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• Last time we set up all the infrastructure we need to give our bifibra-

tional parametric model of System F

• Today we will use relations fibrations on categories other than Set

that are both equality preserving arrow fibrations and ∀-fibrations to

interpret System F

– types as fibred functors

– terms as fibred natural transformations

• This gives very general parametric models for System F

• Throughout, let Rel(U) be an equality preserving arrow fibration and

∀-fibration
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[[∆ ` τ ]] : |Rel(U)||∆| → Rel(U)

by

– Type variables: [[∆ ` αi]]oX = Xi and [[∆ ` αi]]rR = Ri

– Arrow types: [[∆ ` τ1 → τ2]] = [[∆ ` τ1]]⇒ [[∆ ` τ2]]

– Forall types: [[∆ ` ∀α.τ ]] = ∀[[∆, α ` τ ]]

• No definition for [[∆ ` τ ]] on morphisms is needed because the domain

of [[∆ ` τ ]] is discrete
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fibred functor whenever [[∆, α ` τ ′]] is, just by the definition of

∀ : (|Rel(U)|n+1 →Eq Rel(U))→ (|Rel(U)|n →Eq Rel(U))

• Indeed, the very existence of ∀ in a ∀-fibration requires that if F is

equality preserving then so is ∀F

• In our model, the Identity Extension Lemma is “baked into” the inter-

pretation of types, rather than something to be proved post facto

• If U is faithful, then the ∀-fibration requirement can be reformulated

in terms of more basic concepts using opfibrational structure of U
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• In a CCC, for all X and Y , there is an object X ⇒ Y and a isomor-

phism

λ : Hom(W ×X,Y ) ∼= Hom(W,X ⇒ Y )

that is natural in W

• The unit of this adjunction is the evaluation map

evX,Y = λ−1(idX⇒Y ) : (X ⇒ Y )×X → Y

• In a ∀-fibration, for every F and G, there is are isomorphisms

ϕn : Hom(F ◦ πn, G) ∼= Hom(F,∀nG)

that are natural in n
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1. [[∆; Γ ` (Λα.t)τ1 : τ2[α 7→ τ1]]] = [[∆; Γ ` t[α 7→ τ1] : τ2[α 7→ τ1]]]

2. [[∆; Γ ` t : ∀β.τ ]] = [[∆; Γ ` Λα.t α : ∀β.τ ]]

• Proposition If ∆; Γ ` t1 : τ1 and ∆; Γ, x : τ1 ` t2 : τ2

1. [[∆; Γ ` (λx.t2)t1 : τ2]] = [[∆; Γ ` t2[x 7→ t1] : τ2]]

2. [[∆; Γ ` t : τ1 → τ2]] = [[∆; Γ ` λx.tx : τ1 → τ2]]



Reynolds’ Abstraction Theorem, Generalized

• Our model actually gives rise to a λ2-fibration



Reynolds’ Abstraction Theorem, Generalized

• Our model actually gives rise to a λ2-fibration

• Seely showed that λ2-fibrations always soundly interpret System F



Reynolds’ Abstraction Theorem, Generalized

• Our model actually gives rise to a λ2-fibration

• Seely showed that λ2-fibrations always soundly interpret System F

• Theorem If Rel(U) is an equality preserving arrow fibration and a

∀-fibration, then there is a λ2-fibration in which types ∆ ` τ are inter-

preted as equality preserving fibred functors [[∆ ` τ ]] : |Rel(U)||∆| →Eq

Rel(U) and terms ∆; Γ ` t : τ are interpreted as fibred natural trans-

formations [[∆; Γ ` t : τ ]] : [[∆ ` Γ]]→ [[∆ ` τ ]]



Reynolds’ Abstraction Theorem, Generalized

• Our model actually gives rise to a λ2-fibration

• Seely showed that λ2-fibrations always soundly interpret System F

• Theorem If Rel(U) is an equality preserving arrow fibration and a

∀-fibration, then there is a λ2-fibration in which types ∆ ` τ are inter-

preted as equality preserving fibred functors [[∆ ` τ ]] : |Rel(U)||∆| →Eq

Rel(U) and terms ∆; Γ ` t : τ are interpreted as fibred natural trans-
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|Rel(E)||∆|
[[Γ]]r

,,

[[τ ]]r

22�� [[t]]r

|Rel(U)||∆|

��

Rel(E)

U

��
|B||∆| × |B||∆|

[[Γ]]o×[[Γ]]o
,,

[[τ ]]o×[[τ ]]o

22�� [[t]]o×[[t]]o B × B
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In particular, for every fibration U : E → B whose relations fibration is an

equality preserving arrow fibration and a forall fibration, for every System

F type ∆ ` τ and term ∆; Γ ` t : τ , we get:

1. An object interpretation of ∆ ` τ as a functor [[∆ ` τ ]]o : |B||∆| → B

2. A relational interpretation of ∆ ` τ as a functor [[∆ ` τ ]]r : |Rel(E)||∆| →
Rel(E)

3. A proof of the Identity Extension Lemma as in the previous lecture,

i.e., a proof that [[∆ ` τ ]] is equality preserving

4. An object interpretation of ∆; Γ ` t : τ as a natural transformation

[[∆; Γ ` t : τ ]]o : [[∆ ` Γ]]o → [[∆ ` τ ]]o

5. A proof of the Abstraction Theorem as in the previous lecture, i.e.,

a proof that ∆; Γ ` t : τ has a relational interpretation as a natural

transformation [[∆; Γ ` t : τ ]]r : [[∆ ` Γ]]r → [[∆ ` τ ]]r over [[∆; Γ ` t :

τ ]]o × [[∆; Γ ` t : τ ]]o.
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Additional Observations

• Since we’ve actually constructed a λ2-fibration, we have a powerful

internal language for our model

• We can use this language to reason about our model using System F

• This allows us to prove

– our model has initial algebras for strong functors

– our model has final coalgebras for strong functors

– parametricity implies dinaturality

• These are litmus tests verifying that a model is “good”
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Summing Up

• Parametricity entails replacing usual categorical semantics involving

categories, functors, and natural transformations

with a semantics based on

fibrations, fibred functors, and fibred natural transformations

• This hits the sweet spot between the simplicity and “light structure”

of functorial models and the ability to prove expected key results
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Examples

• The construction of examples of our framework is delicate

• But several well-known models are instances of our framework

• Some must be regarded as being internal to the Calculus of Construc-

tions with impredicative Set

• At least one must be be regarded as internal to the category of ω-sets

• They are discussed in the MFPS paper (and in the exercises!)

• I ask you to show that the identity fibration Id : Set → Set is an

instance of our framework that models ad hoc polymorphism...

• ...and to show that, ignoring size issues, Reynolds’ construction gives

an instance of our framework via the relations fibration on Set

• The PER model of Bainbridge et al. is also an instance (if bifibrations

are understood as internal to the category of ω-sets)
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A Prescriptive General Framework

• Our framework is very general

• It is thus prescriptive, as well as descriptive

• Different fibrations give rise to parametric models with very different

flavors

– changing the base category of the fibration changes the object model

used to interpret types and terms

– changing the total category and the fibration (i.e., the functor itself)

changes the notion of relational logic

• Ex: Using non-standard relations, we can construct a model of “multi-

valued parametricity” over a constructively completely distributive

complete non-trivial lattice of truth values
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Extensions

• At WoLLIC’15, Neil Ghani, Fredrik Nordvall Forsberg, and Federico

Orsanigo showed how to avoid baking the IEL into our framework,

but rather derive it from more primitive assumptions about equality-

preserving cones that can be used to interpret forall types

• At FoSSaCS’16, Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simp-

son showed how comprehension for U can be used to ensure that Rel(U)

is an equality preserving arrow fibration [This paper won the best the-

ory paper award for ETAPS]

• At WadlerFest, Neil Ghani, Fredrik Nordvall Forsberg, and Federico

Orsanigo developed a proof-relevant version of our framework

• Clément Aubert, Fredrik Nordvall Forsberg, and I are working on ex-

tending our framework to a polymorphic calculus with computational

effects (System F with effect-free constants and algebraic operations

in the style of Plotkin and Power’s effectful simply-typed calculus λc)
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