphisms is given by

H (δ1, δ2) = (H1δ1, H2δ2)

- many coherence conditions hold.

• If H = (H1, H2, H∗) is a functor on RTk then

µH = lim−→n∈N (HnK0) = (µH1, µH2, lim−→n∈N (HnK0)
∗)

so the fixpoint operator also has an intepretation as a relation transformer.
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Relational Interpretations of ADTs and

Nested Types

• If D is a type constructor for an ADT or nested type, then the action of the
relational interpretation D1 of D on relations R : Rel(A,B) interpreting its free
type variables is the relation D1R : Rel(D0 A,D0B) where d ∈ D0 A and
d′ ∈ D0B are related if

- d and d′ have the same shape

and

- every data element in d is related by R to the corresponding data element in d′



Examples

• The lists [1, 2, 3, 4] and [5, 6, 7, 8] are related by the relation List1 P where

P = (N,N, {(n,m) : N× N | n and m have the same parity})

• The binary trees

node (leaf 1) false (node (leaf 2) true (leaf 3))

and
node (leaf 7) true (node (leaf 8) true (leaf 9))

are related by the relation Tree1 P ≤Bool

• The perfect trees

pnode (pnode (pleaf 1) (pleaf 2)) (pnode (pleaf 3) (pleaf 4))

and
pnode (pnode (pleaf 5) (pleaf 6)) (pnode (pleaf 7) (pleaf 8))

are related by the relation PTree1 ≤N.
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A Parametric Model for ADTs and Nested

Types

• We have set and relational interpretations for ADTs and nested types.

• We can also define a term calculus and its set or relational semantics in such a way
that the resulting model is parametric, i.e., that the IEL and AT hold.

• The IEL says that if T[A] is a type, then T1 EqA = EqT0A.

• The AT states that if t(A, x) :: G[A] is a term with one free term variable x :: F[A]
then, for any R : Rel(A,B), (t0 A, t0B) is a morphism from (F0 A,F0B,F1R)
to (T0 A, T0B, T1R).
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A Free Theorem

• Consider flatten : ∀ {A : Set} → PTree A→ List A.

• By the AT, for any R : Rel(A,B),

(flatten0 A,flatten0B) : PTree1R→ List1R

• If p and p′ are perfect trees of the same shape, and if their p and p′ have
R-related data in corresponding positions, then flatten0 Ap and flatten0B p

′

interpret lists with the same length and R-related data in corresponding positions.

• Taking R = {(x, f x)} for f : A→ B gives:

If mapPTree f p = p′ then mapList f (flatten Ap) = flatten B p′.

• That is, mapList f (flatten Ap) = flatten B (mapPTree f p)

• This is the semantic equivalent of our naturality property from Lecture 1.

• Reflecting back into syntax (and eliding the type arguments) gives

mapList f (flatten p) = flatten (mapPTree f p)

• We can also get this result from naturality.

• The AT can prove other kinds of results — e.g., inhabitation results and short cut
fusion and the existence of deep induction rules for ADTs and nested types — that
are not merely syntactic reflections of naturality.
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• This is the semantic equivalent of our naturality property from Lecture 1.

• Reflecting back into syntax (and eliding the type arguments) gives

mapList f (flatten p) = flatten (mapPTree f p)

• We can also get this result from naturality.

• The AT can prove other kinds of results — e.g., inhabitation results and short cut
fusion and the existence of deep induction rules for ADTs and nested types — that
are not merely syntactic reflections of naturality.
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Free Theorem for filter’s Type, Formally

• Consider filter : ∀{A : Set} → (A→ Bool)→ List A→ List A.

• By the AT, for any R : Rel(A,B),

(filter0 A,filter0B) : (R→ EqualBool )→ List1R→ List1R

• Taking R = {(x, f x)} for f : A→ B gives:

If (p, p′) are such that f y = y′ implies p y = p′ y′, and if map f xs = xs′, then
map f (filter p xs) = filter p′ xs′

• That is, if p y = p′ (f y) then map f (filter p xs) = filter p′ (map f xs)

• That is, map f (filter (p′ ◦ f)xs) = filter p′ (map f xs)

• This is the non-naturality free theorem we informally argued correct at the start of
today’s lecture.
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Short Cut Fusion for Lists
• Let

fold : ∀ {A B : Set} → B→ (A→ B→ B)→ List A→ B
fold n c Nil = n
fold n c (x :: xs) = c x (fold n c xs)

• Theorem: If g : ∀{A B : Set} → B→ (A→ B→ B)→ B and n : T′ and
c : T→ T′ → T′, then

fold n c (g Nil (::)) = g n c (∗)

• Proof: The AT for System F with ADTs says that, for any R ∈ Rel(S, T ′),

(gS , gT ′ ) ∈ R→ (EqualT → R→ R)→ R

• Let R = {(xs, r) | fold n c xs = r} ∈ Rel(List T, T ′).
• Then

(Nil, n) ∈ R since fold n cNil = n
((::), c) ∈ R since fold n c (y :: ys) = c y (fold n c ys)

• So
(gList T Nil (::), gT ′ n c) ∈ R

i.e.,
fold n c (gList T Nil (::)) = gT ′ n c

• Reflecting back into syntax gives (∗).
• This program transformation — known as short cut fusion — is not a “naturality

style” theorem. It requires the full power of parametricity.
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Short Cut Fusion for Nested Types

• We have a similar theorem for every ADT and nested type.

• Since the functors underlying nested types are higher-order, so are their folds.

• Let

foldP : ∀ {A : Set} → ∀{F : Set→ Set} →
(∀A.A→ F A)→ (∀A.F(A× A)→ F A)→ PTree A→ F A

foldP l n (pleaf x) = l n
foldP l n (pnode xs) = n (foldP l n xs)

• Theorem: If

g : ∀ {A : Set} →
(∀ {F : Set→ Set} → (∀A.A→ F A)→ (∀A.F (A× A)→ F A)→ F A)→

PTree A

and l : ∀ {A : Set} → A→ G A and n : ∀ {A : Set} → G(A× A)→ GA), then

foldP l n (g pleaf pnode) = g l n
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Summary

• We have seen that we can construct parametric models for languages supporting
ADTs and nested types.

• We have seen how to use such a model to derive naturality results and program
transformations. We can also derive other standard consequences of parametricity
— such as inhabitation results and deep induction rules — in the presence of ADTs
and nested types.

• Question: Can we construct parametric models — and thus derive naturality
results, program transformations, deep induction rules, and inhabitation results —
for GADTs?

• Next time we’ll see that:

- We can construct parametric models for discrete GADTs — but of course these
do not have naturality theorems.

- We can construct models in which GADTs have functorial set and relational
interpretations — but these cannot be parametric.

• Question: What should it mean for two GADTs to be related, given that the shape
depends on the type of the data it contains?
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