
Reynolds’ Parametricity

Patricia Johann
Appalachian State University

cs.appstate.edu/∼johannp

Based on joint work with Neil Ghani, Fredrik Nordvall
Forsberg, Federico Orsanigo, and Tim Revell

OPLSS 2016

Course Outline

Topic: Reynolds’ theory of parametric polymorphism for System F

Goals: - extract the fibrational essence of Reynolds’ theory

- generalize Reynolds’ construction to very general models

• Lecture 1: Reynolds’ theory of parametricity for System F

• Lecture 2: Introduction to fibrations

• Lecture 3: A bifibrational view of parametricity

• Lecture 4: Bifibrational parametric models for System F

Course Outline

Topic: Reynolds’ theory of parametric polymorphism for System F

Goals: - extract the fibrational essence of Reynolds’ theory

- generalize Reynolds’ construction to very general models

• Lecture 1: Reynolds’ theory of parametricity for System F

• Lecture 2: Introduction to fibrations

• Lecture 3: A bifibrational view of parametricity

• Lecture 4: Bifibrational parametric models for System F

Where Were We?

• Last time we set up all the infrastructure we need to give our bifibra-

tional parametric model of System F

Where Were We?

• Last time we set up all the infrastructure we need to give our bifibra-

tional parametric model of System F

• Today we will use relations fibrations on categories other than Set

that are both equality preserving arrow fibrations and ∀-fibrations to

interpret System F

Where Were We?

• Last time we set up all the infrastructure we need to give our bifibra-

tional parametric model of System F

• Today we will use relations fibrations on categories other than Set

that are both equality preserving arrow fibrations and ∀-fibrations to

interpret System F

– types as fibred functors

Where Were We?

• Last time we set up all the infrastructure we need to give our bifibra-

tional parametric model of System F

• Today we will use relations fibrations on categories other than Set

that are both equality preserving arrow fibrations and ∀-fibrations to

interpret System F

– types as fibred functors

– terms as fibred natural transformations

Where Were We?

• Last time we set up all the infrastructure we need to give our bifibra-

tional parametric model of System F

• Today we will use relations fibrations on categories other than Set

that are both equality preserving arrow fibrations and ∀-fibrations to

interpret System F

– types as fibred functors

– terms as fibred natural transformations

• This gives very general parametric models for System F

Where Were We?

• Last time we set up all the infrastructure we need to give our bifibra-

tional parametric model of System F

• Today we will use relations fibrations on categories other than Set

that are both equality preserving arrow fibrations and ∀-fibrations to

interpret System F

– types as fibred functors

– terms as fibred natural transformations

• This gives very general parametric models for System F

• Throughout, let Rel(U) be an equality preserving arrow fibration and

∀-fibration

Fibrational Semantics of Types

• Define fibred functors

[[∆ ` τ]] : |Rel(U)||∆| → Rel(U)

by

Fibrational Semantics of Types

• Define fibred functors

[[∆ ` τ]] : |Rel(U)||∆| → Rel(U)

by

– Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

Fibrational Semantics of Types

• Define fibred functors

[[∆ ` τ]] : |Rel(U)||∆| → Rel(U)

by

– Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

– Arrow types: [[∆ ` τ1 → τ2]] = [[∆ ` τ1]]⇒ [[∆ ` τ2]]

Fibrational Semantics of Types

• Define fibred functors

[[∆ ` τ]] : |Rel(U)||∆| → Rel(U)

by

– Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

– Arrow types: [[∆ ` τ1 → τ2]] = [[∆ ` τ1]]⇒ [[∆ ` τ2]]

– Forall types: [[∆ ` ∀α.τ]] = ∀[[∆, α ` τ]]

Fibrational Semantics of Types

• Define fibred functors

[[∆ ` τ]] : |Rel(U)||∆| → Rel(U)

by

– Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

– Arrow types: [[∆ ` τ1 → τ2]] = [[∆ ` τ1]]⇒ [[∆ ` τ2]]

– Forall types: [[∆ ` ∀α.τ]] = ∀[[∆, α ` τ]]

• No definition for [[∆ ` τ]] on morphisms is needed because the domain

of [[∆ ` τ]] is discrete

Type Interpretations are Equality Preserving

• Proposition The interpretation of every System F type is an equality

preserving fibred functor

Type Interpretations are Equality Preserving

• Proposition The interpretation of every System F type is an equality

preserving fibred functor

• Proof: By induction on the structure of τ

Type Interpretations are Equality Preserving

• Proposition The interpretation of every System F type is an equality

preserving fibred functor

• Proof: By induction on the structure of τ

• If τ = ∀α.τ ′, then [[∆ ` τ]] = ∀[[∆, α ` τ ′]] is an equality preserving

fibred functor whenever [[∆, α ` τ ′]] is, just by the definition of

∀ : (|Rel(U)|n+1 →Eq Rel(U))→ (|Rel(U)|n →Eq Rel(U))

Type Interpretations are Equality Preserving

• Proposition The interpretation of every System F type is an equality

preserving fibred functor

• Proof: By induction on the structure of τ

• If τ = ∀α.τ ′, then [[∆ ` τ]] = ∀[[∆, α ` τ ′]] is an equality preserving

fibred functor whenever [[∆, α ` τ ′]] is, just by the definition of

∀ : (|Rel(U)|n+1 →Eq Rel(U))→ (|Rel(U)|n →Eq Rel(U))

• Indeed, the very existence of ∀ in a ∀-fibration requires that if F is

equality preserving then so is ∀F

Type Interpretations are Equality Preserving

• Proposition The interpretation of every System F type is an equality

preserving fibred functor

• Proof: By induction on the structure of τ

• If τ = ∀α.τ ′, then [[∆ ` τ]] = ∀[[∆, α ` τ ′]] is an equality preserving

fibred functor whenever [[∆, α ` τ ′]] is, just by the definition of

∀ : (|Rel(U)|n+1 →Eq Rel(U))→ (|Rel(U)|n →Eq Rel(U))

• Indeed, the very existence of ∀ in a ∀-fibration requires that if F is

equality preserving then so is ∀F

• In our model, the Identity Extension Lemma is “baked into” the inter-

pretation of types, rather than something to be proved post facto

Type Interpretations are Equality Preserving

• Proposition The interpretation of every System F type is an equality

preserving fibred functor

• Proof: By induction on the structure of τ .

• If τ = ∀α.τ ′, then [[∆ ` τ]] = ∀[[∆, α ` τ ′]] is an equality preserving

fibred functor whenever [[∆, α ` τ ′]] is, just by the definition of

∀ : (|Rel(U)|n+1 →Eq Rel(U))→ (|Rel(U)|n →Eq Rel(U))

• Indeed, the very existence of ∀ in a ∀-fibration requires that if F is

equality preserving then so is ∀F

• In our model, the Identity Extension Lemma is “baked into” the inter-

pretation of types, rather than something to be proved post facto

• If U is faithful, then the ∀-fibration requirement can be reformulated

in terms of more basic concepts using opfibrational structure of U

Fibrational Semantics of Terms - The Set Up

• In a CCC, for all X and Y , there is an object X ⇒ Y and a isomor-

phism

λ : Hom(W ×X,Y) ∼= Hom(W,X ⇒ Y)

that is natural in W

Fibrational Semantics of Terms - The Set Up

• In a CCC, for all X and Y , there is an object X ⇒ Y and a isomor-

phism

λ : Hom(W ×X,Y) ∼= Hom(W,X ⇒ Y)

that is natural in W

• The unit of this adjunction is the evaluation map

evX,Y = λ−1(idX⇒Y) : (X ⇒ Y)×X → Y

Fibrational Semantics of Terms - The Set Up

• In a CCC, for all X and Y , there is an object X ⇒ Y and a isomor-

phism

λ : Hom(W ×X,Y) ∼= Hom(W,X ⇒ Y)

that is natural in W

• The unit of this adjunction is the evaluation map

evX,Y = λ−1(idX⇒Y) : (X ⇒ Y)×X → Y

• In a ∀-fibration, for every F and G, there is are isomorphisms

ϕn : Hom(F ◦ πn, G) ∼= Hom(F,∀nG)

that are natural in n

Fibrational Semantics of Terms - term variables

Define fibred natural transformations

[[∆; Γ ` t : τ]] : [[∆ ` Γ]]→ [[∆ ` τ]]

by

Fibrational Semantics of Terms - term variables

Define fibred natural transformations

[[∆; Γ ` t : τ]] : [[∆ ` Γ]]→ [[∆ ` τ]]

by

• If
∆ ` τi xi : τi ∈ Γ

∆; Γ ` xi : τi

then

[[∆; Γ ` xi : τi]] = πi

Fibrational Semantics of Terms - term variables

Define fibred natural transformations

[[∆; Γ ` t : τ]] : [[∆ ` Γ]]→ [[∆ ` τ]]

by

• If
∆ ` τi xi : τi ∈ Γ

∆; Γ ` xi : τi

then

[[∆; Γ ` xi : τi]] = πi

• πi is the ith projection on both B and E

Fibrational Semantics of Terms - term variables

Define fibred natural transformations

[[∆; Γ ` t : τ]] : [[∆ ` Γ]]→ [[∆ ` τ]]

by

• If
∆ ` τi xi : τi ∈ Γ

∆; Γ ` xi : τi

then

[[∆; Γ ` xi : τi]] = πi

• πi is the ith projection on both B and E

• This specializes to our Set interpretation of variables

Fibrational Semantics of Terms - term abstractions

• If

∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

then

[[∆; Γ ` λx.t : τ1 → τ2]] : [[∆ ` Γ]]→ ([[∆ ` τ1]]⇒ [[∆ ` τ2]])

[[∆; Γ ` λx.t : τ1 → τ2]] = λ[[∆; Γ, x : τ1 ` t : τ2]]

Fibrational Semantics of Terms - term abstractions

• If

∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

then

[[∆; Γ ` λx.t : τ1 → τ2]] : [[∆ ` Γ]]→ ([[∆ ` τ1]]⇒ [[∆ ` τ2]])

[[∆; Γ ` λx.t : τ1 → τ2]] = λ[[∆; Γ, x : τ1 ` t : τ2]]

• This is sensible because

[[∆; Γ, x : τ1 ` t : τ2]] : [[∆ ` Γ]]× [[∆ ` τ1]]→ [[∆ ` τ2]]

Fibrational Semantics of Terms - term abstractions

• If

∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

then

[[∆; Γ ` λx.t : τ1 → τ2]] : [[∆ ` Γ]]→ ([[∆ ` τ1]]⇒ [[∆ ` τ2]])

[[∆; Γ ` λx.t : τ1 → τ2]] = λ[[∆; Γ, x : τ1 ` t : τ2]]

• This is sensible because

[[∆; Γ, x : τ1 ` t : τ2]] : [[∆ ` Γ]]× [[∆ ` τ1]]→ [[∆ ` τ2]]

• λ is the right adjoint to × in both B and E

Fibrational Semantics of Terms - term abstractions

• If

∆; Γ, x : τ1 ` t : τ2

∆; Γ ` λx.t : τ1 → τ2

then

[[∆; Γ ` λx.t : τ1 → τ2]] : [[∆ ` Γ]]→ ([[∆ ` τ1]]⇒ [[∆ ` τ2]])

[[∆; Γ ` λx.t : τ1 → τ2]] = λ[[∆; Γ, x : τ1 ` t : τ2]]

• This is sensible because

[[∆; Γ, x : τ1 ` t : τ2]] : [[∆ ` Γ]]× [[∆ ` τ1]]→ [[∆ ` τ2]]

• λ is the right adjoint to × in both B and E

• This specializes to our Set interpretation of term abstractions

Fibrational Semantics of Terms - term applications

• If

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2t1 : τ2

then

[[∆; Γ ` t2t1 : τ2]] : [[∆ ` Γ]]→ [[∆ ` τ2]]

[[∆; Γ ` t2t1 : τ2]] = evτ1,τ2 ◦ 〈[[∆; Γ ` t2 : τ1 → τ2]], [[∆; Γ ` t1 : τ1]]〉

Fibrational Semantics of Terms - term applications

• If

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2t1 : τ2

then

[[∆; Γ ` t2t1 : τ2]] : [[∆ ` Γ]]→ [[∆ ` τ2]]

[[∆; Γ ` t2t1 : τ2]] = evτ1,τ2 ◦ 〈[[∆; Γ ` t2 : τ1 → τ2]], [[∆; Γ ` t1 : τ1]]〉

• This is sensible because

[[∆; Γ ` t1 : τ1]] : [[∆ ` Γ]]→ [[∆ ` τ1]]

Fibrational Semantics of Terms - term applications

• If

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2t1 : τ2

then

[[∆; Γ ` t2t1 : τ2]] : [[∆ ` Γ]]→ [[∆ ` τ2]]

[[∆; Γ ` t2t1 : τ2]] = evτ1,τ2 ◦ 〈[[∆; Γ ` t2 : τ1 → τ2]], [[∆; Γ ` t1 : τ1]]〉

• This is sensible because

[[∆; Γ ` t1 : τ1]] : [[∆ ` Γ]]→ [[∆ ` τ1]]

[[∆; Γ ` t2 : τ1 → τ2]] : [[∆ ` Γ]]→ ([[∆ ` τ1]]⇒ [[∆ ` τ2]])

Fibrational Semantics of Terms - term applications

• If

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2t1 : τ2

then

[[∆; Γ ` t2t1 : τ2]] : [[∆ ` Γ]]→ [[∆ ` τ2]]

[[∆; Γ ` t2t1 : τ2]] = evτ1,τ2 ◦ 〈[[∆; Γ ` t2 : τ1 → τ2]], [[∆; Γ ` t1 : τ1]]〉

• This is sensible because

[[∆; Γ ` t1 : τ1]] : [[∆ ` Γ]]→ [[∆ ` τ1]]

[[∆; Γ ` t2 : τ1 → τ2]] : [[∆ ` Γ]]→ ([[∆ ` τ1]]⇒ [[∆ ` τ2]])

〈[[∆; Γ ` t2 : τ1 → τ2]], [[∆; Γ ` t1 : τ1]]〉 : [[Γ]]→ ([[τ1]]⇒ [[τ2]])× [[τ1]]

Fibrational Semantics of Terms - term applications

• If

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2t1 : τ2

then

[[∆; Γ ` t2t1 : τ2]] : [[∆ ` Γ]]→ [[∆ ` τ2]]

[[∆; Γ ` t2t1 : τ2]] = evτ1,τ2 ◦ 〈[[∆; Γ ` t2 : τ1 → τ2]], [[∆; Γ ` t1 : τ1]]〉

• This is sensible because

[[∆; Γ ` t1 : τ1]] : [[∆ ` Γ]]→ [[∆ ` τ1]]

[[∆; Γ ` t2 : τ1 → τ2]] : [[∆ ` Γ]]→ ([[∆ ` τ1]]⇒ [[∆ ` τ2]])

〈[[∆; Γ ` t2 : τ1 → τ2]], [[∆; Γ ` t1 : τ1]]〉 : [[Γ]]→ ([[τ1]]⇒ [[τ2]])× [[τ1]]

• 〈−,−〉 : (X → Y)×(X →W)→ X → (Y ×W) is 〈f, g〉X = fX×gX

Fibrational Semantics of Terms - term applications

• If

∆; Γ ` t1 : τ1 ∆; Γ ` t2 : τ1 → τ2

∆; Γ ` t2t1 : τ2

then

[[∆; Γ ` t2t1 : τ2]] : [[∆ ` Γ]]→ [[∆ ` τ2]]

[[∆; Γ ` t2t1 : τ2]] = evτ1,τ2 ◦ 〈[[∆; Γ ` t2 : τ1 → τ2]], [[∆; Γ ` t1 : τ1]]〉

• This is sensible because

[[∆; Γ ` t1 : τ1]] : [[∆ ` Γ]]→ [[∆ ` τ1]]

[[∆; Γ ` t2 : τ1 → τ2]] : [[∆ ` Γ]]→ ([[∆ ` τ1]]⇒ [[∆ ` τ2]])

〈[[∆; Γ ` t2 : τ1 → τ2]], [[∆; Γ ` t1 : τ1]]〉 : [[Γ]]→ ([[τ1]]⇒ [[τ2]])× [[τ1]]

• 〈−,−〉 : (X → Y)×(X →W)→ X → (Y ×W) is 〈f, g〉X = fX×gX

• This specializes to our Set interpretation of term applications

Fibrational Semantics of Terms - type abstractions

• If

∆, α; Γ ` t : τ

∆; Γ ` Λα.t : ∀α.τ

then

[[∆; Γ ` Λα.t : ∀α.τ]] : [[∆ ` Γ]]→ [[∆ ` ∀α.τ]]

= [[∆ ` Γ]]→ ∀[[∆, α ` τ]]

[[∆; Γ ` Λα.t : ∀α.τ]] = ϕ|∆|[[∆, α; Γ ` t : τ]]

• This is sensible because α is not free in Γ, so

[[∆, α; Γ ` t : τ]] : [[∆, α ` Γ]]→ [[∆, α ` τ]]

= [[∆ ` Γ]] ◦ π|∆| → [[∆, α ` τ]]

Fibrational Semantics of Terms - type applications

• If

∆; Γ ` t : ∀α.τ2 ∆ ` τ1

∆; Γ ` t τ1 : τ2[α 7→ τ1]

then

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]] : [[∆ ` Γ]]→ [[∆ ` τ2[α 7→ τ1]]]

[[∆; Γ ` t τ1 : τ2[α 7→ τ1]]] = ϕ−1
|∆|[[∆; Γ ` t : ∀α.τ2]] ◦ 〈id |∆|, [[∆ ` τ1]]〉

• This is sensible because

[[∆; Γ ` t : ∀α.τ2]] : [[∆ ` Γ]]→ [[∆ ` ∀α.τ2]]

= [[∆ ` Γ]]→ ∀[[∆, α ` τ2]]

Validating β- and η-Rules

• Our model is sensible by construction

Validating β- and η-Rules

• Our model is sensible by construction

• Reynolds’ model is an instance of ours, assuming a constructive metathe-

ory — e.g., the Calculus of Constructions with impredicative Set

Validating β- and η-Rules

• Our model is sensible by construction

• Reynolds’ model is an instance of ours, assuming a constructive metathe-

ory — e.g., the Calculus of Constructions with impredicative Set

• Proposition If ∆ ` τ1 and ∆, α; Γ ` t : τ2

1. [[∆; Γ ` (Λα.t)τ1 : τ2[α 7→ τ1]]] = [[∆; Γ ` t[α 7→ τ1] : τ2[α 7→ τ1]]]

2. [[∆; Γ ` t : ∀β.τ]] = [[∆; Γ ` Λα.t α : ∀β.τ]]

Validating β- and η-Rules

• Our model is sensible by construction

• Reynolds’ model is an instance of ours, assuming a constructive metathe-

ory — e.g., the Calculus of Constructions with impredicative Set

• Proposition If ∆ ` τ1 and ∆, α; Γ ` t : τ2

1. [[∆; Γ ` (Λα.t)τ1 : τ2[α 7→ τ1]]] = [[∆; Γ ` t[α 7→ τ1] : τ2[α 7→ τ1]]]

2. [[∆; Γ ` t : ∀β.τ]] = [[∆; Γ ` Λα.t α : ∀β.τ]]

• Proposition If ∆; Γ ` t1 : τ1 and ∆; Γ, x : τ1 ` t2 : τ2

1. [[∆; Γ ` (λx.t2)t1 : τ2]] = [[∆; Γ ` t2[x 7→ t1] : τ2]]

2. [[∆; Γ ` t : τ1 → τ2]] = [[∆; Γ ` λx.tx : τ1 → τ2]]

Reynolds’ Abstraction Theorem, Generalized

• Our model actually gives rise to a λ2-fibration

Reynolds’ Abstraction Theorem, Generalized

• Our model actually gives rise to a λ2-fibration

• Seely showed that λ2-fibrations always soundly interpret System F

Reynolds’ Abstraction Theorem, Generalized

• Our model actually gives rise to a λ2-fibration

• Seely showed that λ2-fibrations always soundly interpret System F

• Theorem If Rel(U) is an equality preserving arrow fibration and a

∀-fibration, then there is a λ2-fibration in which types ∆ ` τ are inter-

preted as equality preserving fibred functors [[∆ ` τ]] : |Rel(U)||∆| →Eq

Rel(U) and terms ∆; Γ ` t : τ are interpreted as fibred natural trans-

formations [[∆; Γ ` t : τ]] : [[∆ ` Γ]]→ [[∆ ` τ]]

Reynolds’ Abstraction Theorem, Generalized

• Our model actually gives rise to a λ2-fibration

• Seely showed that λ2-fibrations always soundly interpret System F

• Theorem If Rel(U) is an equality preserving arrow fibration and a

∀-fibration, then there is a λ2-fibration in which types ∆ ` τ are inter-

preted as equality preserving fibred functors [[∆ ` τ]] : |Rel(U)||∆| →Eq

Rel(U) and terms ∆; Γ ` t : τ are interpreted as fibred natural trans-

formations [[∆; Γ ` t : τ]] : [[∆ ` Γ]]→ [[∆ ` τ]]

|Rel(E)||∆|
[[Γ]]r

,,

[[τ]]r

22�� [[t]]r

|Rel(U)||∆|

��

Rel(E)

U

��
|B||∆| × |B||∆|

[[Γ]]o×[[Γ]]o
,,

[[τ]]o×[[τ]]o

22�� [[t]]o×[[t]]o B × B

Unwinding the Theorem

In particular, for every fibration U : E → B whose relations fibration is an

equality preserving arrow fibration and a forall fibration, for every System

F type ∆ ` τ and term ∆; Γ ` t : τ , we get:

Unwinding the Theorem

In particular, for every fibration U : E → B whose relations fibration is an

equality preserving arrow fibration and a forall fibration, for every System

F type ∆ ` τ and term ∆; Γ ` t : τ , we get:

1. An object interpretation of ∆ ` τ as a functor [[∆ ` τ]]o : |B||∆| → B

Unwinding the Theorem

In particular, for every fibration U : E → B whose relations fibration is an

equality preserving arrow fibration and a forall fibration, for every System

F type ∆ ` τ and term ∆; Γ ` t : τ , we get:

1. An object interpretation of ∆ ` τ as a functor [[∆ ` τ]]o : |B||∆| → B

2. A relational interpretation of ∆ ` τ as a functor [[∆ ` τ]]r : |Rel(E)||∆| →
Rel(E)

Unwinding the Theorem

In particular, for every fibration U : E → B whose relations fibration is an

equality preserving arrow fibration and a forall fibration, for every System

F type ∆ ` τ and term ∆; Γ ` t : τ , we get:

1. An object interpretation of ∆ ` τ as a functor [[∆ ` τ]]o : |B||∆| → B

2. A relational interpretation of ∆ ` τ as a functor [[∆ ` τ]]r : |Rel(E)||∆| →
Rel(E)

3. A proof of the Identity Extension Lemma as in the previous lecture,

i.e., a proof that [[∆ ` τ]] is equality preserving

Unwinding the Theorem

In particular, for every fibration U : E → B whose relations fibration is an

equality preserving arrow fibration and a forall fibration, for every System

F type ∆ ` τ and term ∆; Γ ` t : τ , we get:

1. An object interpretation of ∆ ` τ as a functor [[∆ ` τ]]o : |B||∆| → B

2. A relational interpretation of ∆ ` τ as a functor [[∆ ` τ]]r : |Rel(E)||∆| →
Rel(E)

3. A proof of the Identity Extension Lemma as in the previous lecture,

i.e., a proof that [[∆ ` τ]] is equality preserving

4. An object interpretation of ∆; Γ ` t : τ as a natural transformation

[[∆; Γ ` t : τ]]o : [[∆ ` Γ]]o → [[∆ ` τ]]o

Unwinding the Theorem

In particular, for every fibration U : E → B whose relations fibration is an

equality preserving arrow fibration and a forall fibration, for every System

F type ∆ ` τ and term ∆; Γ ` t : τ , we get:

1. An object interpretation of ∆ ` τ as a functor [[∆ ` τ]]o : |B||∆| → B

2. A relational interpretation of ∆ ` τ as a functor [[∆ ` τ]]r : |Rel(E)||∆| →
Rel(E)

3. A proof of the Identity Extension Lemma as in the previous lecture,

i.e., a proof that [[∆ ` τ]] is equality preserving

4. An object interpretation of ∆; Γ ` t : τ as a natural transformation

[[∆; Γ ` t : τ]]o : [[∆ ` Γ]]o → [[∆ ` τ]]o

5. A proof of the Abstraction Theorem as in the previous lecture, i.e.,

a proof that ∆; Γ ` t : τ has a relational interpretation as a natural

transformation [[∆; Γ ` t : τ]]r : [[∆ ` Γ]]r → [[∆ ` τ]]r over [[∆; Γ ` t :

τ]]o × [[∆; Γ ` t : τ]]o.

Additional Observations

• Since we’ve actually constructed a λ2-fibration, we have a powerful

internal language for our model

Additional Observations

• Since we’ve actually constructed a λ2-fibration, we have a powerful

internal language for our model

• We can use this language to reason about our model using System F

Additional Observations

• Since we’ve actually constructed a λ2-fibration, we have a powerful

internal language for our model

• We can use this language to reason about our model using System F

• This allows us to prove

Additional Observations

• Since we’ve actually constructed a λ2-fibration, we have a powerful

internal language for our model

• We can use this language to reason about our model using System F

• This allows us to prove

– our model has initial algebras for strong functors

Additional Observations

• Since we’ve actually constructed a λ2-fibration, we have a powerful

internal language for our model

• We can use this language to reason about our model using System F

• This allows us to prove

– our model has initial algebras for strong functors

– our model has final coalgebras for strong functors

Additional Observations

• Since we’ve actually constructed a λ2-fibration, we have a powerful

internal language for our model

• We can use this language to reason about our model using System F

• This allows us to prove

– our model has initial algebras for strong functors

– our model has final coalgebras for strong functors

– parametricity implies dinaturality

Additional Observations

• Since we’ve actually constructed a λ2-fibration, we have a powerful

internal language for our model

• We can use this language to reason about our model using System F

• This allows us to prove

– our model has initial algebras for strong functors

– our model has final coalgebras for strong functors

– parametricity implies dinaturality

• These are litmus tests verifying that a model is “good”

Summing Up

• Parametricity entails replacing usual categorical semantics involving

categories, functors, and natural transformations

Summing Up

• Parametricity entails replacing usual categorical semantics involving

categories, functors, and natural transformations

with a semantics based on

fibrations, fibred functors, and fibred natural transformations

Summing Up

• Parametricity entails replacing usual categorical semantics involving

categories, functors, and natural transformations

with a semantics based on

fibrations, fibred functors, and fibred natural transformations

• This hits the sweet spot between the simplicity and “light structure”

of functorial models and the ability to prove expected key results

Examples

• The construction of examples of our framework is delicate

Examples

• The construction of examples of our framework is delicate

• But several well-known models are instances of our framework

Examples

• The construction of examples of our framework is delicate

• But several well-known models are instances of our framework

• Some must be regarded as being internal to the Calculus of Construc-

tions with impredicative Set

Examples

• The construction of examples of our framework is delicate

• But several well-known models are instances of our framework

• Some must be regarded as being internal to the Calculus of Construc-

tions with impredicative Set

• At least one must be be regarded as internal to the category of ω-sets

Examples

• The construction of examples of our framework is delicate

• But several well-known models are instances of our framework

• Some must be regarded as being internal to the Calculus of Construc-

tions with impredicative Set

• At least one must be be regarded as internal to the category of ω-sets

• They are discussed in the MFPS paper (and in the exercises!)

Examples

• The construction of examples of our framework is delicate

• But several well-known models are instances of our framework

• Some must be regarded as being internal to the Calculus of Construc-

tions with impredicative Set

• At least one must be be regarded as internal to the category of ω-sets

• They are discussed in the MFPS paper (and in the exercises!)

• I ask you to show that the identity fibration Id : Set → Set is an

instance of our framework that models ad hoc polymorphism...

Examples

• The construction of examples of our framework is delicate

• But several well-known models are instances of our framework

• Some must be regarded as being internal to the Calculus of Construc-

tions with impredicative Set

• At least one must be be regarded as internal to the category of ω-sets

• They are discussed in the MFPS paper (and in the exercises!)

• I ask you to show that the identity fibration Id : Set → Set is an

instance of our framework that models ad hoc polymorphism...

• ...and to show that, ignoring size issues, Reynolds’ construction gives

an instance of our framework via the relations fibration on Set

Examples

• The construction of examples of our framework is delicate

• But several well-known models are instances of our framework

• Some must be regarded as being internal to the Calculus of Construc-

tions with impredicative Set

• At least one must be be regarded as internal to the category of ω-sets

• They are discussed in the MFPS paper (and in the exercises!)

• I ask you to show that the identity fibration Id : Set → Set is an

instance of our framework that models ad hoc polymorphism...

• ...and to show that, ignoring size issues, Reynolds’ construction gives

an instance of our framework via the relations fibration on Set

• The PER model of Bainbridge et al. is also an instance (if bifibrations

are understood as internal to the category of ω-sets)

A Prescriptive General Framework

• Our framework is very general

A Prescriptive General Framework

• Our framework is very general

• It is thus prescriptive, as well as descriptive

A Prescriptive General Framework

• Our framework is very general

• It is thus prescriptive, as well as descriptive

• Different fibrations give rise to parametric models with very different

flavors

– changing the base category of the fibration changes the object model

used to interpret types and terms

A Prescriptive General Framework

• Our framework is very general

• It is thus prescriptive, as well as descriptive

• Different fibrations give rise to parametric models with very different

flavors

– changing the base category of the fibration changes the object model

used to interpret types and terms

– changing the total category and the fibration (i.e., the functor itself)

changes the notion of relational logic

A Prescriptive General Framework

• Our framework is very general

• It is thus prescriptive, as well as descriptive

• Different fibrations give rise to parametric models with very different

flavors

– changing the base category of the fibration changes the object model

used to interpret types and terms

– changing the total category and the fibration (i.e., the functor itself)

changes the notion of relational logic

• Ex: Using non-standard relations, we can construct a model of “multi-

valued parametricity” over a constructively completely distributive

complete non-trivial lattice of truth values

Extensions

• At WoLLIC’15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico

Orsanigo showed how to avoid baking the IEL into our framework,

but rather derive it from more primitive assumptions about equality-

preserving cones that can be used to interpret forall types

Extensions

• At WoLLIC’15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico

Orsanigo showed how to avoid baking the IEL into our framework,

but rather derive it from more primitive assumptions about equality-

preserving cones that can be used to interpret forall types

• At FoSSaCS’16, Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simp-

son showed how comprehension for U can be used to ensure that Rel(U)

is an equality preserving arrow fibration [This paper won the best the-

ory paper award for ETAPS]

Extensions

• At WoLLIC’15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico

Orsanigo showed how to avoid baking the IEL into our framework,

but rather derive it from more primitive assumptions about equality-

preserving cones that can be used to interpret forall types

• At FoSSaCS’16, Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simp-

son showed how comprehension for U can be used to ensure that Rel(U)

is an equality preserving arrow fibration [This paper won the best the-

ory paper award for ETAPS]

• At WadlerFest, Neil Ghani, Fredrik Nordvall Forsberg, and Federico

Orsanigo developed a proof-relevant version of our framework

Extensions

• At WoLLIC’15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico

Orsanigo showed how to avoid baking the IEL into our framework,

but rather derive it from more primitive assumptions about equality-

preserving cones that can be used to interpret forall types

• At FoSSaCS’16, Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simp-

son showed how comprehension for U can be used to ensure that Rel(U)

is an equality preserving arrow fibration [This paper won the best the-

ory paper award for ETAPS]

• At WadlerFest, Neil Ghani, Fredrik Nordvall Forsberg, and Federico

Orsanigo developed a proof-relevant version of our framework

• Clément Aubert, Fredrik Nordvall Forsberg, and I are working on ex-

tending our framework to a polymorphic calculus with computational

effects (System F with effect-free constants and algebraic operations

in the style of Plotkin and Power’s effectful simply-typed calculus λc)

References

• Functorial Polymorphism. E.S. Bainbridge, P.J. Freyd, A. Scedrov,

and P. Scott. Theoretical Computer Science, 1990. [Gives a functorial

semantics of polymorphism]

• Types, abstractions, and parametric polymorphism, part 2. Q. Ma and

J. Reynolds. MFPS’92 [Developed the first categorical framework for

parametric polymorphism (PL-categories)]

• Categorical models for Abadi and Plotkin’s logic for parametricity. L.

Birkedal and R. Møgelberg. Mathematical Structures in Computer

Science, 2005. [Constructs sophisticated models of parametricity and

its logical structure. Also argues that not all expected consequences

hold in Ma and Reynolds’ framework]

• Parametric limits. B. Dunphy and U. Reddy. LICS’04. [First model

to mix fibrations with reflexive graphs, but obtains existence of initial

algebras only for strictly positive functors]

• And many, many more...

