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Where Were We?'

Last time we set up all the infrastructure we need to give our bifibra-

tional parametric model of System F

Today we will use relations fibrations on categories other than Set
that are both equality preserving arrow fibrations and V-fibrations to

interpret System F
— types as fibred functors

— terms as fibred natural transformations
This gives very general parametric models for System F

Throughout, let Rel(U) be an equality preserving arrow fibration and
V-fibration
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Fibrational Semantics of Types'

e Define fibred functors
[A 7] : |Rel(U)|'A — Rel(U)
by
— Type variables: [A F o;]oX = X; and [A + o] R = R;
— Arrow types: [AF 1 > ] =[AF 7] = [AF ]
— Forall types: [A F Va.7] =V[A,a F 7]

e No definition for [A F 7] on morphisms is needed because the domain
of [A F 7] is discrete
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Proposition The interpretation of every System F type is an equality

preserving fibred functor
Proof: By induction on the structure of 7.

If 7 = Va.7/, then [A F 7] = V[A,a + 7] is an equality preserving
fibred functor whenever [A, a - 7'] is, just by the definition of

vV : (|Rel(U)|™*1 —eq Rel(U)) — (|Rel(U)|™ —gq Rel(U))
Indeed, the very existence of V in a V-fibration requires that if F' is
equality preserving then so is VF'

In our model, the Identity Extension Lemma is “baked into” the inter-

pretation of types, rather than something to be proved post facto

If U is faithful, then the V-fibration requirement can be reformulated

in terms of more basic concepts using opfibrational structure of U
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Fibrational Semantics of Terms - The Set UpI

e In a CCC, for all X and Y, there is an object X = Y and a isomor-
phism
A: Hm(W x X,Y) 2 Hom(W, X = Y)

that is natural in W

® The unit of this adjunction is the evaluation map
evxy = A (idxoy): (X =Y)Xx X =Y
e In a V-fibration, for every F' and G, there is are isomorphisms
¢n : Hom(F o m,,G) = Hom(F,V,G)

that are natural in n
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Define fibred natural transformations

[A;sTHE:7]:[AFT] - [AF 7]

o If
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e m; is the 7! projection on both B and &
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Fibrational Semantics of Terms - term applications'

o If
A;THt i AT Hty T — 1
A;F|_t2t1:T2
then
[A; T Hixty: ] @ [AFT] — [AF 7]

[A; T Ftaty:m] = evpynpo([A; T Hte:m — w],[A;T F it 7))

e This is sensible because
[A;T Fty: 1] : [AFT] — [AF 7]
[A; T Fty: 1 — 72 : [AFT] = ([AF7T] = [AF 7]
([AsT i1 = ], [AT Etim]) 2 [T] = ([m] = [r2]) x [7]

o () (X =YI)X(X—->W) =X = (YxW)is (f,9) X = fX xgX

e This specializes to our Set interpretation of term applications



Fibrational Semantics of Terms - type abstractions

o If

A,o; T'Ht: T
A;T'H Aot : Va.t

then
[A; T - Aa.t:Va.r] @ [AFT] — [AF Va.7]

= [AFT] - V[A,alF 7]
[A; T F Aot : Vo] = pa[A,o; T =1: 7]
e This is sensible because « is not free in I', so
[A,a; THE:7T] @ [A,aFT] — [A,alb 7]
= |IA|‘F]]O7T|A|—>[[A,G|_T]]



Fibrational Semantics of Terms - type applications'

o If
A;T'HtE:Vars AFET
A;THtm: o — 7]
then
[A;THtm :Rla—7]] @ [AFT] = [AF rja— 7]

[A; T Htm : Rla— 7)) = 90|_A1| [A; T+ t: Va.r] o (id?, [A F )
e This is sensible because

[AsT Ht:Varm] ¢ [AFT] = [AF Va.r]
= [AFT] - V[A,al ]
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Validating 3- and n-RuleSI

Our model is sensible by construction

Reynolds’ model is an instance of ours, assuming a constructive metathe-
ory — e.g., the Calculus of Constructions with impredicative Set
Proposition If A7 and A,a;T'Ht: 1

1. [A;T F (Aa.t) : ela— 11]] = [A;T F tla — 1] : me[a — 71]]

2. [AsTHt:VB.1] = [A;T F Aata: VE.7]

Proposition If A;sI'Ht; : 7 and AsTy,x : i H a1 7

1. [A;T F (Ax.ta)ty : 2] = [A;T F ta[x — t1] : 2]

2. [AsTHt:7 =5 ] = [A;T F Axdtx : 71 — 72
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e Our model actually gives rise to a A\2-fibration
o Seely showed that A2-fibrations always soundly interpret System F

e Theorem If Rel(U) is an equality preserving arrow fibration and a
V-fibration, then there is a A2-fibration in which types A F 7 are inter-
preted as equality preserving fibred functors [A + 7] : |Rel(U)|2 —g,
Rel(U) and terms A;I' -t : 7 are interpreted as fibred natural trans-
formations [A;THt: 7] : [AFT] —» [AF 7]

[T]-
/\
|IRel(&) 1A { 141~ Rel(€)
\_/
[1-
|Rel(U) |14 U
[T]ox [TTo

eXll%e
|’3|IAI X |B|IAI U [tlox[tlo. B X B
\/
[T]oXx[7]o



Unwinding the Theorem'

In particular, for every fibration U : £ — B whose relations fibration is an
equality preserving arrow fibration and a forall fibration, for every System
F type A+ 7 and term A;I' -t : 7, we get:



Unwinding the Theorem'

In particular, for every fibration U : £ — B whose relations fibration is an
equality preserving arrow fibration and a forall fibration, for every System
F type A+ 7 and term A;I' -t : 7, we get:

1. An object interpretation of A - 7 as a functor [A - 7], : |B|!4l = B



Unwinding the Theorem'

In particular, for every fibration U : £ — B whose relations fibration is an
equality preserving arrow fibration and a forall fibration, for every System
F type A+ 7 and term A;I' -t : 7, we get:

1. An object interpretation of A - 7 as a functor [A - 7], : |B|!4l = B

2. A relational interpretation of A - 7 as a functor [A 7], : |Rel(£)|/4] —
Rel(€)



Unwinding the Theorem'

In particular, for every fibration U : £ — B whose relations fibration is an
equality preserving arrow fibration and a forall fibration, for every System
F type A+ 7 and term A;I' -t : 7, we get:

1. An object interpretation of A - 7 as a functor [A - 7], : |B|!4l = B

2. A relational interpretation of A - 7 as a functor [A 7], : |Rel(£)|/4] —
Rel(€)

3. A proof of the Identity Extension Lemma as in the previous lecture,

i.e., a proof that [A I 7] is equality preserving



Unwinding the Theorem'

In particular, for every fibration U : £ — B whose relations fibration is an
equality preserving arrow fibration and a forall fibration, for every System
F type A+ 7 and term A;I' -t : 7, we get:

1. An object interpretation of A - 7 as a functor [A - 7], : |B|!4l = B

2. A relational interpretation of A - 7 as a functor [A 7], : |Rel(£)|/4] —
Rel(€)

3. A proof of the Identity Extension Lemma as in the previous lecture,
i.e., a proof that [A I 7] is equality preserving

4. An object interpretation of A;I' - ¢t : 7 as a natural transformation
[AsTHE:7]o:[AFT]o — [AFT]0



Unwinding the Theorem'

In particular, for every fibration U : £ — B whose relations fibration is an

equality preserving arrow fibration and a forall fibration, for every System
F type A+ 7 and term A;I' -t : 7, we get:

1.
2.

An object interpretation of A - 7 as a functor [A + 7], : |B|'Al — B

A relational interpretation of A - 7 as a functor [A - 7], : |Rel(€)|/A] —
Rel (&)

. A proof of the Identity Extension Lemma as in the previous lecture,

i.e., a proof that [A I 7] is equality preserving

. An object interpretation of A;I' - t : 7 as a natural transformation

[AsTHt:7]o:[AFT], = [AFT]0

. A proof of the Abstraction Theorem as in the previous lecture, i.e.,

a proof that A;I' - ¢t : 7 has a relational interpretation as a natural
transformation [A;T ¢t : 7], : [AFT], — [AF 7], over [A;5T -t
Tlo X [A;T ¢ : 7],.
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Additional Observations'

Since we’ve actually constructed a A2-fibration, we have a powerful

internal language for our model
We can use this language to reason about our model using System F

This allows us to prove
— our model has initial algebras for strong functors
— our model has final coalgebras for strong functors

— parametricity implies dinaturality

These are litmus tests verifying that a model is “good”



Summing UpI

e Parametricity entails replacing usual categorical semantics involving

categories, functors, and natural transformations



Summing UpI

e Parametricity entails replacing usual categorical semantics involving
categories, functors, and natural transformations
with a semantics based on

fibrations, fibred functors, and fibred natural transformations



Summing UpI

e Parametricity entails replacing usual categorical semantics involving
categories, functors, and natural transformations
with a semantics based on

fibrations, fibred functors, and fibred natural transformations

e This hits the sweet spot between the simplicity and “light structure”

of functorial models and the ability to prove expected key results
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Examples I

The construction of examples of our framework is delicate
But several well-known models are instances of our framework

Some must be regarded as being internal to the Calculus of Construc-

tions with impredicative Set
At least one must be be regarded as internal to the category of w-sets
They are discussed in the MFPS paper (and in the exercises!)

I ask you to show that the identity fibration Id : Set — Set is an

instance of our framework that models ad hoc polymorphism...

...and to show that, ignoring size issues, Reynolds’ construction gives

an instance of our framework via the relations fibration on Set

The PER model of Bainbridge et al. is also an instance (if bifibrations

are understood as internal to the category of w-sets)
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A Prescriptive (General Framework'

Our framework is very general

It is thus prescriptive, as well as descriptive

Different fibrations give rise to parametric models with very different
flavors

— changing the base category of the fibration changes the object model
used to interpret types and terms

— changing the total category and the fibration (i.e., the functor itself)
changes the notion of relational logic

Ex: Using non-standard relations, we can construct a model of “multi-
valued parametricity” over a constructively completely distributive

complete non-trivial lattice of truth values
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Extensions I

At WoLLIC’15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico
Orsanigo showed how to avoid baking the IEL into our framework,
but rather derive it from more primitive assumptions about equality-

preserving cones that can be used to interpret forall types

At FoSSaCS’16, Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simp-
son showed how comprehension for U can be used to ensure that Rel(U)
is an equality preserving arrow fibration [This paper won the best the-

ory paper award for ETAPS]
At WadlerFest, Neil Ghani, Fredrik Nordvall Forsberg, and Federico

Orsanigo developed a proof-relevant version of our framework

Clément Aubert, Fredrik Nordvall Forsberg, and I are working on ex-
tending our framework to a polymorphic calculus with computational
effects (System F with effect-free constants and algebraic operations
in the style of Plotkin and Power’s effectful simply-typed calculus \.)
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