Reynolds' Parametricity

Patricia Johann
Appalachian State University

cs.appstate.edu/~johannp

Based on joint work with Neil Ghani, Fredrik Nordvall Forsberg, Federico Orsanigo, and Tim Revell

Course Outline

Topic: Reynolds' theory of parametric polymorphism for System \mathbf{F}
Goals: - extract the fibrational essence of Reynolds' theory - generalize Reynolds' construction to very general models

- Lecture 1: Reynolds' theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F

Course Outline

Topic: Reynolds' theory of parametric polymorphism for System \mathbf{F}
Goals: - extract the fibrational essence of Reynolds' theory - generalize Reynolds' construction to very general models

- Lecture 1: Reynolds' theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F

Where Were We?

- Last time we set up all the infrastructure we need to give our bifibrational parametric model of System F

Where Were We?

- Last time we set up all the infrastructure we need to give our bifibrational parametric model of System F
- Today we will use relations fibrations on categories other than Set that are both equality preserving arrow fibrations and \forall-fibrations to interpret System F

Where Were We?

- Last time we set up all the infrastructure we need to give our bifibrational parametric model of System F
- Today we will use relations fibrations on categories other than Set that are both equality preserving arrow fibrations and \forall-fibrations to interpret System F
- types as fibred functors

Where Were We?

- Last time we set up all the infrastructure we need to give our bifibrational parametric model of System F
- Today we will use relations fibrations on categories other than Set that are both equality preserving arrow fibrations and \forall-fibrations to interpret System F
- types as fibred functors
- terms as fibred natural transformations

Where Were We?

- Last time we set up all the infrastructure we need to give our bifibrational parametric model of System F
- Today we will use relations fibrations on categories other than Set that are both equality preserving arrow fibrations and \forall-fibrations to interpret System F
- types as fibred functors
- terms as fibred natural transformations
- This gives very general parametric models for System F

Where Were We?

- Last time we set up all the infrastructure we need to give our bifibrational parametric model of System F
- Today we will use relations fibrations on categories other than Set that are both equality preserving arrow fibrations and \forall-fibrations to interpret System F
- types as fibred functors
- terms as fibred natural transformations
- This gives very general parametric models for System F
- Throughout, let $\operatorname{Rel}(\boldsymbol{U})$ be an equality preserving arrow fibration and \forall-fibration

Fibrational Semantics of Types

- Define fibred functors

$$
\llbracket \Delta \vdash \tau \rrbracket:|\operatorname{Rel}(U)|^{|\Delta|} \rightarrow \operatorname{Rel}(U)
$$

by

Fibrational Semantics of Types

- Define fibred functors

$$
\llbracket \Delta \vdash \tau \rrbracket:|\operatorname{Rel}(U)|^{|\Delta|} \rightarrow \operatorname{Rel}(U)
$$

by

- Type variables: $\llbracket \Delta \vdash \alpha_{i} \rrbracket_{o} \bar{X}=\boldsymbol{X}_{\boldsymbol{i}}$ and $\llbracket \Delta \vdash \boldsymbol{\alpha}_{i} \rrbracket_{r} \overline{\boldsymbol{R}}=\boldsymbol{R}_{\boldsymbol{i}}$

Fibrational Semantics of Types

- Define fibred functors

$$
\llbracket \Delta \vdash \tau \rrbracket:|\operatorname{Rel}(U)|^{|\Delta|} \rightarrow \operatorname{Rel}(U)
$$

by

- Type variables: $\llbracket \Delta \vdash \alpha_{i} \rrbracket_{o} \bar{X}=\boldsymbol{X}_{i}$ and $\llbracket \Delta \vdash \alpha_{i} \rrbracket_{r} \overline{\boldsymbol{R}}=\boldsymbol{R}_{i}$
- Arrow types: $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket=\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket$

Fibrational Semantics of Types

- Define fibred functors

$$
\llbracket \Delta \vdash \tau \rrbracket:|\operatorname{Rel}(U)|^{|\Delta|} \rightarrow \operatorname{Rel}(U)
$$

by

- Type variables: $\llbracket \Delta \vdash \alpha_{i} \rrbracket_{o} \bar{X}=\boldsymbol{X}_{i}$ and $\llbracket \Delta \vdash \alpha_{i} \rrbracket_{r} \overline{\boldsymbol{R}}=\boldsymbol{R}_{i}$
- Arrow types: $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket=\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket$
- Forall types: $\llbracket \Delta \vdash \forall \alpha . \tau \rrbracket=\forall \llbracket \Delta, \alpha \vdash \tau \rrbracket$

Fibrational Semantics of Types

- Define fibred functors

$$
\llbracket \Delta \vdash \tau \rrbracket:|\operatorname{Rel}(U)|^{|\Delta|} \rightarrow \operatorname{Rel}(U)
$$

by

- Type variables: $\llbracket \Delta \vdash \alpha_{i} \rrbracket_{o} \bar{X}=X_{i}$ and $\llbracket \Delta \vdash \alpha_{i} \rrbracket_{r} \overline{\boldsymbol{R}}=\boldsymbol{R}_{i}$
- Arrow types: $\llbracket \Delta \vdash \tau_{1} \rightarrow \tau_{2} \rrbracket=\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket$
- Forall types: $\llbracket \Delta \vdash \forall \alpha . \tau \rrbracket=\forall \llbracket \Delta, \alpha \vdash \tau \rrbracket$
- No definition for $\llbracket \Delta \vdash \tau \rrbracket$ on morphisms is needed because the domain of $\llbracket \Delta \vdash \tau \rrbracket$ is discrete

Type Interpretations are Equality Preserving

- Proposition The interpretation of every System F type is an equality preserving fibred functor

Type Interpretations are Equality Preserving

- Proposition The interpretation of every System F type is an equality preserving fibred functor
- Proof: By induction on the structure of τ

Type Interpretations are Equality Preserving

- Proposition The interpretation of every System F type is an equality preserving fibred functor
- Proof: By induction on the structure of τ
- If $\tau=\forall \alpha \cdot \tau^{\prime}$, then $\llbracket \Delta \vdash \tau \rrbracket=\forall \llbracket \Delta, \alpha \vdash \tau^{\prime} \rrbracket$ is an equality preserving fibred functor whenever $\llbracket \Delta, \alpha \vdash \tau^{\prime} \rrbracket$ is, just by the definition of

$$
\forall:\left(|\operatorname{Rel}(U)|^{n+1} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right) \rightarrow\left(|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right)
$$

Type Interpretations are Equality Preserving

- Proposition The interpretation of every System F type is an equality preserving fibred functor
- Proof: By induction on the structure of τ
- If $\tau=\forall \alpha \cdot \tau^{\prime}$, then $\llbracket \Delta \vdash \tau \rrbracket=\forall \llbracket \Delta, \alpha \vdash \tau^{\prime} \rrbracket$ is an equality preserving fibred functor whenever $\llbracket \Delta, \alpha \vdash \tau^{\prime} \rrbracket$ is, just by the definition of

$$
\forall:\left(|\operatorname{Rel}(U)|^{n+1} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right) \rightarrow\left(|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right)
$$

- Indeed, the very existence of \forall in a \forall-fibration requires that if F is equality preserving then so is $\forall F$

Type Interpretations are Equality Preserving

- Proposition The interpretation of every System F type is an equality preserving fibred functor
- Proof: By induction on the structure of τ
- If $\tau=\forall \alpha \cdot \tau^{\prime}$, then $\llbracket \Delta \vdash \tau \rrbracket=\forall \llbracket \Delta, \alpha \vdash \tau^{\prime} \rrbracket$ is an equality preserving fibred functor whenever $\llbracket \Delta, \alpha \vdash \tau^{\prime} \rrbracket$ is, just by the definition of

$$
\forall:\left(|\operatorname{Rel}(U)|^{n+1} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right) \rightarrow\left(|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right)
$$

- Indeed, the very existence of \forall in a \forall-fibration requires that if F is equality preserving then so is $\forall F$
- In our model, the Identity Extension Lemma is "baked into" the interpretation of types, rather than something to be proved post facto

Type Interpretations are Equality Preserving

- Proposition The interpretation of every System F type is an equality preserving fibred functor
- Proof: By induction on the structure of τ.
- If $\tau=\forall \alpha \cdot \tau^{\prime}$, then $\llbracket \Delta \vdash \tau \rrbracket=\forall \llbracket \Delta, \alpha \vdash \tau^{\prime} \rrbracket$ is an equality preserving fibred functor whenever $\llbracket \Delta, \alpha \vdash \tau^{\prime} \rrbracket$ is, just by the definition of

$$
\forall:\left(|\operatorname{Rel}(U)|^{n+1} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right) \rightarrow\left(|\operatorname{Rel}(U)|^{n} \rightarrow_{\mathrm{Eq}} \operatorname{Rel}(U)\right)
$$

- Indeed, the very existence of \forall in a \forall-fibration requires that if F is equality preserving then so is $\forall F$
- In our model, the Identity Extension Lemma is "baked into" the interpretation of types, rather than something to be proved post facto
- If \boldsymbol{U} is faithful, then the \forall-fibration requirement can be reformulated in terms of more basic concepts using opfibrational structure of U

Fibrational Semantics of Terms - The Set Up

- In a CCC, for all X and Y, there is an object $X \Rightarrow Y$ and a isomorphism

$$
\lambda: \operatorname{Hom}(W \times X, Y) \cong \operatorname{Hom}(W, X \Rightarrow Y)
$$

that is natural in W

Fibrational Semantics of Terms - The Set Up

- In a CCC, for all X and Y, there is an object $X \Rightarrow Y$ and a isomorphism

$$
\lambda: \operatorname{Hom}(W \times X, Y) \cong \operatorname{Hom}(W, X \Rightarrow Y)
$$

that is natural in W

- The unit of this adjunction is the evaluation map

$$
\mathbf{e v}_{X, Y}=\lambda^{-1}\left(i d_{X \Rightarrow Y}\right):(X \Rightarrow Y) \times X \rightarrow Y
$$

Fibrational Semantics of Terms - The Set Up

- In a CCC, for all X and Y, there is an object $X \Rightarrow Y$ and a isomorphism

$$
\lambda: \operatorname{Hom}(W \times X, Y) \cong \operatorname{Hom}(W, X \Rightarrow Y)
$$

that is natural in W

- The unit of this adjunction is the evaluation map

$$
\mathbf{e v}_{X, Y}=\lambda^{-1}\left(i d_{X \Rightarrow Y}\right):(X \Rightarrow Y) \times X \rightarrow Y
$$

- In a \forall-fibration, for every F and G, there is are isomorphisms

$$
\varphi_{n}: \operatorname{Hom}\left(F \circ \pi_{n}, G\right) \cong \operatorname{Hom}\left(F, \forall_{n} G\right)
$$

that are natural in n

Fibrational Semantics of Terms - term variables

Define fibred natural transformations

$$
\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau \rrbracket
$$

by

Fibrational Semantics of Terms - term variables

Define fibred natural transformations

$$
\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau \rrbracket
$$

by

- If

$$
\frac{\Delta \vdash \tau_{i} \quad x_{i}: \tau_{i} \in \Gamma}{\Delta ; \Gamma \vdash x_{i}: \tau_{i}}
$$

then

$$
\llbracket \Delta ; \Gamma \vdash x_{i}: \tau_{i} \rrbracket=\pi_{i}
$$

Fibrational Semantics of Terms - term variables

Define fibred natural transformations

$$
\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau \rrbracket
$$

by

- If

$$
\frac{\Delta \vdash \tau_{i} \quad x_{i}: \tau_{i} \in \Gamma}{\Delta ; \Gamma \vdash x_{i}: \tau_{i}}
$$

then

$$
\llbracket \Delta ; \Gamma \vdash x_{i}: \tau_{i} \rrbracket=\pi_{i}
$$

- π_{i} is the $i^{\text {th }}$ projection on both \mathcal{B} and \mathcal{E}

Fibrational Semantics of Terms - term variables

Define fibred natural transformations

$$
\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau \rrbracket
$$

by

- If

$$
\frac{\Delta \vdash \tau_{i} \quad x_{i}: \tau_{i} \in \Gamma}{\Delta ; \Gamma \vdash x_{i}: \tau_{i}}
$$

then

$$
\llbracket \Delta ; \Gamma \vdash x_{i}: \tau_{i} \rrbracket=\pi_{i}
$$

- π_{i} is the $i^{\text {th }}$ projection on both \mathcal{B} and \mathcal{E}
- This specializes to our Set interpretation of variables

Fibrational Semantics of Terms - term abstractions

- If

$$
\frac{\Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2} \rrbracket: \quad \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow\left(\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket\right) \\
& \llbracket \Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2} \rrbracket=\lambda \llbracket \Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2} \rrbracket
\end{aligned}
$$

Fibrational Semantics of Terms - term abstractions

- If

$$
\frac{\Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2} \rrbracket: \quad \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow\left(\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket\right) \\
& \llbracket \Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2} \rrbracket=\lambda \llbracket \Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2} \rrbracket
\end{aligned}
$$

- This is sensible because

$$
\llbracket \Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2} \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \times \llbracket \Delta \vdash \tau_{1} \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket
$$

Fibrational Semantics of Terms - term abstractions

- If

$$
\frac{\Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2} \rrbracket: \quad \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow\left(\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket\right) \\
& \llbracket \Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2} \rrbracket=\lambda \llbracket \Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2} \rrbracket
\end{aligned}
$$

- This is sensible because

$$
\llbracket \Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2} \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \times \llbracket \Delta \vdash \tau_{1} \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket
$$

- $\boldsymbol{\lambda}$ is the right adjoint to \times in both \mathcal{B} and \mathcal{E}

Fibrational Semantics of Terms - term abstractions

- If

$$
\frac{\Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2}}{\Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2} \rrbracket: \quad \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow\left(\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket\right) \\
& \llbracket \Delta ; \Gamma \vdash \lambda x . t: \tau_{1} \rightarrow \tau_{2} \rrbracket=\lambda \llbracket \Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2} \rrbracket
\end{aligned}
$$

- This is sensible because

$$
\llbracket \Delta ; \Gamma, x: \tau_{1} \vdash t: \tau_{2} \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \times \llbracket \Delta \vdash \tau_{1} \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket
$$

- $\boldsymbol{\lambda}$ is the right adjoint to \times in both \mathcal{B} and \mathcal{E}
- This specializes to our Set interpretation of term abstractions

Fibrational Semantics of Terms - term applications

- If

$$
\frac{\Delta ; \Gamma \vdash t_{1}: \tau_{1} \quad \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2}}{\Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket \\
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket=\mathbf{e v}_{\tau_{1}, \tau_{2}} \circ\left\langle\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket, \llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket\right\rangle
\end{aligned}
$$

Fibrational Semantics of Terms - term applications

- If

$$
\frac{\Delta ; \Gamma \vdash t_{1}: \tau_{1} \quad \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2}}{\Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket: \quad \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket \\
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket=\operatorname{ev}_{\tau_{1}, \tau_{2}} \circ\left\langle\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket, \llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket\right\rangle
\end{aligned}
$$

- This is sensible because

$$
\llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{1} \rrbracket
$$

Fibrational Semantics of Terms - term applications

- If

$$
\frac{\Delta ; \Gamma \vdash t_{1}: \tau_{1} \quad \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2}}{\Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket: \quad \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket \\
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket=\operatorname{ev}_{\tau_{1}, \tau_{2}} \circ\left\langle\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket, \llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket\right\rangle
\end{aligned}
$$

- This is sensible because

$$
\begin{array}{ll}
\llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket & : \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{1} \rrbracket \\
\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow\left(\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket\right)
\end{array}
$$

Fibrational Semantics of Terms - term applications

- If

$$
\frac{\Delta ; \Gamma \vdash t_{1}: \tau_{1} \quad \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2}}{\Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket: \quad \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket \\
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket=\operatorname{ev}_{\tau_{1}, \tau_{2}} \circ\left\langle\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket, \llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket\right\rangle
\end{aligned}
$$

- This is sensible because

$$
\begin{array}{ll}
\llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket & : \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{1} \rrbracket \\
\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket & : \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow\left(\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket\right) \\
\left\langle\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket, \llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket\right\rangle & : \llbracket \Gamma \rrbracket \rightarrow\left(\llbracket \tau_{1} \rrbracket \Rightarrow \llbracket \tau_{2} \rrbracket\right) \times \llbracket \tau_{1} \rrbracket
\end{array}
$$

Fibrational Semantics of Terms - term applications

- If

$$
\frac{\Delta ; \Gamma \vdash t_{1}: \tau_{1} \quad \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2}}{\Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket: \quad \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket \\
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket=\operatorname{ev}_{\tau_{1}, \tau_{2}} \circ\left\langle\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket, \llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket\right\rangle
\end{aligned}
$$

- This is sensible because

$$
\begin{array}{ll}
\llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket & : \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{1} \rrbracket \\
\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket & : \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow\left(\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket\right) \\
\left\langle\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket, \llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket\right\rangle & : \llbracket \Gamma \rrbracket \rightarrow\left(\llbracket \tau_{1} \rrbracket \Rightarrow \llbracket \tau_{2} \rrbracket\right) \times \llbracket \tau_{1} \rrbracket \\
\bullet\langle-,-\rangle:(\bar{X} \rightarrow Y) \times(\bar{X} \rightarrow W) \rightarrow \bar{X} \rightarrow(Y \times W) \text { is }\langle f, g\rangle \bar{X}=f \bar{X} \times g \bar{X}
\end{array}
$$

Fibrational Semantics of Terms - term applications

- If

$$
\frac{\Delta ; \Gamma \vdash t_{1}: \tau_{1} \quad \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2}}{\Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2}}
$$

then

$$
\begin{aligned}
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket \\
& \llbracket \Delta ; \Gamma \vdash t_{2} t_{1}: \tau_{2} \rrbracket=\mathrm{ev}_{\tau_{1}, \tau_{2}} \circ\left\langle\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket, \llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket\right\rangle
\end{aligned}
$$

- This is sensible because

$$
\begin{array}{ll}
\llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket & : \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{1} \rrbracket \\
\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket & : \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow\left(\llbracket \Delta \vdash \tau_{1} \rrbracket \Rightarrow \llbracket \Delta \vdash \tau_{2} \rrbracket\right) \\
\left\langle\llbracket \Delta ; \Gamma \vdash t_{2}: \tau_{1} \rightarrow \tau_{2} \rrbracket, \llbracket \Delta ; \Gamma \vdash t_{1}: \tau_{1} \rrbracket\right\rangle & : \llbracket \Gamma \rrbracket \rightarrow\left(\llbracket \tau_{1} \rrbracket \Rightarrow \llbracket \tau_{2} \rrbracket\right) \times \llbracket \tau_{1} \rrbracket \\
\bullet\langle-,-\rangle:(\bar{X} \rightarrow Y) \times(\bar{X} \rightarrow W) \rightarrow \bar{X} \rightarrow(Y \times W) \text { is }\langle f, g\rangle \bar{X}=f \bar{X} \times g \bar{X}
\end{array}
$$

- This specializes to our Set interpretation of term applications

Fibrational Semantics of Terms - type abstractions

- If

$$
\frac{\Delta, \alpha ; \Gamma \vdash t: \tau}{\Delta ; \Gamma \vdash \Lambda \alpha \cdot t: \forall \alpha \cdot \tau}
$$

then

$$
\begin{aligned}
\llbracket \Delta ; \Gamma \vdash \Lambda \alpha . t: \forall \alpha . \tau \rrbracket & : \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \forall \alpha . \tau \rrbracket \\
& =\llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \forall \llbracket \Delta, \alpha \vdash \tau \rrbracket \\
\llbracket \Delta ; \Gamma \vdash \Lambda \alpha . t: \forall \alpha . \tau \rrbracket & =\varphi_{|\Delta|} \llbracket \Delta, \alpha ; \Gamma \vdash t: \tau \rrbracket
\end{aligned}
$$

- This is sensible because α is not free in Γ, so

$$
\begin{aligned}
\llbracket \Delta, \alpha ; \Gamma \vdash t: \tau \rrbracket & : \llbracket \Delta, \alpha \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta, \alpha \vdash \tau \rrbracket \\
& =\llbracket \Delta \vdash \Gamma \rrbracket \circ \pi_{|\Delta|} \rightarrow \llbracket \Delta, \alpha \vdash \tau \rrbracket
\end{aligned}
$$

Fibrational Semantics of Terms - type applications

- If

$$
\frac{\Delta ; \Gamma \vdash t: \forall \alpha . \tau_{2} \quad \Delta \vdash \tau_{1}}{\Delta ; \Gamma \vdash t \tau_{1}: \tau_{2}\left[\alpha \mapsto \tau_{1}\right]}
$$

then

$$
\begin{array}{ll}
\llbracket \Delta ; \Gamma \vdash t \tau_{1}: \tau_{2}\left[\alpha \mapsto \tau_{1}\right] \rrbracket: & \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau_{2}\left[\alpha \mapsto \tau_{1}\right] \rrbracket \\
\llbracket \Delta ; \Gamma \vdash t \tau_{1}: \tau_{2}\left[\alpha \mapsto \tau_{1}\right] \rrbracket= & \varphi_{|\Delta|}^{-1} \llbracket \Delta ; \Gamma \vdash t: \forall \alpha . \tau_{2} \rrbracket \circ\left\langle i d^{|\Delta|}, \llbracket \Delta \vdash \tau_{1} \rrbracket\right\rangle
\end{array}
$$

- This is sensible because

$$
\begin{aligned}
\llbracket \Delta ; \Gamma \vdash t: \forall \alpha . \tau_{2} \rrbracket & : \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \forall \alpha . \tau_{2} \rrbracket \\
& =\llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \forall \llbracket \Delta, \alpha \vdash \tau_{2} \rrbracket
\end{aligned}
$$

Validating β - and η-Rules

- Our model is sensible by construction

Validating β - and η-Rules

- Our model is sensible by construction
- Reynolds' model is an instance of ours, assuming a constructive metatheory - e.g., the Calculus of Constructions with impredicative Set

Validating β - and η-Rules

- Our model is sensible by construction
- Reynolds' model is an instance of ours, assuming a constructive metatheory - e.g., the Calculus of Constructions with impredicative Set
- Proposition If $\Delta \vdash \tau_{1}$ and $\Delta, \alpha ; \Gamma \vdash t: \tau_{2}$

1. $\llbracket \Delta ; \Gamma \vdash(\Lambda \alpha . t) \tau_{1}: \tau_{2}\left[\alpha \mapsto \tau_{1}\right] \rrbracket=\llbracket \Delta ; \Gamma \vdash t\left[\alpha \mapsto \tau_{1}\right]: \tau_{2}\left[\alpha \mapsto \tau_{1}\right] \rrbracket$
2. $\llbracket \Delta ; \Gamma \vdash t: \forall \beta . \tau \rrbracket=\llbracket \Delta ; \Gamma \vdash \Lambda \alpha . t \alpha: \forall \beta . \tau \rrbracket$

Validating β - and η-Rules

- Our model is sensible by construction
- Reynolds' model is an instance of ours, assuming a constructive metatheory - e.g., the Calculus of Constructions with impredicative Set
- Proposition If $\Delta \vdash \tau_{1}$ and $\Delta, \alpha ; \Gamma \vdash t: \tau_{2}$

1. $\llbracket \Delta ; \Gamma \vdash(\Lambda \alpha . t) \tau_{1}: \tau_{2}\left[\alpha \mapsto \tau_{1}\right] \rrbracket=\llbracket \Delta ; \Gamma \vdash t\left[\alpha \mapsto \tau_{1}\right]: \tau_{2}\left[\alpha \mapsto \tau_{1}\right] \rrbracket$
2. $\llbracket \Delta ; \Gamma \vdash t: \forall \beta . \tau \rrbracket=\llbracket \Delta ; \Gamma \vdash \Lambda \alpha . t \alpha: \forall \beta . \tau \rrbracket$

- Proposition If $\Delta ; \Gamma \vdash t_{1}: \tau_{1}$ and $\Delta ; \Gamma, x: \tau_{1} \vdash t_{2}: \tau_{2}$

1. $\llbracket \Delta ; \Gamma \vdash\left(\lambda x . t_{2}\right) t_{1}: \tau_{2} \rrbracket=\llbracket \Delta ; \Gamma \vdash t_{2}\left[x \mapsto t_{1}\right]: \tau_{2} \rrbracket$
2. $\llbracket \Delta ; \Gamma \vdash t: \tau_{1} \rightarrow \tau_{2} \rrbracket=\llbracket \Delta ; \Gamma \vdash \lambda x . t x: \tau_{1} \rightarrow \tau_{2} \rrbracket$

Reynolds' Abstraction Theorem, Generalized

- Our model actually gives rise to a $\lambda 2$-fibration

Reynolds' Abstraction Theorem, Generalized

- Our model actually gives rise to a $\lambda 2$-fibration
- Seely showed that λ 2-fibrations always soundly interpret System F

Reynolds' Abstraction Theorem, Generalized

- Our model actually gives rise to a $\lambda 2$-fibration
- Seely showed that $\lambda 2$-fibrations always soundly interpret System F
- Theorem If $\operatorname{Rel}(\boldsymbol{U})$ is an equality preserving arrow fibration and a \forall-fibration, then there is a $\lambda 2$-fibration in which types $\Delta \vdash \tau$ are interpreted as equality preserving fibred functors $\llbracket \Delta \vdash \tau \rrbracket:|\operatorname{Rel}(U)|^{|\Delta|} \rightarrow_{\mathrm{Eq}}$ $\operatorname{Rel}(U)$ and terms $\Delta ; \Gamma \vdash t: \tau$ are interpreted as fibred natural transformations $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau \rrbracket$

Reynolds' Abstraction Theorem, Generalized

- Our model actually gives rise to a $\lambda 2$-fibration
- Seely showed that $\lambda 2$-fibrations always soundly interpret System F
- Theorem If $\operatorname{Rel}(\boldsymbol{U})$ is an equality preserving arrow fibration and a \forall-fibration, then there is a $\lambda 2$-fibration in which types $\Delta \vdash \tau$ are interpreted as equality preserving fibred functors $\llbracket \Delta \vdash \tau \rrbracket:|\operatorname{Rel}(U)|^{|\Delta|} \rightarrow_{\mathrm{Eq}}$ $\operatorname{Rel}(U)$ and terms $\Delta ; \Gamma \vdash t: \tau$ are interpreted as fibred natural transformations $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket: \llbracket \Delta \vdash \Gamma \rrbracket \rightarrow \llbracket \Delta \vdash \tau \rrbracket$

Unwinding the Theorem

In particular, for every fibration $U: \mathcal{E} \rightarrow B$ whose relations fibration is an equality preserving arrow fibration and a forall fibration, for every System F type $\Delta \vdash \tau$ and term $\Delta ; \Gamma \vdash t: \tau$, we get:

Unwinding the Theorem

In particular, for every fibration $U: \mathcal{E} \rightarrow B$ whose relations fibration is an equality preserving arrow fibration and a forall fibration, for every System F type $\Delta \vdash \tau$ and term $\Delta ; \Gamma \vdash t: \tau$, we get:

1. An object interpretation of $\Delta \vdash \tau$ as a functor $\llbracket \Delta \vdash \tau \rrbracket_{o}:|\mathcal{B}|^{|\Delta|} \rightarrow \mathcal{B}$

Unwinding the Theorem

In particular, for every fibration $U: \mathcal{E} \rightarrow B$ whose relations fibration is an equality preserving arrow fibration and a forall fibration, for every System F type $\Delta \vdash \tau$ and term $\Delta ; \Gamma \vdash t: \tau$, we get:

1. An object interpretation of $\Delta \vdash \tau$ as a functor $\llbracket \Delta \vdash \tau \rrbracket_{o}:|\mathcal{B}|^{|\Delta|} \rightarrow \mathcal{B}$
2. A relational interpretation of $\Delta \vdash \tau$ as a functor $\llbracket \Delta \vdash \tau \rrbracket_{r}:|\operatorname{Rel}(\mathcal{E})|^{|\Delta|} \rightarrow$ $\operatorname{Rel}(\mathcal{E})$

Unwinding the Theorem

In particular, for every fibration $U: \mathcal{E} \rightarrow B$ whose relations fibration is an equality preserving arrow fibration and a forall fibration, for every System F type $\Delta \vdash \tau$ and term $\Delta ; \Gamma \vdash t: \tau$, we get:

1. An object interpretation of $\Delta \vdash \tau$ as a functor $\llbracket \Delta \vdash \tau \rrbracket_{o}:|\mathcal{B}|^{|\Delta|} \rightarrow \mathcal{B}$
2. A relational interpretation of $\Delta \vdash \tau$ as a functor $\llbracket \Delta \vdash \tau \rrbracket_{r}:|\operatorname{Rel}(\mathcal{E})|^{|\Delta|} \rightarrow$ $\operatorname{Rel}(\mathcal{E})$
3. A proof of the Identity Extension Lemma as in the previous lecture, i.e., a proof that $\llbracket \Delta \vdash \tau \rrbracket$ is equality preserving

Unwinding the Theorem

In particular, for every fibration $U: \mathcal{E} \rightarrow B$ whose relations fibration is an equality preserving arrow fibration and a forall fibration, for every System F type $\Delta \vdash \tau$ and term $\Delta ; \Gamma \vdash t: \tau$, we get:

1. An object interpretation of $\Delta \vdash \tau$ as a functor $\llbracket \Delta \vdash \tau \rrbracket_{o}:|\mathcal{B}|^{|\Delta|} \rightarrow \mathcal{B}$
2. A relational interpretation of $\Delta \vdash \tau$ as a functor $\llbracket \Delta \vdash \tau \rrbracket_{r}:|\operatorname{Rel}(\mathcal{E})|^{|\Delta|} \rightarrow$ $\operatorname{Rel}(\mathcal{E})$
3. A proof of the Identity Extension Lemma as in the previous lecture, i.e., a proof that $\llbracket \Delta \vdash \tau \rrbracket$ is equality preserving
4. An object interpretation of $\Delta ; \Gamma \vdash t: \tau$ as a natural transformation $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}: \llbracket \Delta \vdash \Gamma \rrbracket_{o} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{o}$

Unwinding the Theorem

In particular, for every fibration $U: \mathcal{E} \rightarrow B$ whose relations fibration is an equality preserving arrow fibration and a forall fibration, for every System F type $\Delta \vdash \tau$ and term $\Delta ; \Gamma \vdash t: \tau$, we get:

1. An object interpretation of $\Delta \vdash \tau$ as a functor $\llbracket \Delta \vdash \tau \rrbracket_{o}:|\mathcal{B}|^{|\Delta|} \rightarrow \mathcal{B}$
2. A relational interpretation of $\Delta \vdash \tau$ as a functor $\llbracket \Delta \vdash \tau \rrbracket_{r}:|\operatorname{Rel}(\mathcal{E})|^{|\Delta|} \rightarrow$ $\operatorname{Rel}(\mathcal{E})$
3. A proof of the Identity Extension Lemma as in the previous lecture, i.e., a proof that $\llbracket \Delta \vdash \tau \rrbracket$ is equality preserving
4. An object interpretation of $\Delta ; \Gamma \vdash t: \tau$ as a natural transformation $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}: \llbracket \Delta \vdash \Gamma \rrbracket_{o} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{o}$
5. A proof of the Abstraction Theorem as in the previous lecture, i.e., a proof that $\Delta ; \Gamma \vdash t: \tau$ has a relational interpretation as a natural transformation $\llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{r}: \llbracket \Delta \vdash \Gamma \rrbracket_{r} \rightarrow \llbracket \Delta \vdash \tau \rrbracket_{r}$ over $\llbracket \Delta ; \Gamma \vdash t:$ $\tau \rrbracket_{o} \times \llbracket \Delta ; \Gamma \vdash t: \tau \rrbracket_{o}$.

Additional Observations

- Since we've actually constructed a $\lambda 2$-fibration, we have a powerful internal language for our model

Additional Observations

- Since we've actually constructed a $\lambda 2$-fibration, we have a powerful internal language for our model
- We can use this language to reason about our model using System F

Additional Observations

- Since we've actually constructed a $\lambda 2$-fibration, we have a powerful internal language for our model
- We can use this language to reason about our model using System F
- This allows us to prove

Additional Observations

- Since we've actually constructed a $\lambda 2$-fibration, we have a powerful internal language for our model
- We can use this language to reason about our model using System F
- This allows us to prove
- our model has initial algebras for strong functors

Additional Observations

- Since we've actually constructed a $\lambda 2$-fibration, we have a powerful internal language for our model
- We can use this language to reason about our model using System F
- This allows us to prove
- our model has initial algebras for strong functors
- our model has final coalgebras for strong functors

Additional Observations

- Since we've actually constructed a $\lambda 2$-fibration, we have a powerful internal language for our model
- We can use this language to reason about our model using System F
- This allows us to prove
- our model has initial algebras for strong functors
- our model has final coalgebras for strong functors
- parametricity implies dinaturality

Additional Observations

- Since we've actually constructed a $\lambda 2$-fibration, we have a powerful internal language for our model
- We can use this language to reason about our model using System \mathbf{F}
- This allows us to prove
- our model has initial algebras for strong functors
- our model has final coalgebras for strong functors
- parametricity implies dinaturality
- These are litmus tests verifying that a model is "good"

Summing Up

- Parametricity entails replacing usual categorical semantics involving categories, functors, and natural transformations

Summing Up

- Parametricity entails replacing usual categorical semantics involving categories, functors, and natural transformations with a semantics based on
fibrations, fibred functors, and fibred natural transformations

Summing Up

- Parametricity entails replacing usual categorical semantics involving categories, functors, and natural transformations with a semantics based on
fibrations, fibred functors, and fibred natural transformations
- This hits the sweet spot between the simplicity and "light structure" of functorial models and the ability to prove expected key results

Examples

- The construction of examples of our framework is delicate

Examples

- The construction of examples of our framework is delicate
- But several well-known models are instances of our framework

Examples

- The construction of examples of our framework is delicate
- But several well-known models are instances of our framework
- Some must be regarded as being internal to the Calculus of Constructions with impredicative Set

Examples

- The construction of examples of our framework is delicate
- But several well-known models are instances of our framework
- Some must be regarded as being internal to the Calculus of Constructions with impredicative Set
- At least one must be be regarded as internal to the category of ω-sets

Examples

- The construction of examples of our framework is delicate
- But several well-known models are instances of our framework
- Some must be regarded as being internal to the Calculus of Constructions with impredicative Set
- At least one must be be regarded as internal to the category of ω-sets
- They are discussed in the MFPS paper (and in the exercises!)

Examples

- The construction of examples of our framework is delicate
- But several well-known models are instances of our framework
- Some must be regarded as being internal to the Calculus of Constructions with impredicative Set
- At least one must be be regarded as internal to the category of ω-sets
- They are discussed in the MFPS paper (and in the exercises!)
- I ask you to show that the identity fibration Id : Set \rightarrow Set is an instance of our framework that models ad hoc polymorphism...

Examples

- The construction of examples of our framework is delicate
- But several well-known models are instances of our framework
- Some must be regarded as being internal to the Calculus of Constructions with impredicative Set
- At least one must be be regarded as internal to the category of ω-sets
- They are discussed in the MFPS paper (and in the exercises!)
- I ask you to show that the identity fibration Id : Set \rightarrow Set is an instance of our framework that models ad hoc polymorphism...
- ...and to show that, ignoring size issues, Reynolds' construction gives an instance of our framework via the relations fibration on Set

Examples

- The construction of examples of our framework is delicate
- But several well-known models are instances of our framework
- Some must be regarded as being internal to the Calculus of Constructions with impredicative Set
- At least one must be be regarded as internal to the category of ω-sets
- They are discussed in the MFPS paper (and in the exercises!)
- I ask you to show that the identity fibration Id : Set \rightarrow Set is an instance of our framework that models ad hoc polymorphism...
- ...and to show that, ignoring size issues, Reynolds' construction gives an instance of our framework via the relations fibration on Set
- The PER model of Bainbridge et al. is also an instance (if bifibrations are understood as internal to the category of ω-sets)

A Prescriptive General Framework

- Our framework is very general

A Prescriptive General Framework

- Our framework is very general
- It is thus prescriptive, as well as descriptive

A Prescriptive General Framework

- Our framework is very general
- It is thus prescriptive, as well as descriptive
- Different fibrations give rise to parametric models with very different flavors
- changing the base category of the fibration changes the object model used to interpret types and terms

A Prescriptive General Framework

- Our framework is very general
- It is thus prescriptive, as well as descriptive
- Different fibrations give rise to parametric models with very different flavors
- changing the base category of the fibration changes the object model used to interpret types and terms
- changing the total category and the fibration (i.e., the functor itself) changes the notion of relational logic

A Prescriptive General Framework

- Our framework is very general
- It is thus prescriptive, as well as descriptive
- Different fibrations give rise to parametric models with very different flavors
- changing the base category of the fibration changes the object model used to interpret types and terms
- changing the total category and the fibration (i.e., the functor itself) changes the notion of relational logic
- Ex: Using non-standard relations, we can construct a model of "multivalued parametricity" over a constructively completely distributive complete non-trivial lattice of truth values

Extensions

- At WoLLIC'15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico Orsanigo showed how to avoid baking the IEL into our framework, but rather derive it from more primitive assumptions about equalitypreserving cones that can be used to interpret forall types

Extensions

- At WoLLIC'15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico Orsanigo showed how to avoid baking the IEL into our framework, but rather derive it from more primitive assumptions about equalitypreserving cones that can be used to interpret forall types
- At FoSSaCS'16, Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simpson showed how comprehension for U can be used to ensure that $\operatorname{Rel}(U)$ is an equality preserving arrow fibration [This paper won the best theory paper award for ETAPS]

Extensions

- At WoLLIC'15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico Orsanigo showed how to avoid baking the IEL into our framework, but rather derive it from more primitive assumptions about equalitypreserving cones that can be used to interpret forall types
- At FoSSaCS'16, Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simpson showed how comprehension for U can be used to ensure that $\operatorname{Rel}(U)$ is an equality preserving arrow fibration [This paper won the best theory paper award for ETAPS]
- At WadlerFest, Neil Ghani, Fredrik Nordvall Forsberg, and Federico Orsanigo developed a proof-relevant version of our framework

Extensions

- At WoLLIC'15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico Orsanigo showed how to avoid baking the IEL into our framework, but rather derive it from more primitive assumptions about equalitypreserving cones that can be used to interpret forall types
- At FoSSaCS'16, Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simpson showed how comprehension for U can be used to ensure that $\operatorname{Rel}(U)$ is an equality preserving arrow fibration [This paper won the best theory paper award for ETAPS]
- At WadlerFest, Neil Ghani, Fredrik Nordvall Forsberg, and Federico Orsanigo developed a proof-relevant version of our framework
- Clément Aubert, Fredrik Nordvall Forsberg, and I are working on extending our framework to a polymorphic calculus with computational effects (System F with effect-free constants and algebraic operations in the style of Plotkin and Power's effectful simply-typed calculus $\boldsymbol{\lambda}_{\boldsymbol{c}}$)

References

- Functorial Polymorphism. E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P. Scott. Theoretical Computer Science, 1990. [Gives a functorial semantics of polymorphism]
- Types, abstractions, and parametric polymorphism, part 2. Q. Ma and J. Reynolds. MFPS'92 [Developed the first categorical framework for parametric polymorphism (PL-categories)]
- Categorical models for Abadi and Plotkin's logic for parametricity. L. Birkedal and R. Møgelberg. Mathematical Structures in Computer Science, 2005. [Constructs sophisticated models of parametricity and its logical structure. Also argues that not all expected consequences hold in Ma and Reynolds' framework]
- Parametric limits. B. Dunphy and U. Reddy. LICS'04. [First model to mix fibrations with reflexive graphs, but obtains existence of initial algebras only for strictly positive functors]
- And many, many more...

