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Course Outline

Lecture 1: Syntax and semantics of ADTs and nested types

Lecture 2: Syntax and semantics of GADTs

Lecture 3: Parametricity for ADTs and nested types

Lecture 4: Parametricity for GADTs



Lecture 4:
Parametricity for GADTs

• In a parametric model, each type T[A] with a free type variable A has a set
interpretation T0 : Set → Set and a relational interpretation T1 : Rel → Rel such
that if R : Rel(A,B) then T1R : Rel(T0A, T0B) (and IEL holds).

• We argued last time that there are parametric models for calculi supporting ADTs
and nested types.

• Can we also construct parametric models for calculi supporting GADTs?

• For this we need set and relational interpretations for GADTs as described above.

• Such interpretations exist for discrete semantics of GADTs.

• These satisfy the IEL (and AT).

• For fully functorial semantics of GADTs the situation is more complicated.
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Set and Rel Interpretations of GADTs

• If
data G : Set→ Set where

c : ∀{A : Set} → F A→ G (K A)

then

- The set interpretation G0 of G is µH0, where H0 J = LanK0
F0, i.e.,

G0
∼= µJ.LanK0

F0

This left Kan extension is in Set , and K0 interprets K and F0 interprets F in Set .

- The relational interpretation G1 of G is µH1, where H1 J = LanK1
F1, i.e.,

G1
∼= µJ.LanK1 F1

This left Kan extension is in Rel , and K1 interprets K and F1 interprets F in Rel .
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A Problematic GADT

• Consider the GADT G whose single constructor c provides only an element for the
instance G>

data G : Set→ Set where
c : G>

• For this GADT, F U = > and K U = > for all U : >.

• The picture we should have in mind is:

Set0 Set

Set

F=λu:Set0.1

K=λu:Set0.1 LanK F
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Computing the Set Interpretation for G

• The set interpretation G0 of G is G0A = (Lanλu.1 λu.1)A.

• This is computed as( ⋃
U :Set0, f :(λu.1)U→A

(λu.1)U
)
/ ∼ =

( ⋃
U :Set0, f :1→A

1
)
/ ∼

• Here, U is the unique object of Set0, ∗ is the unique element of the singleton set
1, and ∼ is the smallest equivalence relation such that (U, f, ∗) and (U, f ′, ∗) are
related if

(λu.1)U (λu.1)U

A

(λu.1) idU

f f ′
=

1 1

A

id1

f f ′

commutes, i.e., if f = f ′.
• Since the relation generating ∼ is already an equivalence relation,

(U, f, ∗) ∼ (U, f ′, ∗) iff f = f ′

• So, for the fully functorial semantics,

G0A = (Lanλu.1 λu.1)A = {f : 1→ A} = A
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Computing the Rel Interpretation for G

• The relational interpretation G1 of G R is G1R = (Lanλu.Eq1
λu.Eq1)R.

• We need that if R : Rel(A,B) then

(Lanλu.Eq1
λu.Eq1)R : Rel((Lanλu.1 λu.1)A, (Lanλu.1 λu.1)B) = Rel(A,B)

• Consider the relation R = (1, 2, 1× 2), where 1× 2 relates the single element ∗ of
1 to both elements of 2.

• For the IEL to hold for GADTs we expect the domain of (Lanλu.Eq1
λu.Eq1)R to

be 1, but it is not!
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IEL Does Not Hold for GADTs

• We can compute the domain of (Lanλu.Eq1
λu.Eq1)R as

π1((Lanλu.Eq1
λu.Eq1)R) = π1(lim−→U :Rel0,m:(λu.Eq1)U→R(λu.Eq1)R)

= π1(lim−→U :Rel0,m:Eq1→R Eq1)

= lim−→U :Rel0,m:Eq1→R (π1Eq1)

= lim−→U :Rel0,m:Eq1→R 1

=
⋃
U :Rel0,m:Eq1→R 1 / ≈

• Here, U is the unique object of Rel0, ∗ is the unique element of the singleton set
1, and ≈ is the smallest equivalence relation such that (U,m, ∗) and (U,m′, ∗) are
related if

(λu.Eq1)U (λu.Eq1)U

R

(λu.Eq1 ) idU

m m′
=

Eq1 Eq1

R

idEq1

m m′

commutes, so (U,m, ∗) ≈ (U,m′, ∗) iff m = m′.
• So for the fully functorial semantics,

π1(G1R) = (Lanλu.Eq1
λu.1)R = {m : Eq1 → R} = {(!, k0), (!, k1)}

where k0 and k1 send ∗ to the two different elements of 2.
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Fully Functorial GADTs Do Not Admit

Traditional Parametric Models

• Since the set and relational interpretations of GADTs are not appropriately fibred,
the IEL cannot possibly hold.

• We conclude that fully functorial GADTs do not admit parametric models if
GADTs are given a traditional relational semantics!

• We get the naturality consequences of parametricity functorial GADTs just from
the functorial semantics.

• But if we can prove inhabitation results, or prove representation independence, or
derive short cut fusion or deep induction rules for them, then it has to be from
something other than parametricity.

• By contrast, discrete (syntax-only) GADTs have parametric models (but not
non-trivial functoriality).

• So we can prove inhabitation results and prove representation independence and
derive short cut fusion and deep induction rules for them. But we cannot derive
(non-trivial) naturality consequences of parametricity for them.

• So there’s a trade-off, and the choice we make has consequences.
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Course Outline

Lecture 1: Syntax and semantics of ADTs and nested types

Lecture 2: Syntax and semantics of GADTs

Lecture 3: Parametricity for ADTs and (truly) nested types

Lecture 4: Parametricity for GADTs


