
Higher-Kinded Data Types: Syntax and Semantics
Patricia Johann

Department of Computer Science
Appalachian State University
Email: johannp@appstate.edu

Andrew Polonsky
Department of Computer Science

Appalachian State University
Email: andrew.polonsky@gmail.com

Abstract—We present a grammar for a robust class of data
types that includes algebraic data types (ADTs), (truly) nested
types, generalized algebraic data types (GADTs), and their
higher-kinded analogues. All of the data types our grammar
defines, as well as their associated type constructors, are shown
to have fully functorial initial algebra semantics in locally
presentable categories. Since local presentability is a modest
hypothesis, needed for such semantics for even the simplest
ADTs, our semantic framework is actually quite conservative.
Our results thus provide evidence that if a category supports
fully functorial initial algebra semantics for standard ADTs, then
it does so for advanced higher-kinded data types as well.

To give our semantics we introduce a new type former called
Lan that captures on the syntactic level the categorical notion of
a left Kan extension. We show how left Kan extensions capture
propagation of a data type’s syntactic generators across the entire
universe of types, via a certain completion procedure, so that the
type constructor associated with a data type becomes a bona fide
functor with a canonical action on morphisms. A by-product of
our semantics is a precise measure of the semantic complexity of
data types, given by the least cardinal λ for which the functor
underlying a data type is λ-accessible. The proof of our main
result allows this cardinal to be read off from a data type
definition without much effort. It also gives a sufficient condition
for a data type to have semantic complexity ω, thus characterizing
those data types whose data elements are effectively enumerable.

I. INTRODUCTION

It is widely accepted that initial algebra semantics provides a
principled, uniform, robust, and clarifying theory of algebraic
data types (ADTs) such as lists, trees, the natural numbers, etc.
In initial algebra semantics, every ADT is interpreted as the
carrier of the initial algebra — i.e., the least fixed point — of
an endofunctor on the semantic category A interpreting types.
For example, the ADT Nat = Zero ∣SuccNat is interpreted
as the least fixed point µN for the endofunctor NX = 1 +X ,
and the ADT Lista = Nil ∣Consa (Lista) is interpreted as
µF for FX = 1+a×X , where the object a of A interprets a.
Iterating the syntax of an ADT enumerates its data elements.

Because data types behave uniformly in their indices,
they also induce type constructors. For example, the induced
type constructor List uniformly constructs from each type
a the new type Lista. If types are interpreted as objects
of A, then type constructors are interpreted as endofunc-
tors on A. Programming-wise this means that every type
constructor D induced by an ADT must have a functorial
action that lifts any f ∶∶ a→ b to a function mapf ∶∶ Da→ Db

that can uniformly change the data in a structure but must
preserve its shape. Importantly, the type a can itself be
of the form Dc for some type c, so that nested ADTs

such as D (Dc) not only make sense syntactically, but also
induce type constructors whose map functions are obtained
by suitably nesting calls to the map function for the ADT
being nested. The map function for List .List, for example,
is given by map (mapf) ∶∶ List (Listc)→ List (Listd),
where f ∶∶ c→ d and map is as usual for lists.

ADTs are, of course, ubiquitous in programming, but many
modern languages now support syntactic generalizations of
ADTs such as nested types, generalized algebraic data types
(GADTs), and other higher-kinded data types. A higher-kinded
data type can be thought of intuitively as one whose data
elements are obtained by the same iterative process as for
ADTs, except that now the iteration is not just over types —
which have kind ⋆ — but also over type operators that have
kinds like ⋆→ ⋆ and (⋆→ ⋆)→ (⋆→ ⋆)→ ⋆ and themselves
take as arguments either types or type operators of lower rank.
GADTs in particular are often used to enforce sophisticated
correctness properties of programs, including properties about
the size or shape of data, the state of program components,
and other data invariants. For example, the nested type1

data PSeqa where

PSLeaf ∶∶ a→ PSeqa

PSNode ∶∶ PSeq (a,a)→ PSeqa

comprises sequences whose lengths are powers of 2, while

data Seqa where

SConst ∶∶ a→ Seqa

SPair ∶∶ Seqa→ Seqb→ Seq (a,b)
SSeq ∶∶ (Int→ Seqa)→ Seq (Int→ a)

enforces more general well-formedness conditions for se-
quences. Such constraints cannot be coded using ADTs alone.

Given the the success of initial algebra semantics for ADTs
and the aforementioned computational intuition for higher-
kinded data types, it is natural to try to extend initial algebra
semantics for the former to the latter. Such semantics should
not only interpret higher-kinded data types as carriers of
initial algebras of endofunctors, but should moreover inter-
pret the type constructors they induce as endofunctors, as
described above. For some non-algebraic data types this is
easily achieved. Nested types, e.g., are well-known to have
interpretations as carriers of initial algebras of endofunctors on
categories [A,A] of appropriately cocontinuous endofunctors
on categories A interpreting types [11]. For example, PSeq can

1Nested types comprise the special case of GADTs in which the return
types of all data constructors are precisely the type being defined. Nested
types with nested calls to themselves are sometimes called truly nested types.978-1-7281-3608-0/19/$31.00 ©2019 IEEE

be interpreted as µP for the functor P F X =X +F (X ×X) ∶
[A,A] → [A,A]. One attempt to give a similar endofunctor
initial algebra semantics for more general GADTs was made
in [10]. However, it was argued there that such a semantics that
moreover interprets the GADT itself as an endofunctor is not
always possible because an arbitrary GADT need not have a
functorial action on morphisms, i.e., a map function. For exam-
ple, the clause of the function map ∶∶ (a→ b)→ Seqa→ Seqb

for Seq would be mapf (SPairxy) ∶∶ Seqb for f ∶∶ (c,d)→ b.
Recalling that map functions for ADTs preserve the shapes
of data structures while uniformly changing their data, and
extending this intuition to GADTs, we expect the clause of
map for SPair to have the form mapf (Pairxy) = Pairuv.
But b need not have a product structure and f need not be a
pair of functions, so it was unclear how this could be achieved.
Ultimately, [10] gives an initial algebra semantics for GADTs
in terms of functors from the discrete category ∣A∣ to the
category A interpreting types, rather than endofunctors on A.

There is, however, no a priori reason to expect GADTs to
have discrete functor semantics when ADTs and nested types
have endofunctor semantics. Moreover, in discrete semantics,
map functions become trivial, making it impossible to interpret
GADTs that call themselves, such as the (truly) nested type

data Busha where

BNil ∶∶ Busha
BCons ∶∶ a→ Bush (Busha)→ Busha

The clause of map for BCons should be mapf (BConsxt) =
BCons (fx) (map (mapf)t), but in discrete semantics mapf

is undefined if f /= id. The upshot is that no discrete
functor initial algebra semantics for GADTs can possibly be
specialized to treat nested types, or even ADTs, involving
nesting. Since GADTs are, as their name suggests, intended
to generalize all ADTs, this indicates that something is amiss.

In this paper we remedy this situation by first giving a
grammar for a very general class of higher-kinded data types
that includes a wide variety of ADTs, (truly) nested types, and
(nested) GADTs, and then showing that

Theorem. Every higher-kinded data type defined by our
grammar has an initial algebra interpretation as the least
fixed point of an appropriately cocontinuous higher-kinded
endofunctor over an appropriate category interpreting types.

It follows that the type constructors induced by the higher-
kinded data types defined by our grammar also have (appropri-
ately cocontinuous) endofunctor interpretations. An important
aspect of our semantics is that it naturally specializes to an
endofunctor initial algebra semantics for GADTs that itself
naturally specializes to the usual initial algebra semantics for
ADTs and nested types. We thus show, at last, that GADTs
really are generalizations of ordinary ADTs, and hence are
worthy of their name. The precise form of the above theorem
(Theorem 11 below) further guarantees that our semantics
for higher-kinded types is effectively computable — i.e., that
elements of these types can be exhaustively generated by an
algorithm — in exactly the same settings in which the usual

initial algebra semantics for ADTs are. This provides strong
evidence that the semantics gives the “right” way to understand
higher-kinded data types.

The initial algebra semantics we give in this paper provides
exactly the same kind of principled, uniform, robust, and clar-
ifying semantics for higher-kinded data types we already had
for ADTs. Remarkably, all of our results are consequences of
our taking seriously the idea that, in a good semantics, all data
types — even GADTs and other higher-kinded ones — should
be interpreted as least fixed points of actual endofunctors.

The remainder of this paper is organized as follows. In Sec-
tion II we describe our methodological contributions, namely
our new notion of functorial completion for data types, and
our use of left Kan extensions of endofunctors to compute
functorial completions in locally presentable categories. Next,
we show how our methodology leads to the paper’s technical
contributions. In Section III we give our grammar for higher-
kinded data types, and in Section IV we recall the categorical
background needed in Section V to extend the usual endo-
functor initial algebra semantics for ADTs to the GADTs and
other higher-kinded data types the grammar defines. We also
identify conditions under which our semantics is effectively
computable, and show, via the examples in Section VI, that
it corresponds precisely to the intuitive understanding of data
types and how their data elements are enumerated.

II. KEY IDEA AND SEMANTIC SETTING

The Key Idea: Functorial Completion We achieve our endo-
functor initial algebra semantics for higher-kinded data types
by moving from a primarily syntactic view of data types to
a more fundamentally semantic one. Our key insight is that
data types are, in general, underspecified by their syntax. This
is a fundamentally new observation that recognizes for the
first time that even an ordinary GADT declaration need not
specify all of the data elements it defines. Instead it specifies
only the “syntactic seeds” from which those elements can be
generated. This is in sharp contrast with ADT and nested type
declarations, whose syntax is exhaustively enumerative.

To see that a data type’s data elements need not be fully
enumerated by its syntax, note that if a data type is to itself be
interpreted as an endofunctor, then everything in the closure
of the collection of data elements enumerated by a data type’s
syntax under its map function must also be considered data
elements of the data type. Now, we have already seen that even
an innocuous-looking GADT like Seq need not support a map

function mapping structures of a particular syntactic shape to
structures of that same syntactic shape. However, the notion
of “shape” on which this analysis relies is entirely syntactic. If
we instead take a more semantic view and consider a structure,
regardless of its syntactic form, to have a data constructor’s
“shape” if it is in that constructor’s functorial closure — i.e.,
if it can be obtained from data built using that constructor
by applications of the data type’s map function — then map

functions can still be seen as preserving structures’ shapes.
This new, inherently semantic view of data types shows that,
claims in [10] notwithstanding, requiring all data types to have

endofunctor initial algebra semantics can indeed be reconciled
with the expectation that data types induce type constructors
with change-the-data-but-preserve-the-shape map functions.

To compute data types’ functorial closures we will use left
Kan extensions [13]. For functors K ∶ C → C ′ and H ∶ C →D,
the left Kan extension of H along K, denoted LanKH , is the
best approximation to a functor from C ′ to D through which
H factors via K. Left Kan extensions are already present in the
GADT semantics of [10]. There, they give a bijection between
types of the form foralla.ha→ f (ka) and those of the
form foralla.Lankha→ fa, where Lankha is defined by

data Lankha where

LanC ∶∶ (kb→ a)→ hb→ Lankha

However, being applied to discrete functors, they have trivial
functorial actions, and thus cannot perform the functorial
closure we require here. By contrast, the left Kan extensions
in this paper are applied to non-discrete functors, so even for
just ordinary GADTs they extend the restriction of a GADT’s
map function to structures of the same syntactic form to a
map function on all of the data elements of the GADT. More
generally, left Kan extensions can be seen as “realizing” the
(entire, possibly higher-kinded) data type (implicitly) specified
by (the seeds of) a data type’s syntax. For example, if a pro-
gramming language included a syntactic construct for left Kan
extensions, such as Lan above, then, letting kab = (a,b) and
hab = (Seqa,Seqb), the type of the data constructor SPair
could be rewritten as SPair ∶∶ Lankhc→ Seqc, indicating
that Seq’s semantics involves its entire functorial closure.

For ADTs, nested types, and other data types whose syntax
is wholly enumerating, there is no distinction between purely
syntactic map functions and their functorial closures; the left
Kan extensions are always along identity functors in these
cases. This explains how left Kan extensions arise in initial
algebra semantics for higher-kinded data types that specialize
to the standard ones for ADTs without (explicitly) appearing
there: they are actually present, though degenerate, but have
remained hidden until exposed by our semantic analysis.

Our first step is thus to expose in syntax the heretofore
hidden presence of (sometimes degenerate) left Kan extensions
in the semantics of data types. The grammar in Section III
defines not just the (higher-kinded) data types in which we
are interested, but also the (higher-kinded) type constructors
they induce. In addition to the usual constructs for data types,
it includes a new one, called Lan , whose applications will
be interpreted as left Kan extensions, and that makes explicit
the functorial completion implicit in precompositions with
functors in data constructor return types.

The Semantic Setting: Locally Presentable Categories To
state and prove the precise form of our main result (Theo-
rem 11), we work with λ-accessible functors on locally λ-
presentable categories, for regular cardinals λ [4]. Locally
presentable categories [6] are of fundamental importance in
category theory. They include many familiar semantic cate-
gories, such as Set, models of (essentially) algebraic theories
(e.g., the theories of groups, rings, lattices, etc.), ω-CPO,

Grothendieck toposes, and the category of Banach spaces
and contractions, which figures in models of linear logic. In
locally presentable categories, the left Kan extensions that will
interpret the Lan construct can be reformulated as colimits: in
such categories, the “large” colimit that is a left Kan extension
is always determined by a “small” set of support.

A λ-accessible functor on a locally λ-presentable category
can be thought of intuitively as one whose initial algebra is
guaranteed to be computable in at most λ steps. Our proof of
Theorem 11 below guarantees that, in a locally λ-presentable
category, if K and H are λ-accessible functors then LanKH
is always λ′-accessible for some λ′ ≥ λ. Importantly, λ′ can
be strictly larger than λ here, depending on which functors H
and K are extended and extended along. This makes perfect
sense intuitively: even for GADTs, the functorial expression K
being precomposed with in the return type of a data constructor
clearly affects how quickly computation of the initial algebra
interpreting that GADT will converge. Fortunately, analysis of
the proof of Theorem 11 reveals that no increase in cardinal
is required to interpret functorial expressions other than those
involving Lan . We can therefore ensure that all functorial ex-
pressions have interpretations as λ-accessible functors for the
very same λ by restricting the classes of functorial expressions
F1 and F2 appearing in expressions of the form LanF1F2.

Taking λ = ω in particular, we have that, in locally finitely
(i.e., ω-)presentable categories, left Kan extensions interpret-
ing LanF1F2 for appropriately restricted functorial expressions
F1 and F2 can be effectively computed using their colimit
reformulations. This allows us to identify a large class of
GADTs and other higher-kinded data types as being effectively
enumerable. For example, the functors interpreting Nat, List,
PSeq, and Bush are all ω-accessible, so their corresponding
data types are all effectively enumerable in locally finitely pre-
sentable categories. Examples of effectively enumerable truly
higher-kinded data types appear in Section VI. By contrast,
the functor interpreting Seq is not ω-accessible, but there is
a λ > ω for which it is λ-accessible. Thus, while data types
constructed using Seq are not effectively enumerable in the
manner they are often (incorrectly) assumed to be, in locally λ-
presentable categories they can be completely enumerated in λ
steps. Critically, Theorem 9 shows that, in such categories, the
left Kan extension demanded by the rewritten type of SPair
above can be computed as the colimit

limÐ→(a,b)∈A×A,f ∶(a,b)→e
h (a, b)→ Seq e

for h (a, b) = Seqa × Seq b. It is no coincidence that the
interpretation f of the function f ∶∶ (a,b)→ e whose absence
motivated [10]’s discretization of functors appears in this
colimit.

Almost incredibly, local finite presentability, which supports
effective enumerability of the higher-kinded data types defined
by our grammar, is the minimal reasonable hypothesis guaran-
teeing effective enumerability of ADTs and nested types. More
generally, locally presentable categories and accessible func-
tors on them provide a means of measuring how semantically

complex data types are: we can define the semantic complexity
of a data type to be the smallest regular cardinal λ such that
it can be interpreted as the carrier of the initial algebra of a
λ-accessible endofunctor on a locally λ-presentable category
over the category interpreting types.

III. SYNTAX OF HIGHER-KINDED DATA TYPES

We present our grammar of higher-kinded data types in two
stages. In Section III-A we introduce functorial expressions, of
which ADTs, nested types, and GADTs are special cases. In
Section III-B we extend these to higher kinds. In order to be
as general as possible, the only assumption we make about the
host language is that it includes the inductive types generated
by our grammar. That is, we remain completely agnostic
regarding other features the host language may support.

A. The grammar of functorial expressions
For each k ≥ 0, we assume a countable set Tk of functor

variables of arity k, disjoint for distinct k. We use lower case
Greek letters for functor variables, and write ϕk to indicate that
ϕ ∈ Tk. We call T0 the set of type variables. When convenient
we may write α,β, etc., rather than α0, β0, etc., for elements
of T0. The set of all functor variables is T = ⋃k≥0 Tk. We
write ϕ for a set {ϕ1, ..., ϕn} of functor variables when the
cardinality n of the set is unimportant. We further write P,ϕ
for P ∪ϕ. We omit the boldface for a singleton set ϕ.

Let P ⊆ T. The grammar F defining the set FP(k) of
functorial expressions of arity k is given by

FP(k) ∶∶= λα1...αk. αi ∣ 0 ∣ 1 ∣ PFP,α(0)
∣ FP,α(0) +FP,α(0)
∣ FP,α(0) ×FP,α(0)
∣ (µϕn.FP,α,ϕ(n))FP,α(0)

∣ (Lanβ
Fβ(0)

FP,α,β(0))FP,α(0)

We call functorial expressions of arity 0 types.
If F ∈ FP(k) then FV(F) ⊆ P . The intuitive meaning

of the grammar F , which will be made precise in Section
V, is that each F ∈ FP(k) defines a λ-cocontinuous functor
JF K ∶ AP × Ak → A, where A is the corresponding locally
λ-presentable category interpreting types, and AP is a locally
λ-presentable category interpreting the free variables in P . We
think of F as a k-ary, P-indexed functor that is λ-cocontinuous
in both its k arguments and its context P .

A number of observations are in order:
● The grammar F does not include any function types or
polymorphic types. This is not meant as a restriction on the
host language; rather, it reflects the focus of the present paper,
namely, (higher-kinded) data types and their semantics. Other
types the host language might support will naturally impose
their own semantic hypotheses. To support function types, e.g.,
A will also need to be a cartesian closed category (ccc).2

2Cartesian closure interacts well with local presentability; several of the
examples from the introduction are, in fact, cccs. Since locally presentable
cccs are closed under the formation of categories of λ-cocontinuous functors,
the extension to higher kinds in Section III-B is unproblematic.

● Application of an expression E is allowed only when E is a
functor variable or a functorial expression whose head is either
µ or Lan . Moreover, if E has arity n then E must be applied to
exactly n arguments. That is, functorial expressions are always
in η-long normal form. This avoids having to consider β-
conversion on the level of type constructors. Similarly, the fact
that the standard type formers are all defined pointwise avoids
having to relate functorial expressions at different kinds. As
discussed at the end of this subsection, there are other ways
to remedy these problems for the grammar F . But since these
are not available for the higher-kinded extension H of F given
in Section III-B, we choose the above presentation of F .
● An overbar indicates a sequence of subexpressions whose
length matches the arity of the functorial expression applied
to it. For example, the clause PFP,α(0) for functor variables
means that, for all k,n ≥ 0 and each ϕn ∈ P , if Ai ∈ FP,α(0)
for i = 1, ..., n, then λα1, ..., αk. ϕ

nA1⋯An ∈ FP(k). A
similar remark applies to the clause for µ, where the length
of the sequence matches the arity n of the recursion variable
ϕn bound by µ. Each subexpression LanK̄H also has an arity
parameter, which is left implicit. It imposes the constraint that
the number of expressions in the sequence K̄ must match the
number of arguments to which LanK̄H is applied.
● In a subexpression, µϕn.H , the µ operator binds all occur-
rences of the variable ϕn in its body H . Similarly, the Lan
operator binds all occurrences of the variables in β both in
the subscript expressions and in the body of the Lan operator.
In addition, the former can depend only on the variables in β.
As a consequence, nesting is not allowed in return types of
data constructors. This will ensure that Lan-expressions can
be interpreted by λ-accessible functors.

We introduce the abbreviations 2 ∶= 1+1, 0k ∶= λα1...αk.0,
1k ∶= λα1...αk.1, F +kG ∶= λα1...αk.Fα+Gα, and F ×kG ∶=
λα1...αk.Fα × Gα. As usual, we may omit k when k = 0.
ADTs are then expressible in F in the usual way. For example,
the type constructors for Nat and List can be represented as

Nat ∶= µα.1 + α ∈ F∅(0)
List ∶= λα.µβ.1 + α × β ∈ F∅(1)

F is also sufficiently rich to express a large class of GADTs.
In particular, the type constructors for PSeq and Bush can be
represented by the following expressions in F∅(1):

PSeq ∶= λα. (µϕ1.λβ.β + ϕ(β × β))α
Bush ∶= λα. (µϕ1.λβ.1 + β × ϕ(ϕβ))α

At first glance, it appears that Seq is not expressible in F
because this grammar contains no function type constructor.
However, function types with constant domains can be ex-
pressed in F . In fact, if C is any closed type, then C → D
can be represented as (LanβC1)D. Thus, Seq ∈ F∅(1) can be
represented by

Seq ∶= λα. (µϕ1.λβ.β + (Lanγ1,γ2γ1×γ2(ϕγ1 × ϕγ2))β
+ (LanγNat→γ(Nat→ ϕγ))β)α

While excluding general arrow types and ∀-types may seem
unnecessarily restrictive, there is good reason to do so. The
expression F (α) = (α → 2) → 2, e.g., does not give rise to
a λ-cocontinuous functor, for any λ, under the standard inter-
pretation of type constructors in Set. And although GADTs
with constructors involving arrow types frequently appear in
the literature, these can also be problematic. We have already
noted, e.g., that Seq does not give rise to an ω-cocontinuous
functor, as would be required for it to have the computational
behavior typically ascribed to GADTs in practice. As we will
see in Section VI, the process of iterating the elements of Seq
directly from its definition need not converge after ω steps.
Even naively, this can be seen by noting that if we compute a
sequence sk of terms of type Seq each of which is added only
in the kth iteration, then we can diagonalize out of Seq using
the SSeq constructor. Thus, even very familiar-looking GADTs
involving arrow types with constant domains can fail to have
the computational meanings they are intuitively assigned.

While mixing fixed points with function types very rapidly
leads to pitfalls, nothing prevents the host language from
supporting function types (or ∀-types) if the semantic category
interpreting types supports them. In particular, since List will
be interpreted by a functor on this category, it can be applied to
any object X , including an object X that happens to interpret
a function type or a polymorphic type. The restrictions on the
grammar F therefore merely reflect a separation of concerns.

Finally, as promised, we consider the question of why the
arity k is made an explicit parameter in the grammar F , rather
than part of the context P . For F , we could indeed require all
arguments to be given in P and implicitly assume all expres-
sions to have outputs of arity 0. Intuitively, each E ∈ FP would
be interpreted by a λ-cocontinuous functor JEK ∶ AP → A and
a k-ary functorial expression G = λα1...αk.E ∈ F∅(k) would
be represented as E ∈ F{α1,...,αk}. Then, with k fixed at 0, F
would become the new grammar F0 given by

FP0 ∶∶= 0 ∣ 1 ∣ PFP0 ∣ FP0 + FP0 ∣ FP0 × FP0
∣ (µϕk.λα1..αk.FP,α,ϕ0)FP0

∣ (Lanβ
F
β
0

FP,β0)FP0

But, as we see next, making the arity an explicit feature of the
syntax, as we have done, eases the transition to higher kinds.
B. The grammar of general type constructors

The collection K of kinds comprises all simple types over
the kind ⋆ of types. For each κ ∈ K , we assume a countable
set Tκ of type constructor variables of arity κ, disjoint for
distinct κ. We use lower case Greek letters for type constructor
variables, and write ϕκ to indicate that ϕ ∈ Tκ. Each κ ∈ K
has an arity ∣κ∣ ≥ 0 and can be uniquely written as κ = κ1 →
⋯→ κ∣κ∣ → ⋆. Type variables are elements of T⋆, being “type
constructors of arity ⋆”; we continue to denote them by α,β,
etc. Similarly, every functor variable of arity k is in Tk, where
0 = ⋆ and k + 1 = ⋆ → k. The set of all type constructor
variables ⋃κ∈K Tκ extends the set of functor variables from
Section III-A. Hereafter, we let T denote this larger set.

The grammar H below implicitly uses the above unique
decomposition of kinds in applications to multiple arguments.
For example, assuming conventions for sets of type constructor
variables analogous to those for functor variables in Sec-
tion III-A, the clause PHP(i) means that, for all κ, ν ∈ K
and each ϕν ∈ P , if Fi ∈ HP,ϕ(νi) for i = 1, ..., ∣ν∣ then
λϕ1...ϕ∣κ∣. ϕ

νF1⋯F∣ν∣ ∈ HP(κ). Otherwise, the grammar H
follows the familiar pattern:

HP(κ) ∶∶= λϕ1...ϕ∣κ∣. 0 ∣ 1 ∣ (P ∪ϕ)HP,ϕ(i)
∣HP,ϕ(⋆) +HP,ϕ(⋆)
∣HP,ϕ(⋆) ×HP,ϕ(⋆)
∣ (µψν .HP,ϕ,ψ(ν))HP,ϕ(i)

∣ (Lanψ
Hψ(⋆)

HP,ϕ,ψ(⋆))HP,ϕ(⋆)

The grammar H subsumes F with FP(k) =HP(k). Observa-
tions analogous to those in Section III-A apply toH. We define
0κ, 1κ, +κ and ×κ pointwise, as for functorial expressions.

IV. THE CATEGORICAL SETUP

As noted above, we intend to interpret each expression in
FP(k) as a λ-cocontinuous functor of type AP × Ak → A
for a locally λ-presentable category A interpreting types, and
similarly for H. To do so, we will need to know that each
expression-forming construct can be interpreted as an opera-
tion on functors that preserves λ-cocontinuity. Since least fixed
points — represented by µ-expressions in our grammar(s)
— are the main construct in most data type definitions, we
first focus on semantic settings that support initial algebras.
Locally λ-presentable categories provide a very general such
setting [1], so we require our semantic categories to be at least
locally λ-presentable.

To interpret the other expressions in our grammar(s), we
will also need to know that our semantic categories have
the coproducts, products, and left Kan extension operations
that will interpret the expression formers +, ×, and Lan ,
respectively. A priori we expect requiring the existence of
each of these operations to impose additional constraints on the
semantic categories, so that these categories will ultimately be
some appropriate subcollection of locally λ-presentable ones.
Surprisingly, however, the local λ-presentability imposed by µ-
expressions is all that is needed to support all of the operations
we need to interpret all of the expressions in the grammar(s).
Indeed, as we show in this section, local λ-presentability
guarantees not only that all the operations needed to interpret
our expressions exist, but also that these operations, as well
as functor application (which is used to interpret applications
of type constructor variables), all preserve λ-cocontinuity.

Because they are typically defined in terms of least fixed
points, local λ-pesentability is already the minimal reasonable
hypothesis guaranteeing the standard initial algebra semantics
for ADTs. What this section ultimately shows, then, is that the
assumption of local λ-presentability, which we will presently
adopt as our principal hypothesis for interpreting higher-
kinded data types, is no stronger than what is already assumed

for ADTs. It is quite amazing that the same class of categories
in which ADTs have endofunctor initial algebra semantics
provides a natural setting for extending that semantics to
higher kinds.

A. Preliminaries

We recall the definition and basic features of locally
presentable categories, and verify the properties needed to
interpret our syntax. Below, let λ be a regular cardinal.

A category is small if its collection of morphisms is a set. It
is locally small if, for any two objects A and B, the collection
of morphisms from A to B is a set. A small (co)limit in a
category C is a (co)limit of a diagram F ∶ A → C, where A
is a small category; it is λ-small if the cardinality of the set
of arrows in A has cardinality less than λ. A category C is
(co)complete if it has all small (co)limits.

A poset D = (D,≤) is λ-directed if every subset of D
of cardinality less than λ has an upper bound. When D is
considered as a category, we write d ∈ D to indicate that d
is an object of D (i.e., d ∈ D). For d ∈ D, d↑ is the poset
{d′ ∈ D ∣ d ≤ d′}. A λ-directed colimit in C is a colimit
of a diagram F ∶ D → C, where D is a λ-directed poset. A
category C is λ-cocomplete if it has all λ-directed colimits.
A cocomplete category is one that has all colimits. If C is
cocomplete, then it is λ-cocomplete for all λ.

If A and C are (λ-)cocomplete, then the functor F ∶ A→ C
is (λ-)cocontinuous if it preserves (λ-directed) colimits. We
write [A,C](λ) for the category of (λ-)cocontinuous functors
from A to C, and CA for the category of all functors from
A to C. Since (co)limits of functors are computed pointwise,
CA has all limits and colimits that C has, and (co)limits of
(co)continuous functors are again (co)continous. It follows that
[A,C](λ) is (λ-)cocomplete whenever C is.

If A is locally small, then an object A of A is λ-
presentable if the functor HomA(A,−) ∶ A → Set preserves
λ-directed colimits, i.e., if for every λ-directed poset D and
every functor F ∶ D → C, there is a canonical isomorphism
limÐ→d∈DHomA(A,Fd) ≃ HomA(A, limÐ→d∈DFd). A category A
is λ-accessible if it is λ-cocomplete and has a set A0 of
λ-presentable objects such that every object is a λ-directed
colimit of objects in A0; it is locally λ-presentable if it
is λ-accessible and cocomplete. Of the semantic categories
discussed in Section II, Set and models of algebraic theories
are locally finitely presentable, ω-CPO and Banach spaces are
locally ℵ1-presentable, and Grothendieck toposes are locally
λ-presentable with λ depending on the site inducing the
Grothendieck topology. Finally, a functor F ∶ A → C is λ-
accessible if A and C are λ-accessible and F ∈ [A,C]λ. If
λ ≤ µ then A being locally λ-presentable implies A is locally
µ-presentable (see the remark following Theorem 1.20 in [4]),
butA being λ-accessible does not imply thatA is µ-accessible.

If A0 is an essentially small category we write A ≃
Indλ(A0) if A is a free cocompletion of A0 with respect
to λ-directed colimits, i.e., if A is a λ-cocomplete category
and every functor F ∶ A0 → C with C λ-cocomplete has a

unique (up to natural isomorphism) λ-cocontinuous extension
F ∗ ∶ A→ C. The next two results are standard (see, e.g., [4]):

Proposition 1. (i) If A is λ-accessible then A ≃ Indλ(A0) for
the essentially small category A0 of A’s λ-presentable objects.
(ii) If A is λ-accessible and C is λ-cocomplete, then the
category [A,C]λ is naturally equivalent to the category CA0 .
(iii) If C is locally λ-presentable and A0 is essentially small,
then CA0 is locally λ-presentable.

Also, and crucially, in locally λ-presentable categories, λ-
small limits commute with λ-directed colimits [4, Prop.1.59].

To define our semantics we will need to know that the
application functor (F,A) ∈ [A,B]λ × A z→ F (A) — i.e.,
the restriction of the evaluation morphism evA,B arising from
the ccc structure on Cat to λ-accessible F — is λ-accessible.
While this fact is used quite frequently, we could not find it
recorded anywhere, so we prove it in Lemma 2 below.

To do so, we first recall that if A is a category, then the
arrow category A→ has as objects triples (A,B, f), where
A and B are objects of A and f ∈ HomA(A,B). The
morphisms from (A,B, f) to (A′,B′, f ′) in A→ are pairs
(α,β) ∈ HomA(A,A′)×HomA(B,B′) such that β○f = f ′○α.
If D = {(Ad,Bd, fd) ∣ d ∈ D} is a λ-directed diagram
in A→, then the colimit in A→ of D is (A,B, f), where
A = limÐ→d∈DAd, B = limÐ→d∈DBd (with colimit maps bd ∶
Bd → B), and f is the unique map factoring the (Ad)-cocone
(B,{bd ○ fd ∣ d ∈ D}) through the colimit limÐ→d∈DAd = A.

Lemma 2. Let A and C be categories with C λ-cocomplete,
and F = limÐ→d∈DFd in [A,C]λ. Also, let X = limÐ→d∈DXd in A,
fd ∶Xd → Yd for each d ∈ D, and f = limÐ→d∈Dfd in A→. Then

(i) FX = limÐ→d∈DFdXd

(ii) Ff = limÐ→d∈DFdfd.

Proof. (i) We compute
FX = (limÐ→d∈DFd)X

= limÐ→d∈D(FdX)
= limÐ→d∈D(Fd (limÐ→d′∈DXd′))
= limÐ→d∈DlimÐ→d′∈DFdXd′

= limÐ→d∈DFdXd

Here, the penultimate equality holds because each Fd is λ-
cocontinuous. The last equality holds because the diagonal set
{(d, d) ∣ d ∈ D} is cofinal in D ×D. Indeed, given (d1, d2) ∈
D×D, let d ≥ d1, d2 (by directedness). Then (d1, d2) ≤ (d, d).

Tracking the colimit calculation above gives that structure
maps for FX = limÐ→d∈DFdXd are ϕdX ○Fdxd ∶ FdXd → FX ,
where the maps ϕd ∶ Fd → F and xd ∶ Xd → X are the
colimit structure maps for F = limÐ→d∈DFd and X = limÐ→d∈DXd,
respectively. This will be used in the next part of the proof.
(ii) We first prove that, for each d0 ∈ D, Fd0f = limÐ→d∈DFd0fd.
Let Y = limÐ→d∈DYd and gd0 = limÐ→d∈DFd0fd. By the computation
of colimits in arrow categories, if xd ∶Xd →X and yd ∶ Yd →
Y are the evident colimit structure maps, then gd0 is the unique

map from Fd0X = Fd0(limÐ→d∈DXd) = limÐ→d∈DFd0Xd to Fd0Y

making the following diagram commute for each d ∈ D:

Fd0Xd

Fd0xdÐÐÐÐ→ Fd0X

Fd0fd
×××Ö

gd0
×××Ö

Fd0Yd
Fd0ydÐÐÐÐ→ Fd0Y

(1)

Now, replacing gd0 in the above square by Fd0f results in the
Fd0 -image of the diagram defining f as limÐ→d∈Dfd, so Fd0f

also makes the above diagram commute for each i. Uniqueness
of gd0 gives gd0 = Fd0f , and thus indeed Fd0f = limÐ→d∈DFd0fd.

Recalling how colimits of functors are defined, we further-
more have that, for each d ∈ D, Ff = limÐ→d∈DFdf = limÐ→d∈Dgd.
That is, if the maps ϕd ∶ Fd → F are the evident colimit
structure maps, then Ff is the unique map from FX → FY
making the following diagram commute for each d ∈ D:

FdX
ϕdXÐÐÐÐ→ FX

Fdf
×××Ö

Ff
×××Ö

FdY
ϕdYÐÐÐÐ→ FY

(2)

The proof will be finished if we can show that Ff is also
the unique map g making the following diagram commute for
each d, where the horizontal arrows come from the structure
map calculation at the end of the proof of part (i):

FdXd
ϕdX○FdxdÐÐÐÐÐÐ→ FX

Fdfd
×××Ö

g
×××Ö

FdYd
ϕdY ○FdydÐÐÐÐÐÐ→ FY

(3)

But this is immediate by taking d0 = d and placing the
two squares (1) and (2) side by side. Ff clearly makes (3)
commute for each d, so uniqueness of g gives that g = Ff .

The restriction of the evaluation functor evA,C to [A,C]×A
is not cocontinuous. If D = {0,1} is the discrete subcategory
of Set with objects 0 and 1, and, for d ∈ D, Fd ∶ Set → Set
is FdX = X + d and Ad ∶ Set is Ad = d, then limÐ→d∈DFdAd =
2 /= 3 = (limÐ→d∈DFd)(limÐ→d∈DAd). Restricting to λ-accessible
functors is therefore crucial to our development.

B. Initial algebras of λ-accessible functors

If F is an endofunctor on A then an F -algebra is a pair
(A,f ∶ FA → A). A morphism of F -algebras is a map h ∶
A → A′ in A such that h ○ f = f ′ ○ Th. Free algebras —
and thus initial algebras, since the initial F -algebra is just the
free F -algebra on the initial object — of accessible functors
on locally presentable categories exist by the Adjoint Functor
Theorem (see, e.g., the remark following Corollary 2.75 of
[4]). However, we seek an explicit construction that reflects
our intuitive understanding of how elements of data types are
enumerated. There is a well-known such construction (see,
e.g., [3]), but to interpret data types it must actually be λ-
cocontinuous in the given functor. Like cocontinuity of functor

application, this also is not hard to prove. But since we did not
find a proof in the literature, to make this paper self-contained
we explicitly present a variant of the well-known construction
appropriate to our setting. We prove in Theorem 5 that it is
indeed λ-cocontinuous.

For the rest of this section, let A be locally λ-presentable,
let F ∶ A → A be λ-accessible, let 0 be the initial object of
A, and let oA ∶ 0→ A be the unique map to a given object A.
Intuitively, the initial F -algebra is obtained as the colimit

0→ F0→ F 20→ ⋯Fω0→ Fω+10→ ⋯Fλ0 (4)

obtained by iterating F transfinitely λ times starting from 0.
To formally define Fλ0 we need to make this colimit precise.

To that end, let Ord be the collection of ordinals, considered
as a (large, posetal) category under inclusion. Write [β,α) for
the (full) subcategory of Ord whose objects are ordinals γ with
β ≤ γ < α, and ∪α for the limit ordinal ⋃β<α β. We define
a diagram ({Xα}α∈Ord ,{xβ,α ∶ Xβ → Xα}β≤α) by giving the
actions of a functor X ∶ Ord → A on objects and morphisms
by mutual induction together with an auxiliary function x+α:

X0 = 0 xβ,β = idXβ
Xα+1 = FXα xβ,α+1 = x+α ○ xβ,α
X∪α = limÐ→β<αXβ xβ,∪α = limÐ→γ∈[β,α)xβ,γ (in A→)

Here, x+α ∶ Xα → Xα+1 is defined simultaneously with the
above by x+0 = oX1 , x+α+1 = Fx+α, and, when α = ∪α is a limit
ordinal, taking x+α to be the unique map from the colimit Xα

to the cocone with vertex X∪α+1 = FX∪α. For all β + 1 < α,
the morphism {Fxβ,∪α ∶ Xβ+1 → FX∪α}β+1<α is defined to
be the unique map satisfying

Fxβ,∪α = x+∪α ○ xβ+1,∪α (5)

as in the diagram
X∪α+1

Xβ+1 Xγ+1

X∪α

xβ+1,∪α xγ+1,∪α

xβ+1,γ+1

x+∪α
Fxβ,∪α Fxγ,∪α

These three properties are immediate by transfinite induction:
● xα,α+1 = x+α;
● xβ,α = xγ,α ○ xβ,γ whenever β ≤ γ ≤ α;
● Fxβ,α = xβ+1,α+1.

For α ∈ Ord , define Fα0 to be the object Xα given as above.
To calculate F ’s fixed point, we first observe that, since F

is λ-accessible, it preserves λ-directed colimits. In particular,
it preserves limÐ→α<λXα. In literal terms, this means that the

canonical map c ∶ limÐ→α<λFXα → F (limÐ→α<λXα) is
invertible. But since the cocone structure defining c is the
same as that defining x+λ, this implies that x+λ is invertible.
Putting X ∶=Xλ, x− ∶= (x+λ)−1 ∶ FX →X we have

Theorem 3. (X,x−) is the initial F -algebra.

Proof. Fix an arbitrary F -algebra (A,a ∶ FA → A). We will
exhibit a unique F -algebra map from (X,x−) to (A,a). For
existence, we first construct a cocone (ϕα ∶Xα → A)α<λ by

ϕ0 = oA ϕα+1 = a ○ Fϕα ϕ∪α = limÐ→β<γϕβ

where the last colimit is computed in A→. In other words, ϕ∪α
is the unique map satisfying

∀β < α. ϕβ = ϕ∪α ○ xβ,∪α (6)

To verify the cocone property, we induct on β ≤ α to show
that β ≤ α < λ implies ϕα ○xβ,α = ϕβ . The base case β ≤ β is
direct from the definitions; the induction step β ≤ α+1 uses the
fact, proved by induction on β, that ϕβ+1 ○ x+β = ϕβ ; and the
limit case β ≤ ∪α is just (6). Now that we have a cocone from
{Xα} to A, we can use the colimiting property of X =Xλ to
get a unique map h ∶X → A satisfying ϕα = h ○ xα,λ.

We claim that h is an F -algebra map, i.e., that h ○ x− =
a○Fh. Since x− = (x+λ)−1, this is equivalent to h = a○Fh○x+λ.
Since the domain of h is a colimit, it suffices to show that the
composition of the two sides of this equation with each xα,λ,
for α < λ, yields the same morphism. Induction on α gives
h ○ xα,λ = a ○ Fh ○ xα,λ+1, so h is indeed an F -algebra map.

To prove uniqueness, let h′ ∶ (X,x−) → (A,a) be another
F -algebra morphism, i.e., let h′ ∶X → A be such that h′○x− =
a○Fh′, or, equivalently, h′ = a○Fh′○x+λ. Since X is a colimit,
to show h = h′ it suffices to show that ϕα = h′ ○ xα,λ. This is
accomplished by a straightforward induction on α.

With Theorem 3 in hand, we define our fixed point functor:

Definition 4. Let A be locally λ-presentable. The action of the
functor µµ ∶ [A,A]λ → A on objects is given by µµ(F) = Fλ0.
Its action on morphisms is given by µµ(ϕ ∶ F ⇒ G) = h,
where inF and inG are the structure maps for the initial F -
and G-algebras, respectively, and h is the unique F -algebra
morphism from (µµF, inF) to (µµG, inG ○ ϕµµG) satisfying

FµµF
inFÐÐÐÐ→ µµF

Fh
×××Ö

!h
×××Ö

FµµG
inG○ϕµµGÐÐÐÐÐ→ µµG

The fact that the functor µµ is actually λ-cocontinuous is the
special case of the following theorem for α = λ.

Theorem 5. If F = limÐ→d∈DFd, where D is λ-directed and each
Fd is λ-accessible, then for each α ∈ Ord , Fα0 = limÐ→d∈DF

α
d 0.

Proof. By induction on α.

F 00 = 0 = limÐ→d∈D0 = limÐ→d∈DF
0
d 0

Fα+10 = F (Fα0)
=IH F (limÐ→d∈DF

α
d 0)

=Lemma 2(i) limÐ→d∈DFd(F
α
d 0)

= limÐ→d∈DF
α+1
d 0

F ∪α0 = limÐ→β<αF
β0

=IH limÐ→β<αlimÐ→d∈DF
β
d 0

= limÐ→d∈DlimÐ→β<αF
β
d 0

= limÐ→d∈DF
∪α
d 0

C. Kan extensions
Definition 6 ([4, Def.2.12]). A regular cardinal λ is sharply
smaller than a regular cardinal µ, written µ ⊵ λ, if each λ-
accessible category is µ-accessible.

If S is a set of cardinals, we write µ ⊵ S if µ ⊵ λ for all λ ∈ S.

Lemma 7. (i) For any set S of regular cardinals, there exists
a regular cardinal µ such that µ ⊵ S.
(ii) If ν ⊵ µ ⊵ λ, then ν ⊵ λ.
(iii) If µ ⊵ λ then F ∈ [A,B]λ implies F ∈ [A,B]µ.

Proof. For parts (i) and (ii), see parts (6) and (7) of Example
2.13 in [4]. For (iii), see Remark 2.18(2) in loc. cit.

A functor F ∶ A → B preserves λ-presentable objects if
FA is λ-presentable in B whenever A is λ-presentable in A.
The next lemma is actually a corollary of Theorem 2.19 of
[4]. But since it plays a key role in bounding the cardinal λ
in the interpretation of higher-kinded data types in locally λ-
presentable categories, we prove it here to track exactly how
this cardinal can increase.

Lemma 8. If F ∶ A→ B is λ-accessible, then there exists a µ ⊵
λ such that F is µ-accessible and F preserves µ-presentable
objects. Moreover, if I is a set and {Fi ∶ A → B}i∈I is a
family of functors with each Fi λi-accessible, then there exists
a regular cardinal µ such that µ ⊵ λi for each i ∈ I, and Fi
preserves µ-presentable objects and is µ-accessible.

Proof. For the first claim, let A and B be λ-accessible
categories generated by the sets A0 and B0, respectively, of λ-
presentable objects under λ-directed colimits. Let F ∶ A → B
be λ-accessible. Since each object of B is a λ-directed colimit
of objects of B0, for each object X in A0, we can write
FX = limÐ→i∈I(X)

B(X, i), where each B(X, i) is in B0, I(X)
is λ-directed, and ∣I(X)∣ is minimal among cardinalities of
λ-directed sets of objects in B0 with colimit FX . (Such a set
I(X) exists by the well-orderedness of cardinals.)

Now, consider the set {λ} ∪ {∣I(X)∣}X∈A0 . By Lemma
7(i), there exist regular cardinals κ such that κ ⊵ λ and
κ ⊵ ∣I(X)∣ for all X ∈ A0. Take µ to be the least such cardinal
κ. Then Remark 2.15(1) of [4] ensures that each FX is µ-
presentable. By the result immediately following Remark 2.15,
attributed by Adámek and Rosı́cky to Makkai and Paré, every
µ-presentable object Y of A can be written as Y = limÐ→j∈J Yj ,
where each Yj ∈ A0, and J is a λ-directed µ-small set. Since
F is λ-cocontinuous, we then have that

FY = F (limÐ→j∈J Yj) = limÐ→j∈JFYj
is a µ-small colimit of µ-presentable objects, and is therefore
µ-presentable by Proposition 1.16 of [4]. This shows that F

preserves µ-presentable objects. Since F is λ-accessible and
µ ⊵ λ, Lemma 7(iii) guarantees that F is also µ-accessible.

For the second claim, we first apply the first claim to each
Fi individually, obtaining {µi}i∈I such that, for each i ∈ I,
µi ⊵ λi, Fi preserves µi-presentable objects, and Fi is µi-
accessible. Applying Example 2.13(6) of [4] gives a regular
cardinal µ such that µ ⊵ µi for all i ∈ I. The same argument
as above shows that each Fi preserves µ-presentable objects,
and Lemma 7(iii) ensures that each Fi is µ-accessible.

The proof of Lemma 8 gives a recipe for computing the
least cardinal µ whose existence it asserts: look at the action of
F on each λ-presentable object X , find the least cardinal λX
needed to write FX as a λ-directed colimit of size bounded by
λX , and then find the least regular cardinal µ ⊵ ⋃X λX ∪{λ}.

We can now see that left Kan extensions exist and are easily
computable in locally presentable categories. The following
characterization [13] can be taken as a definition in this setting:

Theorem 9. Let A, B, C be locally λ-presentable categories,
let A0, B0, and C0 be the sets of λ-presentable objects in A, B,
and C, respectively. For functors F ∈ [A,C]λ and K ∈ [A,B]λ,
the left Kan extension of F along K, LanKF ∶ B → C, can be
computed by (LanKF)Y = limÐ→(P ∈A0,f ∶KP→Y)

FP .

Here, the colimit defining LanKF exists because C is cocom-
plete and the colimit is indexed over a set: there are set-many
choices for P because A0 is small, and set-many choices for
f because B is locally λ-presentable and thus locally small.

Lemma 10. Let A,B,C, F and K be as in Theorem 9. If K
preserves λ-presentable objects, then LanKF is λ-accessible.
Moreover, for a fixed K, the functor LanKF is cocontinuous
in F , i.e., for an arbitrary diagram {Fi}i∈I in [A,C]λ we
have LanK (limÐ→i∈IFi) = limÐ→i∈I(LanKFi).

Proof. The first statement is proved in [2]. The second is im-
mediate since (LanK−) is a left adjoint to the precomposition
functor − ○K; for details, see Chapter 6 of [13].

V. SEMANTICS OF HIGHER-KINDED DATA TYPES

We now show that every expression in H has an interpreta-
tion as an accessible functor on a locally presentable category.
Fix a locally λ0-presentable category A. For ϕ ⊆ T, and for
λ ≥ λ0, define Aϕλ ∶= ∏ϕκ∈ϕAκλ where Aκλ is defined by
induction on κ by Aκ1→⋯→κ∣κ∣→⋆

λ = [Aκ1

λ × ⋯ × Aκ∣κ∣λ ,A]λ.
For ϕκ ∈ ϕ, and λ ≥ λ0, let πϕ ∶ Aϕλ → Aκλ be the obvious
projection (eliding the dependency on λ). We show in Theorem
11 that, for every P ⊆ T and E ∈HP(κ), there exists a λ ≥ λ0

such that E can be interpreted as a functor JEK ∈ [APλ ,Aκλ]λ.
In Corollary 12 we give sufficient conditions to ensure that
JEK ∈ [APλ0

,Aκλ0
]λ0 .

Now, a naive attempt to prove this by induction runs into the
following pitfall. Since the exponentials are contravariant in
their first argument, if µ ⊵ λ then [APλ ,Aκλ]λ is a subcategory
of [APλ ,Aκµ]µ, but not of [APµ ,Aκµ]µ. Yet, in the proof,
any time the cardinal increases we need to know that the
subexpressions already proved to be λ-cocontinuous remain

µ-cocontinuous for the new cardinal µ. We therefore prove a
stronger statement: namely, that there always exists λ ≥ λ0

such that for every µ ⊵ λ, JEK ∈ [APµ ,Aκµ]µ. This induction
loading is necessitated by the higher-kindedness of H. An-
other subtlety arises for Lan-expressions, in that the functor
extended along (represented by the subscript expression) must
preserve presentable objects. Fortunately, much of the work
needed for treating Lan-expressions has been established in
the previous section. The main result of this paper is:

Theorem 11. For every E ∈HP(κ), there exists λ ≥ λ0 such
that, for all µ ⊵ λ, E induces a functor JEK ∈ [APµ ,Aκµ]µ.

Proof. The exponential adjunction (currying) gives an iso-
morphism [APλ ,Aκλ]λ ≃ [APλ × (Aκ1

λ × ⋯ × Aκ∣κ∣λ),A]λ.
Throughout this proof, we adopt the convention of treating this
isomorphism as equality, and using the right-hand side of the
isomorphism to construct and manipulate elements of the left-
hand side. We will, moreover, put Aκ̄λ = Aκ1

λ ×⋯×Aκ∣κ∣λ , and
write the right-hand side of the isomorphism as [APλ ×Aκ̄λ,A]λ.
Subsequently, all (un)currying will be done implicitly.

Most of the proof will be concerned with proving that
certain functors of type APλ → Aκλ are λ-cocontinuous. By the
convention above, this amounts to showing that corresponding
functors of type APλ ×Aκ̄λ → A are λ-cocontinuous, i.e., that,
for every such functor G, λ-directed D, P⃗ = limÐ→d∈DP⃗d in APλ ,

and F⃗ = limÐ→d∈DF⃗d in Aκ̄λ, we have GP⃗ F⃗ = limÐ→d∈DGP⃗dF⃗d.
This equation provides a general pattern which will recur
throughout the proof, which proceeds by induction on E.

● E = λϕ⃗.0 Define JEK to be the constant functor
JEKP⃗ F⃗ = 0. Since 0 = limÐ→d∈D0 for any D, JEKP⃗ F⃗ is clearly
in [APµ ×Aκ̄µ,A]µ for any µ ⊵ λ0, so take λ = λ0.

● E = λϕ⃗.1 Define JEK to be the constant functor
JEKP⃗ F⃗ = 1. Since 1 = limÐ→d∈D1 for any λ-directed D, JEKP⃗ F⃗
is clearly in [APµ ×Aκ̄µ,A]µ for any µ ⊵ λ0, so take λ = λ0.

● E = λϕ⃗.ψν(E1, ...,E∣ν∣) We treat the case when ψν ∈ P;
the case when ψν ∈ ϕ⃗ is similar. By the induction hypothesis,
for each j = 1, ..., ∣ν∣, there exists λj ≥ λ0 such that JEjK ∈
[APµ ×Aκ̄µ,A]µ for all µ ⊵ λj . Also, for any λ, if P⃗ ∈ APλ then
πψP⃗ = Pψ ∈ [Aν̄λ,A]λ. By Lemma 7(i), there exists λ ⊵ λj
for j = 1, ..., ∣ν∣. Let µ ⊵ λ. Then A is locally µ-presentable.
Define JEKP⃗ F⃗ = (πψP⃗)(JE1KP⃗ F⃗ , ..., JE∣ν∣KP⃗ F⃗). To see that
JEK ∈ [APµ × Aκ̄µ,A]µ, let (P⃗ , F⃗) = limÐ→d∈D(P⃗ , F⃗)d for

some µ-directed set D. Then (P⃗ , F⃗)d ∈ APµ × Aκµ, so that
Pψ ∈ [Aνµ,A]µ. Then Pϕ = limÐ→d∈D(Pϕ)d for each ϕ ∈ P ,

Fi = limÐ→d∈D(Fi)d for i = 1, ..., ∣κ∣, and (Pψ)d = (P⃗d)ψ . Also

let X⃗d = (JE1KP⃗dF⃗d, . . . , JE∣ν∣KP⃗dF⃗d) for each d ∈ D. Then
(JE1KP⃗ F⃗ , ..., JE∣ν∣KP⃗ F⃗) = limÐ→d∈DX⃗d since each JEjK is µ-
cocontinuous. Using Lemma 2(i) to pass from the second to
the third line below, we have

JEKP⃗ F⃗ = Pψ(JE1KP⃗ F⃗ , ..., JE∣ν∣KP⃗ F⃗)
= (limÐ→d∈D(Pψ)d)(limÐ→d∈DX⃗d)

= limÐ→d∈D(Pd)ψX⃗d

= limÐ→d∈D(πψP⃗d)(JE1KP⃗dF⃗d, ..., JE∣ν∣KP⃗dF⃗d)

= limÐ→d∈DJEKP⃗dF⃗d

● E = λϕ⃗.E1 +E2 The induction hypothesis gives that, for
j ∈ {1,2}, there exist λj ≥ λ0 such that JEjK ∈ [APµ ×Aκ̄µ,A]µ
for all µ ⊵ λj . Let λ ⊵ λ1, λ2 and µ ⊵ λ. Then A
is locally µ-presentable, and JE1K, JE2K ∈ [APµ × Aκ̄µ,A]µ.
Define JEKP⃗ F⃗ = JE1KP⃗ F⃗ + JE2KP⃗ F⃗ . To see that JEK is
µ-cocontinuous, let (P⃗ , F⃗) = limÐ→d∈D(P⃗ , F⃗)d for some µ-
directed set D. Using µ-cocontinuity of JE1K and JE2K to pass
from the second to the third line below, and commutativity of
colimits to go from the third to the fourth, gives

JEKP⃗ F⃗ = JE1KP⃗ F⃗ + JE2KP⃗ F⃗

= JE1K(limÐ→d∈D(P⃗ , F⃗)d) + JE2K(limÐ→d∈D(P⃗ , F⃗)d)

= limÐ→d∈DJE1K(P⃗ , F⃗)d + limÐ→d∈DJE2K(P⃗ , F⃗)d
= limÐ→d∈D(JE1K(P⃗ , F⃗)d + JE2K(P⃗ , F⃗)d)

= limÐ→d∈DJEK(P⃗ , F⃗)d

● E = λϕ⃗.E1 ×E2 This case is identical to the previous one,
except JEK is defined by JEKP⃗ F⃗ = JE1KP⃗ F⃗ × JE2KP⃗ F⃗ , and
× commutes with the colimits JE1K(P⃗ , F⃗)d and JE2K(P⃗ , F⃗)d
since λ-small limits commute with λ-directed colimits.
● E = λϕ⃗.(µψν .H)(E1, ...,E∣ν∣) The induction hypothesis
gives that, for each j = 1, ..., n = ∣ν∣, there exists λj ≥ λ0

such that JEjK ∈ [APµ × Aκ̄µ,A]µ for all µ ⊵ λj . More-
over, the exponential adjunction gives a λn+1 ≥ λ0 such
that JHK ∈ [APµ × Aκ̄µ × Aνµ × Aν̄µ,A]µ for µ ⊵ λn+1. Let
λ ⊵ {λ0, . . . , λn+1}, and let µ ⊵ λ. Then A is locally µ-
presentable, and JHK and JEjK are µ-cocontinuous. Define
JEKP⃗ F⃗ = µµ(G ↦ JHKP⃗ F⃗G)(JE1KP⃗ F⃗ , ..., JEnKP⃗ F⃗), using
Definition 4 with A ∶= Aν . To see that JEK is µ-cocontinuous,
let (P⃗ , F⃗) = limÐ→d∈D(P⃗ , F⃗)d for some µ-directed set D. The
proof is by case distinction on n. If n = 0, then

JEKP⃗ F⃗ = µµ(G↦ JHKP⃗ F⃗G)
= µµ(G↦ JHK(limÐ→d∈DP⃗dF⃗dG))

= µµ(G↦ (limÐ→d∈DJHKP⃗dF⃗dG))

= limÐ→d∈Dµµ(G↦ JHKP⃗dF⃗dG)
= limÐ→d∈DJEKPdFd

where Theorem 5 is used to pass from the third to the fourth
line. If n > 0, then letting Xj

d = JEjKP⃗dF⃗d, µ-cocontinuity of
JEjK gives that JEjKP⃗ F⃗ = limÐ→d∈DX

j
d for j = 1, ..., n. Using

Theorem 5 to pass from the first to the second line below,
and Lemma 2(i) to pass from the second to the third, we get

JEKP⃗ F⃗ = µµ(G↦ JHKP⃗ F⃗G)(JE1KP⃗ G⃗, ..., JEnKP⃗ G⃗)
= (limÐ→d∈Dµµ(G↦ JHKP⃗dF⃗dG))(B1, ...,Bn)

where Bj = limÐ→d∈DX
j
d for j = 1, ..., n

= limÐ→d∈Dµµ(G↦ JHKP⃗dF⃗dG)(X1
d , ...,X

n
d)

= limÐ→d∈DJEKP⃗dF⃗d

● E = λϕ⃗.(Lanψ
K⃗
G)E⃗ The induction hypothesis gives (i)

λ1 ≥ λ0 such that JGK ∈ [APµ ×Aκ̄µ ×Aψµ ,A]µ for µ ⊵ λ1; (ii)
for each i = 1, ..., n = ∣K⃗ ∣, λ′i ≥ λ0 such that JKiK ∈ [Aψµ ,A]µ
for µ ⊵ λ′i; and (iii) for each j = 1, .., n, λ′′j ≥ λ0 such that
JEjK ∈ [APµ ×Aκ̄µ,A]µ for µ ⊵ λ′′j . By Lemma 8, there exists
a λ ⊵ {λ0} ∪ {λ′j}1≤j≤n ∪ {λ′′j }1≤j≤n such that, for each j,
JKjK is λ-accessible and preserves λ-presentable objects. Let
µ ⊵ λ. Then each JKjK is µ-accessible by Lemma 7(iii),
and preserves µ-presentable objects by Remark 2.20 of [4],
so the functor

ÐÐ→
JKK ∶ Y⃗ ↦ (JK1KY⃗ , ..., JKnKY⃗) preserves µ-

presentable objects as well. Also, A is locally µ-presentable,
and JGK,

ÐÐ→
JKK, and each JEjK are µ-cocontinuous. Define

JEKP⃗ F⃗ = (LanÐÐ→
JKK

JGKP⃗ F⃗)(JE1KP⃗ F⃗ , ..., JEnKP⃗ F⃗).

To see that JEK is µ-cocontinuous, let (P⃗ , F⃗) =
limÐ→d∈D(P⃗ , F⃗)d for some µ-directed set D, Hd = JGKP⃗dF⃗d
and Xd = (JE1KP⃗dF⃗d, . . . , JEnKP⃗dF⃗d). Then limÐ→d∈DHd =
JGKP⃗ F⃗ and limÐ→d∈DXd = (JE1KP⃗ F⃗ , . . . , JEnKP⃗ F⃗). The sec-

ond statement of Lemma 10 gives that LanÐÐ→
JKK

JGKP⃗ F⃗ =
limÐ→d∈DLanÐÐ→JKK

Hd, and its first statement gives that each
LanÐÐ→

JKK
Hd is µ-accessible, and thus µ-cocontinuous. Using

Lemma 2(i) to pass from the second to the third line, we have

JEKP⃗ F⃗ = (LanÐÐ→
JKK

JGKP⃗ F⃗)(JE1KP⃗ F⃗ , . . . , JEnKP⃗ F⃗)
= (limÐ→d∈DLanÐÐ→JKK

Hd)(limÐ→d∈DXd)
= limÐ→d∈D(LanÐÐ→JKK

Hd)Xd

= limÐ→d∈DJEKP⃗dF⃗d

Extracting from the proof of Theorem 11 the interpretation
function J−K ∶ E ∈HP(κ)z→ JEK ∈ [APλ ,Aκλ]λ, we have:

Jλϕ⃗.0KP⃗ F⃗ = 0

Jλϕ⃗.1KP⃗ F⃗ = 1

Jλϕ⃗.ψν(E1, ...,E∣ν∣)KP⃗ F⃗ = { PψB⃗ if ψ ∈ P
FiB⃗ if ψ = ϕi

where Bj = JEjKP⃗ F⃗ for j = 1, ..., ∣ν∣
Jλϕ⃗.E1 +E2KP⃗ F⃗ = JE1KP⃗ F⃗ + JE2KP⃗ F⃗

Jλϕ⃗.E1 ×E2KP⃗ F⃗ = JE1KP⃗ F⃗ × JE2KP⃗ F⃗

Jλϕ⃗.(µψν .H)(E1, ...,E∣ν∣)KP⃗ F⃗ = µµ(G↦ JHKP⃗ F⃗G)B⃗
where Bj = JEjKP⃗ F⃗ for j = 1, ..., ∣ν∣

Jλϕ⃗.(Lanψ
K⃗
G)(E1,⋯,E∣K⃗∣

)KP⃗ F⃗ = (LanL⃗JGKP⃗ F⃗)B⃗
where Lj = JKjK and Bj = JEjKP⃗ F⃗ for j = 1, ..., ∣K⃗ ∣

Inspecting the proof of Theorem 11, we see that the only
place where the cardinal λ0 can increase is in the Lan case.
This observation lets us derive a much tighter bound on λ. A
finitary polynomial is an expression in H∅(k) that is built up
using only (type) variables, 0, 1, +, and ×. Since 0 and 1 are
λ-presentable for every λ, every finitary polynomial preserves
λ-presentable objects for every λ. In particular,

Corollary 12. Let A be locally λ0-presentable. If E ∈HP(κ)
is constructed using only finitary polynomials as subscripts to
Lan , then JEK ∈ [APλ0

,Aκλ0
]λ0 . In particular, when λ0 = ω,

E’s data elements can be effectively enumerated.

VI. EXAMPLES

A. ADTs We have already seen that the natural number and
list data types can be represented in H, and similarly for all
other ADTs, since their functorial expression representations
are easily derived from the functors whose fixed points define
them. Moreover, our semantics interprets ADTs as usual.

B. Nested types We have already seen that PSeq can be
represented in H by PSeq ∶= λα. (µϕ1.λβ.β + ϕ(β × β))α.
Another nested type is that of λ-terms with variables of type a:

data Lama where

Var ∶∶ a→ Lama

App ∶∶ Lama→ Lam a→ Lama

Abs ∶∶ Lam (a + 1)→ Lama

The type constructor Lam can be represented in H by

Lam ∶= λα. (µϕ1.λβ.β + ϕβ × ϕβ + ϕ(β+1))α
The higher-order functor interpreting the µ-subexpression is
HLam FX =X+FX×FX+F (X+1). We can enumerate data
elements into the type Lama by iterating HLam starting at the
functor K0X = 0. Putting Fk = (HLam)kK0, we compute the
first few successive approximants (Fk)k≥0 to LamX:

X F0X F1X F2X F3X

0 0 0 = 0 + 0 + 0 1 = 0 + 02 + 1 5 = 0 + 12 + 4

1 0 1 = 1 + 0 + 0 4 = 1 + 12 + 2 26 = 1 + 42 + 9

2 0 2 = 2 + 0 + 0 9 = 2 + 22 + 3 99 = 2 + 92 + 16

3 0 3 = 3 + 0 + 0 16 = 3 + 32 + 4 284 = 3 + 162 + 25

4 0 4 = 4 + 0 + 0 25 = 4 + 42 + 5 665 = 4 + 252 + 36

X 0 X =X + 0 + 0 (X+1)2=X+X2
+(X+1) X+(X+1)4+(X+2)2

The above decompositions of the FkX directly correspond to
how data elements of LamX are constructed. If X ≃ 2 =
{�,⊺}, e.g., then F1(X) has the two elements Var⊺ and
Var�, while F2(X) has nine elements, namely, Var⊺, Var�,
App(Var�)(Var�), App(Var�)(Var⊺), App(Var⊺)(Var�),
App(Var⊺)(Var⊺), Abs(Var(inL�)), Abs(Var(inL⊺)), and
Abs(Var(inR ()). Here, Var, App, and Abs are the injections
corresponding to the data constructors Var, App, and Abs.

C. Truly nested types We have seen above that Bush can be
represented in H by Bush ∶= λα. (µϕ1.λβ.1 + β × ϕ(ϕβ))α.
The higher-order functor interpreting the µ-subexpression is
HBushFX = 1 +X × F (FX). The first approximants are
X F0X F1X F2X F3X

0 1 1 1 = 1 + 0⋅F11 1 = 1 + 0⋅F21
1 1 2 4 = 1 + 1⋅F12 = 1 + 1⋅3 26 = 1 + 1⋅F24 = 1 + 1⋅25
2 1 3 9 = 1 + 2⋅F13 = 1 + 2⋅4 201 = 1 + 2⋅F29 = 1 + 2⋅10
3 1 4 16 = 1 + 3⋅F14 = 1 + 3⋅5 868 = 1 + 3⋅F216 = 1 + 3⋅289
4 1 5 25 = 1 + 4⋅F15 = 1 + 4⋅6 2705 = 1 + 4⋅F225 = 1 + 4⋅676

X 1 X + 1 (X + 1)2 = 1 +X⋅F1(X + 1) 1 +X⋅F2(X + 1)2

FkX 1 X + 2 ((X + 1)2 + 1)2 = 1 +X⋅((X + 1)2 + 1)2

The following nested type from [8] extends Lam with a
constructor

Sub ∶∶ Lam (Lama)→ Lama

for explicit substitutions: The type constructor of the resulting
data type can be represented in H by

LamES ∶= λα. (µϕ1.λβ.β + ϕβ × ϕβ + ϕ(β+1) + ϕ(ϕβ))α
Putting Fk = (HLamES)kK0, where HLamESFX = X + FX2 +
F (X + 1) + F (FX), the first approximants are

X F0X F1X F2X F3X

0 0 0 1 = 0 + 02 + 1 + 0 0 + 12 + 5 + 5

1 0 1 5 = 1 + 12 + 2 + 1 1 + 52 + 11 + 41

2 0 2 11 = 2 + 22 + 3 + 2 2 + 112 + 19 +F211

3 0 3 19 = 3 + 32 + 4 + 3 3 + 192 + 29 +F219

4 0 4 29 = 4 + 42 + 5 + 4 4 + 292 + 41 +F229

5 0 5 41 = 5 + 52 + 6 + 5 5 + 412 +F26 +F241

X 0 X X+X2
+(X+1)+X 2(X2

+3X+1)+4X2
+15X+9

The second approximant for X = 2 gives all the data elements
for Lam , as well as Sub(Var(Var�)) and Sub(Var(Var⊺)),
where Sub is the injection corresponding to Sub.

D. GADTs We saw above that Seq can be represented inH by

Seq ∶= λα. (µϕ1.λβ.β + (Lanγ1,γ2γ1×γ2(ϕγ1 × ϕγ2))β
+ (LanγNat→γ(Nat→ ϕγ))β + ϕ(Nat→ β) × Nat)α

where Nat = µα.1+α and Nat→D abbreviates (LanβNat1)D.
But the approximants here do not converge in ω steps. Indeed,
NX = N → X is not ω-cocontinuous: in Set, we have the ω-
directed colimit [0] ⊆ [1] ⊆ [2] ⊆ ⋯ ⊆ N for [n] = {0, ..., n−1}.
Now, id ∶ N→ N is not in N[n] for any n since the range of
any morphism in N[n] is finite whereas that of id ∶ N→ N is
infinite, so the above colimit cannot be preserved by N .

Nevertheless, Seq has a well-defined semantics in our
framework. That the functor N is ℵ1-accessible follows from
the first statement in Lemma 10 after noting that the remark
after the proof of Lemma 8 ensures that the constantly Nat-
valued functor preserves ℵ1-presentable objects. The proof
of Theorem 11 then shows that Seq induces a λ-presentable
functor for some regular cardinal λ. In fact, this λ will be
greater than ℵ1, because the functor N X = Nat→X appears
in the subscript of the Kan extension, and thus λ must be
taken to be large enough that N preserves λ-presentable
objects. Since Nat→ Nat is uncountable, N does not preserve
countable objects, so λ must be strictly greater than ℵ1.

We allow vectors in the subscript of Lan to handle, e.g.,

data Gab where

c ∶∶ a→ Gaa

d ∶∶ Gab→ Gbe→ Gea→ G (a,b) (b,e)
This data type can be represented in H by

G ∶= µϕ2.λα.λβ. (Lanξ
(ξ,ξ)

1) (α,β)

+ (Lanξ,υ,ζ
(ξ×υ,υ×ζ)

ϕξυ × ϕυζ × ϕζξ) (α,β)
but cannot be represented using just unary Lans since the two
indices in the return type of d depend on one another.

E. Higher-kinded examples
● Fixed points The fixed point operator Y ∶∶ (⋆ → ⋆) → ⋆
can be represented in H by Y ∶= λf1.µα.fα, for which JYK =

Jµυ1→0.λf1.f(υf)K. If the functor F is strict in the sense
that F0 ≃ 0, then the carrier µµF of the initial F -algebra will
obviously be 0, too. This will happen whenever F has no data
constructors with non-recursive types. In this case we can add
a new data constructor with a non-recursive type (e.g., Nil for
lists). The fixed point of the functor underlying the resulting
data type will then be computable using Y1 = λf1.µα.1+ fα,
for which JY1KF = JYK(S ○ F) for the lifting monad SX =
X + 1. Our initial algebra semantics proceeds by transfinite
iteration from 0. This also gives a construction of the free
F -algebras since, for Y′ ∶∶ (⋆ → ⋆) → ⋆ → ⋆ defined by
Y′ ∶= λf1.λα.µβ.f(β+α), we have JY′KF X = JYK(F ○(+X)).

● Joint initial algebras The above fixed points are instances of
a more general pattern. We can define a functional Mix ∶∶ (⋆→
⋆)→ (⋆→ ⋆)→ ⋆ that computes a joint initial algebra of any
F and G by JMixKF G, where Mix = λf1.λg1.µα.fα + gα.

● Rose trees The data type of generic rose trees

data GRosefa where

b ∶∶ a→ f (GRosefa)→ GRosefa

has underlying functor HGF X = a × F (GF X). GRose

can be represented in H by λf⋆→⋆. λβ⋆.(µψ(⋆→⋆)→(⋆→⋆).
λϕ⋆→⋆. λα⋆. α × ϕ(ψϕα))fβ. But while GRose obviously
has a properly higher kind, it can also be represented using
only type-level recursion by GRose ∶= λf⋆→⋆λα.µβ.α × fβ.

● Truly higher-order data types A data type that genuinely
requires recursion beyond the second order is

data Hf where

HNil ∶∶ Hf
HCons ∶∶ f (Hf)→ H (f .f)→ Hf

which is represented in H by Φ ∶= µϕ1→0.λf1.1 + f(ϕf) ×
ϕ(f ○ f). We can similarly represent

data Hfa where

HLeaf ∶∶ fa→ Hfa

HNode ∶∶ f (Hfa)→ H (f .f)a→ Hfa

by Ψ ∶= µψ1→1.λf1λα.fα + f(ψfα) × ψ(f ○ f)α. We invite
the reader to try to find other higher-kinded examples like this,
and to entertain their possible applications.

VII. CONCLUSION, RELATED WORK, AND FUTURE WORK

We have defined a large class of higher-kinded data types
and provided a robust categorical framework to compute their
semantics. As our examples illustrate, the breadth of data types
that can be defined is quite considerable.

One obvious generalization of the present work is to extend
our semantics to account for coinductive types. Locally pre-
sentable categories are also a convenient setting for studying
coinduction. However, the construction of final coalgebras is
more subtle than that of initial algebras, and extra care will
have to be taken to ensure that interaction of coinduction with
other type constructors does not produce unwanted side ef-
fects, and that the accessibility cardinals can still be bounded.

We may also want to incorporate dependent types. Here we
may find rich interaction with the semantics of type theory,
as well as the possibility of linking semantic complexities of
data types with the proof-theoretic strength of the type system
as a logic.

It would be especially interesting to explore which frag-
ments of System F can be accommodated in the locally
presentable setting. Coquand [5] presents a full model of
System Fω using categories of embeddings. These are similar
in spirit to locally presentable categories, but have the signif-
icant restriction that all maps be monomorphisms. (Also, the
resulting model is not parametric.) As shown by Reynolds, full
polymorphism cannot be interpreted in an arbitrary finitely
presentable category (since these include Set), but perhaps
smaller fragments of System F can be so interpreted.

We will ultimately want to give introduction and elimination
rules, such as the following, so that Lan becomes a well-
behaved type constructor from the syntactic standpoint:

x ∶ FX⃗ f ∶KX⃗ → A

LanI(x, f) ∶ (LanKF)A

ηX⃗ ∶ FX⃗ → G(KX⃗)

GmapX,Y ∶ (X → Y)→ GX → GY

LanE(η,Gmap) ∶ (LanKF)A→ GA

LanE(η,Gmap)(LanI(x, f))Ð→ Gmap(f)η(x)

But to get confluence and subject reduction, we will need η
and Gmap to be natural and functorial. Alternatively, we can
try to use parametricity to get these properties for free.

Related Work: While there are many treatments of GADTs
— e.g., as initial algebras of dependent polynomial func-
tors [7] and as indexed containers [12] — and some treatments
of higher-kinded types, in the literature, few consider their
semantics at all. All those that do give semantics are restricted
in some fundamental way. For example, neither Johann and
Ghani [10] nor Hamana and Fiore [9] consider nested GADTs.
Moreover, Hamana and Fiore give semantics only in Set for
the GADTs they do consider.

Versions of some of the results we prove here are “known”
in folklore. For example, Martin and Gibbons [11] outline a
semantics for nested types in the same spirit as ours. Their
proposal is not quite right, however, because it asserts that
every nested type can be interpreted as the least fixed point
of an ω-cocontinuous functor whenever the category over
which it is defined is ω-cocomplete and has all finite products
and coproducts. This is not enough, however: those products
must also commute with directed colimits. This is indeed the
case when the underlying category is locally ω-presentable, in
which case the functor is not just ω-cocontinuous, but actually
ω-accessible, and thus its initial algebra can be computed in
at most ω steps, i.e., its initial algebra semantics is effectively
computable. Furthermore, locally ω-presentable categories are
closed under exponentials, thus enabling generalization to
functor categories. The same holds for any regular cardinal
λ. As far as we know there is no treatment in the literature of
higher-kinded data types that is as general and computationally
effective as the one we give here.
Supported by National Science Foundation CCF-1713389.

REFERENCES

[1] http://ncatlab.org/nlab/show/transfinite+construction+of+free+algebras.
[2] https://mathoverflow.net/questions/112137/

when-do-kan-extensions-preserve-limits-colimits.
[3] J. Adámek. Free algebras and automata realizations in the language

of categories. Commentationes Mathematicae Universitatis Carolinae,
015:589–602, 1974.

[4] J. Adámek and J. Rosický. Locally Presentable and Accessible Cate-
gories. Cambridge University Press, 1994.

[5] T. Coquand. Categories of embeddings. Theoretical Computer Science,
68:221–237, 1989.

[6] P. Gabriel and F. Ulmer. Lokal Praesentierbare Kategorien. Springer,
1971.

[7] N. Gambino and M. Hyland. Well-founded trees and dependent
polynomial functors. In TYPES, pages 210–225, 2003.

[8] N. Ghani, T. Uustalu, and M. Hamana. Explicit substitutions and higher-
order syntax. Higher-order and Symbolic Computation, 19:263–282,
2006.

[9] M. Hamama and M. Fiore. A foundation for GADTs and inductive
families: Dependent polynomial functor approach. In Workshop on
Generic Programming, pages 59–70, 2011.

[10] P. Johann and N. Ghani. Foundations for structured programming with
GADTs. In Principles of Programming Languages, pages 297–308,
2008.

[11] C. Martin and J. Gibbons. On the semantics of nested datatypes.
Information Processing Letters, 80(5):233–238, 2001.

[12] P. Morris and T. Altenkirch. Indexed containers. In Logic in Computer
Science, pages 227–285, 2009.

[13] E. Riehl. Category Theory in Context. Dover, 2016.

