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Abstract. Automated analysis of recursive derivations in logic programming is
known to be a hard problem. Both termination and non-termination are undecid-
able problems in Turing-complete languages. However, some declarative languages
offer a practical work-around for this problem, by making a clear distinction be-
tween whether a program is meant to be understood inductively or coinductively.
For programs meant to be understood inductively, termination must be guaran-
teed, whereas for programs meant to be understood coinductively, productive non-
termination (or “productivity”) must be ensured. In practice, such classification
helps to better understand and implement some non-terminating computations.
Logic programming was one of the first declarative languages to make this distinc-
tion: in the 1980’s, Lloyd and van Emden’s “computations at infinity” captured
the big-step operational semantics of derivations that produce infinite terms as an-
swers. In modern terms, computations at infinity describe “global productivity”
of computations in logic programming. Most programming languages featuring
coinduction also provide an observational, or small-step, notion of productivity
as a computational counterpart to global productivity. This kind of productivity
is ensured by checking that finite initial fragments of infinite computations can
always be observed to produce finite portions of their infinite answer terms.
In this paper we introduce a notion of observational productivity for logic pro-
gramming as an algorithmic approximation of global productivity, give an effective
procedure for semi-deciding observational productivity, and offer an implemented
automated observational productivity checker for logic programs.
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1 Introduction

Induction is pervasive in programming and program verification. It arises in definitions
of finite data (e.g., lists, trees, and other algebraic data types), in program semantics
(e.g., of finite iteration and recursion), and proofs (e.g., of properties of finite data and
processes). Coinduction, too, is important in these arenas, arising in definitions of infinite
data (e.g., lazily defined infinite streams), in program semantics (e.g., of concurrency),
and in proofs (e.g., of observational equivalence, or bisimulation, of potentially infinite
processes). It is thus desirable to have good support for both induction and coinduction
in systems for reasoning about programs.

Given a logic program P and a term A, SLD-resolution provides a mechanism for
automatically (and inductively) inferring that P ` A holds, i.e., that P logically entails
A. The “answer” for a program P and a query ?← A is a substitution σ computed from
P and A by SLD-resolution. Soundness of SLD-resolution ensures that P ` σ(A) holds,
so we also say that P computes σ(A).



Example 1 (Inductive logic program). The program P1 codes the Peano numbers:

0. nat(0) ←
1. nat(s(X)) ← nat(X)

To answer the question “Does P1 ` nat(s(X)) hold?”, we represent it as the logic program-
ming (LP) query ?← nat(s(X)) and resolve it with P1. It is standard in implementations
of traditional LP to use a topmost clause selection strategy, which resolves goals against
clauses in the order in which they appear in the program. Topmost clause selection gives
the derivation nat(s(X)) → nat(X) → true for P1 and ? ← nat(s(X)), which computes
the answer {X 7→ 0} in its last step. Since P1 computes nat(s(0)), one answer to our
question is “Yes, provided X is 0.”

While inductive properties of terminating computations are quite well understood [14],
non-terminating LP computations are notoriously difficult to reason about, and can arise
even for programs that are intended to be inductive:

Example 2 (Coinductive meaning of inductive logic program). If P ′1 is obtained by revers-
ing the order of the clauses in the program P1 from Example 1, then the SLD-derivation
for program P ′1 and query ? ← nat(s(X)) does not terminate under standard topmost
clause selection. Instead, it results in an attempt to compute the “answer” {X 7→ s(s(...))}
by repeatedly resolving with Clause 1. Nevertheless, P ′1 is still computationally meaning-
ful, since it computes the first limit ordinal at infinity, in the terminology of [14].

Some programs do not admit terminating computations under any selection strategy:

Example 3 (Coinductive logic program). No derivation for the query ?← stream(X) and
the program P2 comprising the clause

0. stream(scons(0, Y)) ← stream(Y)

terminates with an answer, be it success or otherwise. Nevertheless, P2 has computational
meaning: it computes the infinite stream of 0s at infinity.

The importance of developing sufficient infrastructure to support coinduction in au-
tomated proving has been argued across several communities; see, e.g., [13, 17, 21]. In
LP, the ability to work with non-terminating and coinductive programs depends cru-
cially on understanding the structural properties of non-terminating SLD-derivations.
To illustrate, consider the non-terminating programs P3, P4, and P5:

Program Program definition For query ?← p(X), computes the answer:
P3 p(X)← p(X) id
P4 p(X)← p(f(X)) id
P5 p(f(X))← p(X) {X 7→ f(f...)}

Programs P3 and P4 each loop without producing any substitutions at all; only P5 com-
putes an infinite term at infinity. It is of course not a coincidence that only P5 resembles
a (co)inductive data definition by pattern matching on a constructor, as is commonly
used in functional programming.

When an infinite SLD-derivation computes an infinite object, and this object can
be successively approximated by applying to the initial query the substitutions com-
puted at each step of the derivation, the derivation is said to be globally productive. The



only derivation for program P5 and the query ? ← p(X) is globally productive since it
approximates, in the sense just described, the infinite term p(f(f...)). That is, it com-
putes p(f(f...)) at infinity. Programs P2 and P ′1 similarly give rise to globally productive
derivations. But no derivations for P3 or P4 are globally productive.

Since global productivity determines which non-terminating logic programs can be
seen as defining coinductive data structures, we would like to identify exactly when a
program is globally productive. But porting functional programming methods of ensur-
ing productivity by static syntactic checks is hardly possible. Unlike pattern matching in
functional programming, SLD-resolution is based on unification, which has very differ-
ent operational properties — including termination and productivity properties — from
pattern matching. For example, programs P1, P ′1, P2, and P5 are all terminating by term-
matching SLD-resolution, i.e., resolution in which unifiers are restricted to matchers, as
in term rewriting. We thus call this kind of derivations rewriting derivations.

Example 4 (Coinductive program defining an irrational infinite term). The program P6

comprises the single clause

0. from(X, scons(X, Y))← from(s(X), Y)

For P6 and the query ?← from(0, Y), SLD-resolution computes at infinity the answer sub-
stitution {Y 7→ [0, s(0), s(s(0)), . . .]}. Here [t1, t2, . . .] abbreviates scons(t1, scons(t2, . . .)),
and similarly in the remainder of this paper. This derivation depends crucially on unifi-
cation since variables occurring in the two arguments to from in the clause head overlap.
If we restrict to rewriting, then there are no successful derivations (terminating or non-
terminating) for this choice of program and query.

Example 4 shows that any analysis of global productivity must necessarily rely on spe-
cific properties of the operational semantics of LP, rather than on program syntax alone.
It has been observed in [9, 11] that one way to distinguish globally productive programs
operationally is to identify those that admit infinite SLD-derivations, but whose rewriting
derivations always terminate. We call this program property observational productivity.
The programs P1, P ′1, P2, P5, P6 are all observationally productive.

The key observation underlying observational productivity is that terminating rewrit-
ing derivations can be viewed as points of finite observation in infinite derivations. Con-
sider again program P6 and query ? ← from(0, Y) from Example 4. Drawing rewriting
derivations vertically and unification-based resolution steps horizontally, we see that each
unification substitution applied to the original query effectively observes a further frag-
ment of the stream computed at infinity:

from(0, X)

{X7→[0,X′]}→
from(0, [0, X′])

from(s(0), X′)

{X′ 7→[s(0),X′′]}→
from(0, [0, s(0), X′′])

from(s(0), [s(0), X′′])

from(s(s(0)), X′′)

.→ . . .

If we compute unifiers only when rewriting derivations terminate, then the resulting
derivations exhibit consumer-producer behaviour: rewriting steps consume structure (here,
the constructor scons), and unification steps produce more structure (here, new sconses)
for subsequent rewriting steps to consume. This style of interleaving matching and uni-
fication steps was called structural resolution (or S-resolution) in [9, 12].



Model-theoretic properties of S-resolution relative to least and greatest Herbrand
models of programs were studied in [12]. In this paper, we provide a suitable algorithm
for semi-deciding observational productivity of logic programs, and present its imple-
mentation [19]; see also Appendix B online. By definition, observational productivity of
a program P is in fact a conjunction of two properties of P :
1. universal observability : termination of all rewriting derivations, and
2. existential liveness: existence of at least one non-terminating S-resolution or SLD-

resolution derivation.
While the former property is universal, the latter must be existential. For example, the
program P1 defining the Peano numbers can have both inductive and coinductive mean-
ing. When determining that a program is observationally productive, we must certify
that the program actually does admit derivations that produce infinite data, i.e., that it
actually can be seen as a coinductive definition. Our algorithm for semi-deciding obser-
vational productivity therefore combines two checks:
1. guardedness checks that semi-decide universal observability: if a program is guarded,

then it is universally observable. (The converse is not true in general.)
2. liveness invariant checks ensuring that, if a program is guarded and exhibits an

invariant in its consumption-production of constructors, then it is existentially live.
This is the first work to develop productivity checks for LP. An alternative approach

to coinduction in LP, known as CoLP [7, 21], detects loops in derivations and closes
them coinductively. However, loop detection was not intended as a tool for the study
of productivity and, indeed, is insufficient for that purpose: programs P3, P4 and P5,
of which only the latter is productive, are all treated similarly by CoLP, and all give
coinductive proofs via its loop detection mechanism.

Our approach also differs from the usual termination checking algorithms in term-
rewriting systems (TRS) [1, 8, 22] and LP [3, 15, 16, 18, 20]. Indeed, these algorithms focus
on guaranteeing termination, rather than productivity; see Section 5. And although the
notion of productivity has been studied in TRS [4, 5], the actual technical analysis of pro-
ductivity is rather different there because it considers infinitary properties of rewriting,
whereas observational productivity relies on termination of rewriting.

The rest of this paper is organised as follows. In Section 2 we introduce a contrac-
tion ordering on terms that extends the more common lexicographic ordering, and argue
that this extension is needed for our productivity analysis. We also recall that static
guardedness checks do not work for LP. In Section 3 we employ contraction orderings in
dynamic guardedness checks and present a decidable property, called GC2, that charac-
terises guardedness of a single rewriting derivation, and thus certifies existential observ-
ability. In Section 4 we employ GC2 to develop an algorithm, called GC3, that analyses
consumer-producer invariants of S-resolution derivations to certify universal observabil-
ity. For universally observable programs, these invariants also serve as liveness invariant
checks. We also prove that GC3 indeed semi-decides observational productivity. In Sec-
tion 5 we discuss related work and in Section 6 we discuss our implementation and
applications of the productivity checker. In Section 7 we conclude the paper.

2 Contraction Orderings on Terms

In this section, we will introduce the contraction ordering on first-order terms, on which
our productivity checks will rely. We work with the standard definition of first-order logic



programs. A signature Σ consists of a set F of function symbols f, g, . . . each equipped
with an arity. Nullary (0-ary) function symbols are constants. We also assume a countable
set Var of variables, and a set P of predicate symbols each equipped with an arity. We
have the following standard definition for terms, formulas and Horn clauses:

Definition 1 (Syntax of Horn clauses and programs).
Terms Term ::= V ar | F(Term, ..., T erm)
Atoms At ::= P(Term, ..., T erm)
(Horn) clauses CH ::= At← At, ..., At
Logic programs Prog ::= CH, ..., CH

In what follows, we will use letters A,B with subscripts to refer to elements of At.
Given a program P , we assume all clauses are indexed by natural numbers starting from
0. When we need to refer to ith clause of program P , we will use notation P (i). To refer
to the head of clause P (i), we will use notation head(P (i)).

A substitution is a total function σ : Var → Term. Substitutions are extended from
variables to terms as usual: if t ∈ Term and σ is a substitution, then the application
σ(t) is a result of applying σ to all variables in t. A substitution σ is a unifier for t, u
if σ(t) = σ(u), and is a matcher for t against u if σ(t) = u. A substitution σ is a most
general unifier (mgu) for t and u if it is a unifier for t and u and is more general than any
other such unifier. A most general matcher (mgm) σ for t against u is defined analogously.

We can view every term and atom as a tree. Following standard definitions [2, 14],
such trees can be indexed by elements of a suitably defined tree language. Let N∗ be the
set of all finite words (i.e., sequences) over the set N of natural numbers. A set L ⊆ N∗ is
a (finitely branching) tree language if the following two conditions hold: (i) for all w ∈ N∗
and all i, j ∈ N, if wj ∈ L then w ∈ L and, for all i < j, wi ∈ L, and (ii) for all w ∈ L, the
set of all i ∈ N such that wi ∈ L is finite. A tree language L is finite if it is a finite subset
of N∗, and infinite otherwise. Term trees (for terms and atoms over a given signature) are
defined as mappings from a tree language L to that signature, see [2, 9, 14]. Informally
speaking, every symbol occurring in a term or an atom receives an index from L.

In what follows, we will work with term tree representations of terms and atoms, and
for brevity we will refer to term trees simply as terms. We will use notation t(w) when
we need to talk about the element of the term t indexed by a word w ∈ L. Note that leaf
nodes are always given by variables or constants.

Example 5. Given L = {ε, 0, 00, 01}, the atom stream(scons(0, Y)) can be seen as the
term tree t given by the map t(ε) = stream, t(0) = scons, t(00) = 0, t(01) = Y.

We can use such indexing to refer to subterms, and notation subterm(t, w) will refer to
the subterm of term t starting at node w. In Example 5, taking t = stream(scons(0, Y))
gives that subterm(t, 0) is scons(0, Y).

Two of the most popular tools for termination analysis of declarative programs are
lexicographic ordering and (recursive) path ordering of terms. Informally, these can be
adopted to the LP setting as follows. Suppose we have a clause A← B1, . . . , Bi, . . . , Bn,
and want to check whether each Bi sharing the predicate with A is “smaller” than A,
since this guarantees that no infinite rewriting derivation is triggered by this clause. For
lexicographic ordering we will write Bi <l A and for path ordering we will write Bi <p A.

Using standard orderings to prove universal observability works well for program P2,
since stream(Y) <l stream(scons(0, Y)) and stream(Y) <p stream(scons(0, Y)), and



so any rewriting derivation for P2 terminates. But universal observability of P6 cannot
be shown by this method. Indeed, none of the four orderings from(X, scons(X, Y)) <l

from(s(X), Y), from(s(X), Y) <l from(X, scons(X, Y)), from(X, scons(X, Y)) <p from(s(X),
Y), and from(s(X), Y) <p from(X, scons(X, Y)) holds because the subterms pairwise dis-
agree on the ordering. This situation is common for LP, where some arguments hold
input data and some hold output data, so that some decrease while others increase in
recursive calls. Nevertheless, P6 is universally observable, and we want to be able to infer
this. Studying the S-resolution derivation for P6 in Section 1, we note that universal ob-
servability of P6 is guaranteed by contraction of from’s second argument. It is therefore
sufficient to establish that terms get smaller in only one argument. This inspires our
definition of a contraction ordering, which takes advantage of the tree representation of
terms.

Definition 2 (Contraction, recursive contraction). If t1 and t2 are terms, then t2
is a contraction of t1 (written t1 . t2) if there is a leaf node t2(w) on a branch B in t2,
and there exists a branch B′ in t1 that is identical to B up to node w, but t1(w) is not
a leaf. If, in addition, subterm(t1, w) contains the symbol given by t2(w), then t2 is a
recursive contraction of t1.

We distinguish variable contractions and constant contractions according as t2(w) is
a variable or constant, and call subterm(t1, w) a reducing subterm for t1 . t2 at node w.
We call subterm(t1, w) a recursive, variable, or constant reducing subterm according as
t1 . t2 is a recursive, variable or constant contraction.

Example 6 (Contraction orderings). We have from(X, scons(X, Y)) . from(s(X), Y), since
the leaf Y in the latter is “replaced” by the term scons(X, Y) in the former. Formally,
scons(X, Y) is a recursive and variable reducing subterm. It can be used to certify termi-
nation of all rewriting derivations for P6. Note that from(s(X), Y) . from(X, scons(X, Y))
also holds, with (recursive and variable) reducing subterm s(X).

The fact that . is not well-founded makes reasoning about termination delicate. Never-
theless, contractions emerge as precisely the additional ingredient needed to formulate
our productivity check for guarded (and therefore universally observable) programs.

In general, static termination checking for LP suffers serious limitations; see, e.g., [3].
The following example illustrates this phenomenon.

Example 7 (Contraction ordering on clause terms is insufficient for termination checks).
The program P7, which is not universally observable, is given by mutual recursion:

0. p(s(X1), X2, Y1, Y2) ← q(X2, X2, Y1, Y2)
1. q(X1, X2, s(Y1), Y2) ← p(X1, X2, Y2, Y2)

No two terms from the same clause of P7 can be related by any contraction ordering
because their head symbols differ. But recursion arises for P7 when a derivation calls its
two clauses alternately, so we would like to examine rewriting derivations for queries,
such as ?← p(s(X1), X2, s(Y1), Y2) and ?← p(s(X1), s(X2), s(Y1), s(Y2)), that exhibit its
recursive nature. Unfortunately, such queries are not given directly by P7’s syntax, and
so are not available for static program analysis.

Since static checking for contraction ordering in clauses is not sufficient, we will define
dynamic checks in the next section. The idea is to build a rewriting tree for each clause,



and check whether the term trees featured in that derivation tree satisfy any contraction
ordering.

3 Rewriting Trees: Guardedness Checks for Rewriting
Derivations

To properly reason about rewriting derivations in LP, we need to take into account that
i) in LP, unlike, e.g., in TRS, we have conjuncts of terms in the bodies of clauses, and ii)
a logic program can have overlapping clauses, i.e., clauses whose heads unify. These two
facts have been analysed in detail in the LP literature, usually using the notion of and-
or-trees and, where optimisation has been concerned, and-or-parallel trees. We carry on
this tradition and consider a variant of and-or trees for derivations. However, the trees
we consider are not formed by general SLD-resolution, but rather by term matching
resolution. Rewriting trees are so named because each of their edges represents a term
matching resolution step, i.e., a matching step as in term rewriting.

Definition 3 (Rewriting tree). Let P be a logic program with n clauses, and A be
an atom. The rewriting tree for P and A is the possibly infinite tree T satisfying the
following properties:

– A is the root of T

– Each node in T is either an and-node or an or-node

– Each or-node is given by P (i), for some i ∈ {0, . . . , n}
– Each and-node is an atom seen as a term tree.

– For every and-node A′ occurring in T , if there exist exactly k > 0 distinct clauses
P (j1), . . . , P (jk) in P (a clause P (ji) has the form Bji ← Bji

1 , . . . , B
ji
nji

for some

nji), such that A′ = θj1(Bj1) = . . . = θjk(Bjk), for mgms θj1 , . . . , θjk , then A′ has
exactly k children given by or-nodes P (j1), . . . , P (jk), such that every or-node P (ji)
has nji children given by and-nodes θji(B

ji
1 ), . . . , θji(B

ji
nji

).

When constructing rewriting trees, we assume a suitable algorithm [9] for renaming
free variables in clause bodies apart. Figure 1 gives four examples of rewriting trees.
If P is a program and t1, . . . , tm are terms, then a rewriting reduction is given by
[t1, . . . , ti, . . . , tm]→ [t1, . . . , ti−1, σ(B0), . . . σ(Bn), ti+1, . . . , tm] for B ← B1, . . . , Bn ∈ P
and σ(B) = ti. A sequence of rewriting reductions is a rewriting derivation. It is easy to
see that a rewriting derivation for a term t corresponds to a subtree of a rewriting tree
for t in which only one or-node is taken at every tree level.

Because mgms are unique up to variable renaming, given a program P and an atom
A, the rewriting tree T for P and A is unique. Following the same principle as with
definition of term trees, we use suitably defined finitely-branching tree languages for
indexing rewriting trees; see [9] for precise definitions. When we need to talk about a
node of a rewriting tree T indexed by a word w ∈ L, we will use notation T (w).

We can now formally define our notion of universal observability.

Definition 4 (Universal observability). A program P is universally observable if,
for every atom A, the rewriting tree for A and P is finite.



Programs P1, P ′1, P2, P5, P6 are universally observable, whereas programs P3, P4 and P7

are not. An exact analysis of why P7 is not universally observable is given in Example 9.
We can now apply the contraction ordering we defined in the previous section to

analyse termination properties of rewriting trees. A suitable notion of guardedness can
be defined by checking for loops in rewriting trees whose terms fail to decrease by any
contraction ordering. Note that our notion of a loop is more general than that used in
CoLP [7, 21] since it does not require the looping terms to be unifiable.

Definition 5 (Loop in a rewriting tree). Given a program P and an atom A, the
rewriting tree T for P and A contains a loop at nodes w and v, denoted loop(T,w, v), if
w properly precedes v on some branch of T , T (w) and T (v) are and-nodes whose atoms
have the same predicate, and the parent or-nodes of T (w) and T (v) are given by the same
clause P (i).

Examples of loops in rewriting trees are given (underlined) in Figure 1.
If T has a loop at nodes w and v, and if t is a recursive reducing subterm for T (w) .

T (v), then loop(T,w, v) is guarded by (P (i), t), where P (i) is the clause that was resolved
against to obtain T (w) and T (v), i.e., P (i) is the parent node of T (w) and T (v). It is
unguarded otherwise. A rewriting tree T is guarded if all of its loops are guarded, and is
unguarded otherwise. We write GC2(T ) when T is guarded, and say that holds for T , or
simply that GC2(T ) holds.

Example 8. In Figure 1, we have (underlined) loops in the third rewriting tree (for
q(s(X′′), s(X′′), s(Y′), Y′′) and q(s(X′), s(X′′), Y′′, Y′′)) and the fourth rewriting tree (for
q(s(X′′), s(X′′), s(Y′), s(Y′′)) and q(s(X′′), s(X′′), s(Y′′), s(Y′′))). Neither is guarded. In the
former, there is a contraction on the third argument, but because s(Y′) and Y′′ do not
share a variable, it is not recursive contraction. In the latter, there is no contraction at all.

By Definition 5, each repetition of a clause and predicate in a branch of a rewriting tree
triggers a check to see if the loop is guarded by some recursive reducing subterm.

Proposition 1 (GC2 is decidable). GC2 is a decidable property of rewriting trees.4

The proof of Proposition 1 also establishes that every guarded rewriting tree is finite.
The decidable guardedness property GC2 is a property of individual rewriting trees.

But our goal is to decide guardedness universally, i.e., for all of a program’s rewriting
trees. The next example shows that extrapolating from existential to universal guarded-
ness is a difficult task.

Example 9 (Existential guardedness does not imply universal guardedness). For program
P7, the rewriting trees constructed for the two clause heads p(s(X′), X′′, Y′, Y′′) and q(s(X′),
X′′, s(Y′), Y′′) are both guarded since neither contains any loops at all. Nevertheless, there
is a rewriting tree for P7 (the last tree in Figure 1) that is unguarded and infinite. The
third tree is not guarded (due to the unguarded loop), but it is finite.

The example above shows that checking rewriting trees generated by clause heads is
insufficient to detect all cases of nonterminating rewriting. Since a similar situation can

4 All proofs are in Appendix A, and corresponding pseudocode algorithms are in Appendix B,
of the version of the paper at https://arxiv.org/abs/1608.04415.



p(s(X′), X′′, Y′, Y′′)

P7(0)

q(X′′, X′′, Y′, Y′′)

Y′ 7→s(Y′)→
p(s(X′), X′′, s(Y′), Y′′)

P7(0)

q(X′′, X′′, s(Y′), Y′′)

P7(1)

p(X′′, X′′, Y′′, Y′′)

X′′ 7→s(X′′)→
p(s(X′), s(X′′), s(Y′), Y′′)

P7(0)

q(s(X′′), s(X′′), s(Y′), Y′′)

P7(1)

p(s(X′′), s(X′′), Y′′, Y′′)

P7(0)

q(s(X′′), s(X′′), Y′′, Y′′)

Y′′ 7→s(Y′′)→
p(s(X1), s(X′′), s(Y′), s(Y′′))

P7(0)

q(s(X′′), s(X′′), s(Y′), s(Y′′))

P7(1)

p(s(X′′), s(X′′), s(Y′′), s(Y′′))

P7(0)

q(s(X′′), s(X′′), s(Y′′), s(Y′′))

P7(1)

. . .

Fig. 1. An initial fragment of the derivation tree (comprising four rewriting trees) for the pro-
gram P7 of Example 7 and the atom p(s(X′), X′′, Y′, Y′′). Its third and fourth rewriting trees each
contain an unguarded loop (underlined), so both are unguarded. The fourth tree is infinite.

obtain for any finite set of rewriting trees, we see that universal observability, and hence
observational productivity, of programs cannot be determined by guardedness of rewriting
trees for program clauses alone. The next section addresses this problem.

4 Derivation Trees: Observational Productivity Checks

The key idea of this section is, given a program P , to identify a finite set S of rewriting
trees for P such that checking guardedness of all rewriting trees in S is sufficient to
guarantee guardedness of all rewriting trees for P . One way to identify such sets is to use
the strategy of Example 9 and Figure 1: for every clause P (i) of P , construct a rewriting
tree for the head of P (i), and, if that tree is guarded, explore what kind of mgus the
leaves of that tree generate and see if applications of those mgus might give an unguarded
tree. As Figure 1 shows, we may need to apply this method iteratively until we find a
nonguarded rewriting tree. But we want the number of such iterations to be finite. This
section shows how to do precisely this.

We start with a formal definition of rewriting tree transitions, which we have seen
already in Figure 1, and see also in Figure 2 below.

Definition 6 (Rewriting tree transition). Let P be a program and T be a rewriting
tree for P and an atom A. If T (w) is a leaf node of T given by an atom B, and B unifies
with a clause P (i) via mgu σ, we define a tree Tw as follows: we apply σ to every and-node
of T , and extend the branches where required, according to Definition 3. Computation of
Tw from T is denoted T → Tw. The operation T → Tw is the tree transition for T and w.

If a rewriting tree T is constructed for a program P and an atom A, a (finite or infinite)
sequence T → T ′ → T ′′ → . . . of tree transitions is an S-resolution derivation for P and
A. For a given rewriting tree T , several different S-resolution derivations are possible
from T . This gives rise to the notion of a derivation tree.

Definition 7 (Derivation tree, guarded derivation tree). Given a logic program
P and an atom A, the derivation tree D for P and A is defined as follows:



– The root of D is given by the rewriting tree for P and A.
– For a rewriting tree T occurring as a node of D, if there exists a transition T → Tw,

for some leaf node w in T , then the node T has a child given by Tw.

A derivation tree is guarded if each of its nodes is a guarded rewriting tree, i.e., if GC2(T )
holds for each of its nodes T .

Figure 1 shows an initial fragment of the derivation tree for P7 and p(s(X′), X′′, Y′, Y′′).
Note that we now have three kinds of trees: term trees have signature symbols as

nodes, rewriting trees have atoms (term trees) as nodes, and derivation trees have rewrit-
ing trees as nodes. For a given P and A, the derivation tree for P and A is unique up to
renaming. We use our usual notation D(w) to refer to the node of D at index w ∈ L.

Definition 8 (Existential liveness, observational productivity). Let P be a uni-
versally observable program and let A be an atom. An S-resolution derivation for P and
A is live if it constitutes an infinite branch of the derivation tree for P and A. The pro-
gram P is existentially live if there exists a live S-resolution derivation for P and some
atom A. P is observationally productive if it is universally observable and existentially
live.

To show that observational productivity is semi-decidable, we first show that universal
observability is semi-decidable by means of a finite (i.e., decidable) guardedness check.
We started this section by motivating the need to construct a finite set S of rewriting
trees whose guardedness will guarantee guardedness for any rewriting tree for the given
program. Our first logical step is to use derivation trees built for clause heads as generators
of such a set S. Due to the properties of mgus used in forming branches of derivation trees,
derivation trees constructed for clause heads generate the set of most general rewriting
trees. The next lemma exposes this fact:

Lemma 1 (Guardedness of derivation trees implies universal observability).
Given a program P , if derivation trees for P and each head(P (i)) are guarded, then P
is universally observable.

Since derivation trees are infinite, in general, checking guardedness of all loops in all
of their rewriting trees is not always feasible. It thus remains to define a method that
extracts representative finite subtrees from such derivation trees; we call such subtrees
observation subtrees. For this, we need only be able to detect an invariant property guar-
anteeing guardedness through tree transitions in the given derivation tree. To illustrate,
let us check guardedness of the program P6. Since it consists of just one clause, we take
the head of that clause as the goal atom, and start constructing the infinite derivation
tree D for P6 and from(X, scons(X, Y)) as shown in Figure 2. The first rewriting tree
in the derivation tree has no loops, so we cannot identify any invariants. We make a
transition to the second rewriting tree which has one loop (underlined) involving the
recursive reducing subterm [s(X), Y′]. This reducing subterm is our first candidate in-
variant, since it is the pattern that is consumed from the root of the second rewriting
tree to its leaf. We now need to check this pattern is added back, or produced, in the
next tree transition. The next mgu involves substitution Y′ 7→ [s(s(X)), Y′′]. Because this
derivation gradually computes an infinite irrational term (rational terms are terms that
can be represented as trees that have a finite number of distinct subtrees), the two terms



fr(X, [X, Y])

P6(0)

fr(s(X), Y)

Y 7→[s(X),Y′]}−→
fr(X, [X, s(X), Y′])

P6(0)

fr(s(X), [s(X), Y′])

P6(0)

fr(s(s(X)), Y′)

Y′ 7→[s(s(X)),Y′′]−→
fr(X, [X, s(X), s(s(X)), Y′′])

P6(0)

fr(s(X), [s(X), s(s(X)), Y′′])

P6(0)

fr(s(s(X)), [s(s(X)), Y′′])

P6(0)

fr(s(s(s(X))), Y′′)

Y′′ 7→[s(s(s(X))),Y′′]−→ . . .

Fig. 2. An initial fragment of the infinite derivation tree D for the program P6 from Example 4
and its clause head. It is also the observation subtree for D. We abbreviate scons by [, ], and
from by fr. The guarded loops in each of D’s rewriting trees are underlined.

[s(X), Y′] and [s(s(X)), Y′′] we have identified are not unifiable. We need to be able to
abstract away from their current shape and identify a common pattern, which in this
case is [ , ]. Importantly, by the properties of mgus used in transitions, such most general
patterns can always be extracted from clause heads themselves. Indeed, the subterm of
the clause head from(X, scons(X, Y)) has the subterm [X, Y] that is exactly the pattern we
are looking for. Thus, our current (coinductive) assumption is: given a rewriting tree T in
the derivation tree D, a term of the form [ , ] will be consumed by rewriting steps from
its root to its leaves, and exactly a term of the form [ , ] will be produced (i.e., added
back) in the next tree transition. Consumption is always finite (by the loop guardedness),
and production is potentially infinite.

We now need to check that this coinductive assumption will hold for the next rewriting
tree of D. The third rewriting tree indeed has guarded loops with recursive reducing
subterm [s(s(X)), Y′′], and the next mgu it gives rise to is Y′′ 7→ [s(s(s(X))), Y′′]. Again, to
abstract away the common pattern, we look for a subterm in the clause head of P6(0) that
matches with both of these terms, it is the same subterm [X, Y]. Thus, our coinductive
assumption holds again, and we conclude by coinduction that the same pattern will hold
for any further rewriting tree in D. When implementing this reasoning, we take the
observation subtree of D up to the third tree shown in Figure 2 as a sufficient set of
rewriting trees to use to check guardedness of the (otherwise infinite) tree D.

The rest of this section generalises and formalises this approach. In the next definition,
we introduce the notion of a clause projection to talk about the process of “abstracting
away” a pattern from an mgu σ by matching it with a subterm t of a clause head. When
t also matches with a recursive reducing subterm of a loop in a rewriting tree, we call t
a coinductive invariant.

Definition 9 (Clause projection and coinductive invariant). Let P be a program
and A be an atom, and let D be a derivation tree for P and A in which a tree transition
from T to T ′ is induced by an mgu σ of P (k) and an atom B given by a leaf node T (u).

The clause projection for T ′, denoted π(T ′), is the set of all triples (P (k), t, v), where t
is a subterm of head(P (k)) at position v, such that the following conditions hold: σ(B).B
with variable reducing subterm t′, and t′ matches against t (i.e. t′ = σ′(t) for some σ′).



Additionally, the coinductive invariant at T ′, denoted ci(T ′), is a subset of the clause
projection for T ′ satisfying the following condition: an element (P (k), t, v) ∈ π(T ′) is in
ci(T ′) if T contains a loop in the branch leading from T ’s root to T (u) that is guarded by
(P (k), t′′) for some t′′ such that t′′ matches against t (i.e., t′′ = θ(t) for some θ).

Given a program P , an atom A, and a derivation tree D for P and A, the clause
projection set for D is cproj(D) =

⋃
T π(T ), and the coinductive invariant set for D is

cinv(D) =
⋃

T ci(T ), where these unions are taken over all rewriting trees T in D.

Example 10 (Clause projections and coinductive invariants). Coming back to Figure 2,
the mgu for the first transition is σ1 = {X′ 7→ s(X), Y 7→ scons(s(X), Y′)} (renaming
of variables in P6(0) with primes), that for the second is σ2 = {X′′ 7→ s(s(X)), Y′ 7→
scons(s(s(X)), Y′′)} (renaming of variables in P6(0) with double primes), etc. Clause
projections are given by π(T ) = {(P6(0), scons(X, Y), 1)} for all trees T in this derivation,
and thus cproj(D) is the finite set. Moreover, for the first rewriting tree T , ci(T ) = ∅, and
ci(T ′) = {(P6(0), scons(X, Y), 1)} for all trees T ′ except for the first one, so cinv(D) =
{(P6(0), scons(X, Y), 1)} is a finite set, too.

The clause projections for the derivation in Figure 1 are π(T ′) = π(T ′′′) = (P (1),
s(Y1), 2), and π(T ′′) = (P (0), s(X1), 0), where T ′, T ′′, T ′′′ refer to the second, third and
fourth rewriting tree of that derivation. All coinductive invariants for that derivation are
empty, since none of these rewriting trees contain guarded loops.

Generally, clause projection sets are finite, since the number of subterms in the clause
heads of P is finite. This property is crucial for termination of our method.

Proposition 2 (Finiteness of clause projection sets). Given a program P , an atom
A, and a derivation tree D for P and A, the clause projection set cproj(D) is finite.

In particular, this holds for derivation trees induced by clause heads.
We terminate the construction of each branch of a derivation tree when we notice a

repeating coinductive invariant. A subtree we get as a result is an observation subtree.
Formally, given a derivation treeD for a program P and an atom A with a branch in which
nodes D(w) and D(wv) are defined, if ci(D(w)) = ci(D(wv)) 6= ∅, then D has a guarded
transition from D(w) to D(wv), denoted D(w) =⇒ D(wv). Every guarded transition
thus identifies a repeated “consumer-producer” invariant in the derivation from D(w) to
D(wv). This tells us that observation of this branch of D can be concluded. Imposing this
condition on all branches of D gives us a general method to construct finite observation
subtrees of potentially infinite derivation trees:

Definition 10 (Observation subtree of a derivation tree). If D is a derivation
tree for a program P and an atom A, the tree D′ is the observation subtree of D if

1) the roots of D and D′ are given by the rewriting tree for P and A, and

2) if w is a node in both D and D′, then the rewriting trees in D and D′ at node w are
the same and, for every child w′ of w in D, the rewriting tree of D′ at node w′ exists
and is the same as the rewriting tree of D at w′, unless either

a) GC2 does not hold for D(w′), or
b) there exists a v such that D(v) =⇒ D(w).

In either case, D′(w) is a leaf node. We say that D′ is unguarded if Condition 2a holds
for at least one of D’s nodes, and that D′ is guarded otherwise.



A branch in an observation subtree is thus truncated when it reaches an unguarded
rewriting tree or its coinductive invariant repeats. The observation subtree of any deriva-
tion tree is unique. The following proposition and lemma prove the two most crucial
properties of observation subtrees: that they are always finite, and that checking their
guardedness is sufficient for establishing guardedness of whole derivation trees.

Proposition 3 (Finiteness of observation subtrees). If D is a derivation tree for
a program P and an atom A, then the observation subtree of D is finite.

Lemma 2 (Guardedness of observation subtree implies guardedness of deriva-
tion tree). If the observation subtree for a derivation tree D is guarded, then D is
guarded.

Example 11 (Finite observation subtree of an infinite derivation tree). The initial frag-
ment D′ of the infinite derivation tree D given by the three rewriting trees in Figure 2
is D’s observation subtree. The third rewriting tree T ′′ in D is the last node in the ob-
servation tree D′ because ci(T ′) = ci(T ′′) = {(P6(0), scons(X, Y), 1)} 6= ∅. Since D′ is
guarded, Lemma 2 above ensures that the whole infinite derivation tree D is guarded.

It now only remains to put the properties of the observation subtrees to practical
use and, given a program P , to construct finite observation subtrees for each of its
clauses. If none of these observation subtrees detects unguarded rewriting trees, we have
guarantees that this program will never give rise to infinite rewriting trees. The next
definition, lemmas, and theorem make this intuition precise.

Definition 11 (Guarded clause, guarded program). Given a program P , its clause
P (i) is guarded if the observation subtree for the derivation tree for P and the atom
head(P (i)) is guarded, and P (i) is unguarded otherwise. A program P is guarded if each
of its clauses P (i) is guarded, and unguarded otherwise. We write GC3(P (i)) to indicate
that P (i) is guarded, and similarly for P .

Lemma 3 uses Proposition 3 to show that GC3 is decidable.

Lemma 3 (GC3 is decidable). GC3 is a decidable property of logic programs.

Theorem 1 (Universal observability is semi-decidable). If GC3(P ) holds, then P
is universally observable.

Proof: If GC3(P ) holds, then the observation subtree for each P (i) is guarded. Thus,
by Lemma 2, the derivation tree for each P (i) is guarded. But then, by Lemma 1, P
is universally observable. Combining this with Lemma 3, we also obtain that universal
observability is semi-decidable.

The converse of Theorem 1 does not hold: the program comprising the clause p(a) ←
p(X) is universally observable but not guarded, hence the above semi -decidability result.

From our check for universal observability we obtain the desired check for existential
liveness, and thus for observational productivity:

Corollary 1 (Observational productivity is semi-decidable). Let P be a guarded
logic program. If there exists a clause P (i) such that the derivation tree D for P and P (i)
has an observation subtree D′ one of whose branches was truncated by Condition 2b of
Definition 10, then P is existentially live. In this case, since P is also guarded and hence
universally observable, P is observationally productive.



5 Related Work: Termination Checking in TRS and LP
Because observational productivity is a combination of universal observability and exis-
tential liveness, and the former property amounts to termination of all rewriting trees,
there is an intersection between this work and termination checking in TRS [1, 8, 22].

Termination checking via the transformation of LP into TRS has been studied in [20].
Here we consider termination of restricted form of SLD-resolution (given by rewriting
derivations), and so a much simpler method for translating LP into TRS can be used for
our purposes [6]: Given a logic program P and a clause P (i) = A← B1, . . . , Bn containing
no existential variables, we define a rewrite rule A → fi(B1, . . . , Bn) for some fresh
function symbol fi. Performing this translation for all clauses, we get a translation from
P to a term rewriting system TP . Rewriting derivations for P can be shown operationally
equivalent to term rewriting reductions for TP ; see [6] for a proof. Therefore, for logic
programs containing no existential variables, any termination method from TRS may be
applied to check universal observability (but not existential liveness).

Algorithmically, our guardedness check compares directly with the method of depen-
dency pairs due to Arts and Giesl [1, 8]. Consider again the TRS TP obtained from a
logic program P . The set R of dependency pairs contains, for each rewrite rule A →
fi(B1, . . . , Bn) in TP , a pair (A,Bj), j = 1, . . . , n; see [6]. The method of dependency
pairs consists of checking whether there exists an infinite chain of dependency pairs
(si, ti)i=1,2,3,... such that σi(ti)→∗ σi+1(si+1). If there is no such infinite chain, then TP
is terminating. Again this translation from LP to dependency pairs in TRS is simpler
than in [15], since rewriting derivations are a restricted form of SLD-resolution. Due to
the restricted syntax of TP (compared to the general TRS syntax), generating the set of
dependency pairs is equivalent to generating a set of rewriting trees for each clause of P
and assuming σi = σi+1 (cf. GC2). To find infinite chains, a dependency graph is defined,
in which dependency pairs are nodes, and arcs are defined whenever a substitution that
allows a transition from one pair to another can be found. Finding such substitutions
is the hardest part algorithmically. Note that every pair of neighbouring and-nodes in
a rewriting tree corresponds to a node in a dependency graph. Generating arcs in a de-
pendency graph is equivalent to using GC3 to find a representative set of substitutions.
However, the way GC3 generates such substitutions via rewriting tree transitions differs
completely from the methods approximating dependency graphs [1, 22], and relies on
the properties of S-resolution, rather than recursive path orderings. This is because GC3
additionally generates coinductive invariants for checking existential liveness of programs.

Conceptually, observational productivity is a new property that does not amount to
either termination or nontermination in LP or TRS. For instance, programs P3 and P4

are nonterminating (seen as LP or TRS), and P8 : p(X)← q(Y ) is terminating (seen as
LP or TRS) but none of them is productive. This is why the existing powerful tools (such
as AProVE) and methods [1, 8, 15, 20] that can check termination or nontermination in
TRS or LP are not sufficient to serve as productivity checks. To check termination of
rewriting trees, GC3 can be substituted by existing termination checkers for TRS, but
none of the previous approaches can semi-decide existential liveness as GC3 does.

6 Implementation and Applications
We implemented the observational productivity checker in parallel Go (golang.org) [19],
which allows experimentation with parallelisation of proof search [10]. Loading a logic



program P , one runs a command line to initialise the GC3 check. The algorithm then
certifies whether or not the program is guarded (and hence universally observable). If that
is the case, it also checks whether GC3 found valid coinductive invariants, i.e. whether
P is existentially live, and hence admits coinductive interpretations for some predicates.
Appendix B (available online) gives further details.

In the context of S-resolution [9, 11], observational productivity of a program is a
precondition for (coinductive) soundness of S-resolution derivations. This gives the first
application for the productivity checker. But the notion of global productivity (as related
to computations at infinity [14]) was first investigated in the 1980s. A program is produc-
tive, if it admits SLD- (or S-resolution) derivations that compute (or produce) an infinite
term at infinity. Thus the productivity checker has more general practical significance
for Prolog. In this paper we further exposed its generality by showing that productivity
can be seen as a general property of logic programs, rather than property of derivations
in some special dialect of Prolog.

Based on this observation, we identify three applications for productivity checks en-
compassing the S-resolution framework. First, in the context of CoLP [7, 21] or any other
similar tool based on loop detection in SLD-derivations, one can run the observational
productivity checker for a given program prior to running the usual interpreter of CoLP.
If the program is certified as productive, all computations by CoLP for this program will
be sound relative to computations at infinity [14]. It gives a way to characterise a subset
of theorems proven by CoLP that describe the process of production of infinite data. For
example, as explained in the introduction, CoLP will return answers for programs P3, P4

and P5. But if we know that only P5 is productive, then we also know that only CoLP’s
answers for P5 will correspond to production of infinite terms at infinity. Secondly, since
our productivity checker also checks liveness of programs, it effectively identifies which
predicates may be given coinductive semantics. This knowledge can be used to type
predicates as inductive or coinductive. We can use these types to mark predicates in
CoLP or any other coinductive dialect of logic programming, cf. Appendix B. Finally,
observational productivity is also a guarantee that a sequence of mgus approximating the
infinite answer can be constructed lazily even if the answer is irregular. For instance, our
running example of program P6 defines an irrational term and hence cannot be handled
by CoLP’s loop detection. But even if we cannot form a closed-term answer for a query
from(0, X), the productivity checker gives us a weaker but more general certificate that
lazy approximation of our infinite answer is possible.

These three classes of applications show that the presented productivity checker can
be implemented and applied in any dialect of logic programming, irrespective of the fact
that it initially arose from S-resolution research [9, 11].

7 Conclusions

In this paper we have introduced an observational counterpart to the classical notion
of global productivity of logic programs. Using the recently introduced formalism of S-
resolution, we have defined observational productivity as a combination of two program
properties, namely, universal observability and existential liveness. We have introduced
an algorithm for semi-deciding observational productivity for any logic program. We did
not impose any restrictions on the syntax of logic programs. In particular, our algorithm
handles both existential variables and non-linear recursion.



The algorithm relies on the observation that rewriting trees for productive and guarded
programs must show term reduction relative to a contraction ordering from their roots
to their leaves. But S-resolution derivations involving such trees can only proceed by
adding term structure back in transitioning to new rewriting trees via mgus. This “pro-
ducer/consumer” interaction can be formally traced by observing a derivation’s coinduc-
tive invariants: these record exactly the term patterns that both reduce in the loops of
rewriting trees and are added back in transitions between these trees.
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