
Submitted to MFPS 2024

Early Announcement: Parametricity for GADTs

Pierre Cagnea,1 Patricia Johanna,2

a Department of Computer Science
Appalachian State University

Boone, NC, USA

Abstract

Relational parametricity was first introduced by Reynolds for System F. Although System F provides a strong model for the
type systems at the core of modern functional programming languages, it lacks features of daily programming practice such as
complex data types. In order to reason parametrically about such objects, Reynolds’ seminal ideas need to be generalized to
extensions of System F. Here, we explore such a generalization for the extension of System F by Generalized Algebraic Data
Types (GADTs) as found in Haskell. Although GADTs generalize Algebraic Data Types (ADTs) — i.e., simple recursive types
such as lists, trees, etc. — we show that naively extending the parametric treatment of these recursive types is not enough to
tackle GADTs. We propose a tentative workaround for this issue, borrowing ideas from the categorical semantics of GADTs
known as (functorial) completion. We discuss some applications, as well as some limitations, of this solution.

Keywords: Parametricity, Generalized Algebraic Data Types, Logical relations

1 Introduction

Relational parametricity [Rey83] is a key technique for reasoning about programs in strongly typed languages.
It can be used to enforce invariants guaranteeing strong properties of programs, programming languages, and
programming language implementations supporting parametric polymorphism. A polymorphic program is a
program that can be applied to arguments and return results of different types; a parametric polymorphic
program is a program that not only is polymorphic over all types, but is also defined by the same type-
uniform algorithm regardless of the concrete type at which it is applied. Since parametric polymorphic
programs cannot perform type-specific operations, the computational behaviors they can exhibit are actually
quite constrained. Parametricity was originally put forth by Reynolds [Rey83] for System F [Gir72,Rey74],
the formal calculus at the core of all polymorphic functional languages. It was later popularized as Wadler’s
“theorems for free” [Wad89], so-called because it allows the deduction of properties of programs in such
languages solely from their types, i.e., with no knowledge whatsoever of the text of the programs involved.
However, to get interesting free theorems, Wadler actually treats System F extended with built-in lists.
Indeed, most of the free theorems in [Wad89] are essentially naturality properties for polymorphic list-
processing functions. It is easy to extend the techniques developed there for handling lists to non-list
algebraic data types (ADTs). Parametricity for such types can then be used to derive not just naturality
(i.e., commutativity) properties, but also results — such as proofs of type inhabitance and correctness of
the program optimization known as short cut fusion [GLP93] — that go beyond simple naturality.

1 Email: cagnep@appstate.edu
2 Email: johannp@appstate.edu

MFPS 2024 Proceedings will appear in Electronic Notes in Theoretical Informatics and Computer Science

mailto:cagnep@appstate.edu
mailto:johannp@appstate.edu

Cagne, Johann

In his original formulation, Reynolds gives each type expression of System F a relational interpretation
defined inductively. Each type expression Φ with type variables α1, α2, . . . , αn thus gives, for each tuple R
of relations Ri between types Ai and Bi, a relation Φ̂R between the type Φ[A/α] and Φ[B/α]. To capture
the intended type-uniformity of System F’s polymorphic expressions, these relational interpretations are
defined in such a way that every function f :∀α.Φ→ Ψ, where Φ and Ψ are two type expressions in the
same type variables α, is parametric in the following sense: for each tuple of relations R, the pairs related
by Φ̂R are sent by f to pairs related by Ψ̂R.

Better approximations of realistic programming languages result from adding built-in data types to
System F. Each such added data type induces a type constructor, and this type constructor must also be
given a relational interpretation. Wadler [Wad89] considers the case of lists, which we review in detail in
Section 2. To add a new inductive data type constructor T to an ambient parametric language in such
a way that parametricity is preserved, the method is always the same: Define its relational interpretation
as a (dependent) inductive family T̂ with one data constructor ĉ for each data constructor c of T expressing
precisely that c is a parametric polymorphic function. The data constructors of such a data type’s relational
interpretation thus make formal the intuitive type-uniformity required of its data constructors by the
grammars of languages such as Haskell. The relational interpretation T̂ captures the intuition that, if we
regard data types as containers, then two data structures of (two instances of) T are related by T̂ R exactly
when the data they store are related by R. This intuition also requires that T̂ preserves inclusion, i.e., that
T̂ R ⊆ T̂ S whenever R ⊆ S. Indeed, if two data structures are related by T̂ R, then the data they store are
related by R, and thus by S, so the two data structures must be related by T̂ S. Fortunately, for lists and other
ADTs, the relational interpretations defined in this way enjoy this crucial inclusion-preservation property.

Here, we report our ongoing efforts to add the generalization of ADTs known as Generalized Algebraic
Data Types (GADTs) to System F in such a way that parametricity is preserved. In doing so, we insist
on understanding GADTs as types of data structures, i.e., as types of containers that can be filled with
data. Since this entails in particular that GADTs are inductive data type constructors, we might expect
that following the method outlined above will suffice. In Section 2, we show that naively doing so results
in relational interpretations of GADTs that do not satisfy the inclusion-preservation property identified
at the end of the preceding paragraph. This is problematic: if we are to understand GADTs as types of
data structures, then they should certainly satisfy all properties — among them the inclusion-preservation
property — expected of such types. In Section 3, we explore a promising approach to overcoming this issue.
This approach consists in defining the relational interpretation of a GADT through that of its completion,
an ADT-like type constructor that contains the original GADT. In Section 4 we offer some applications
of parametricity for GADTs obtained using our proposed approach. In Section 5 we discuss some issues
that arise when making our proposed approach precise. Doing so requires defining a source language (an
extension of System F that allows for GADTs), a target language (a dependent type theory strong enough
to encode relations), and interpretations of each type of the source language as both a type and a relation in
the target language. We point out some difficulties in the design of the target language, and also offer some
thoughts on how to resolve them. Throughout the paper, we use an Agda-like syntax to write examples of
types and terms of the anticipated target language. We note, however, that this language might end up
being very different from Agda’s type theory. In particular, this early announcement by no means reports
on an attempt to formalize our work in a proof assistant.

We are not the first to consider parametricity for GADTs. Very recent progress on the subject has
been presented in [SSSB24]. Sieczkowski et al. construct there a parametric model of an extension of
System F supporting GADTs, with the aim of deriving free theorems and representation independence
results. However, their work differs drastically from the line of research presented here in several ways.
First, the semantics presented by Sieczkowski et al. targets normalization-by-evaluation. By contrast, our
work is in no way concerned with such methods. Second, Sieczkowski et al. make essential use of guarded
recursion through a universe of step-indexed propositions equipped with a later modality (as exists, e.g.,
in Iris). By contrast, we are concerned only with structural recursion in this work. Third, Sieczkowski et
al. insist on the importance of two particular rules of their type system: discriminability and injectivity
of type constructors. By contrast, we are agnostic about such rules, thus accommodating more diverse
host languages. Finally, and most importantly, the semantics of Sieczkowski et al. models parametricity
for GADTs only in those type indices that are unconstrained, i.e., that can be promoted to parameters.

2

Cagne, Johann

In particular, their approach cannot handle free theorems such as the one presented in Section 4.1 for
Seq, since pairing has a constrained instance of Seq as return type. By contrast, we not only recognize the
non-uniformity of GADTs acknowledged by Sieczkowski et al., but we also recognize that this break of
uniformity is governed by uniform type constructors (namely, those constraining the instances of the return
types of GADTs’ data constructors), and that this uniformity must be captured by parametric models of
the language at play.

2 Naive approach: The problem

In this section, we first review Wadler’s relational interpretation of the standard built-in type constructor
List for the ADT of lists, and then try to extend the method directly to GADTs. As noted in Section 1,
the resulting relational interpretations for GADTs lack the desired inclusion-preservation property.

The type constructor List for the ADT of lists is given by:

data List : Set→ Setwhere

nil :∀{α} → Listα

cons :∀{α} → α→ Listα→ Listα

(1)

Wadler effectively gave a relational interpretation for List informally when he declared two lists
[a1, a2, ..., an] : ListA and [b1, b2, ..., bn] : ListB to be related by L̂istR for a relation R between the types A
and B exactly when each pair of their corresponding elements is related by R, i.e., when he required

L̂istR [a1, a2, . . . , an] [b1, b2, . . . , bn] if and only if ∀i = 1, . . . , n, R ai bi

If we represent the type relation Rel AB of relations between A and B by the function type A→ B → Set,
then we can formalize Wadler’s relational interpretation for lists as the (dependent) inductive family
represented by:

data L̂ist : ∀{αβ} → Rel αβ → Rel (Listα) (Listβ)where

n̂il :∀{αβ}(R : Rel αβ)→ L̂ist R nil nil

ĉons : ∀{αβ}(R : Rel αβ)(a :α)(b :β)(as : Listα)(bs : Listβ)→
Ra b→ L̂ist R as bs→ L̂ist R (cons a as) (cons b bs)

Notice that only terms both constructed from the same data constructor can be related, and that
the definition of L̂ist mimics the recursive structure of List’s data type declaration. This ensures in
particular that L̂ist preserves inclusions: Given i :R ⊆ S, define L̂ist i by mapping n̂ilR to n̂ilS and
ĉonsRah bh at btwhwt to ĉonsS ah bh at bt (i wh) (L̂ist i wt). Moreover, this definition has exactly the feature
announced in Section 1, namely that n̂il and ĉons express that nil and cons are parametric, respectively.

The method we used to construct List can easily be extended to other ADTs, or even to more general
inductive definitions. This is the approach explored by the authors of [BJP10] for generic inductive families,
which encompass, in particular, GADTs. Although interesting in its own right, this approach fails to
recognize GADTs as data types, in the sense that their relational interpretations do not necessarily preserve
inclusion as is intuitively expected. To illustrate the issue, consider the GADT of sequences given by:

data Seq : Set→ Setwhere

inj :∀{α} → α→ Seq α

pairing : ∀{α1 α2} → Seq α1 → Seq α2 → Seq (α1 × α2)

(2)

3

Cagne, Johann

The same method used above yields the following relational interpretation Ŝeq for Seq:

data Ŝeq :∀{αβ} → Rel αβ → Rel (Seq α) (Seq β)where

înj :∀{αβ}(R : Rel αβ)(a :α)(b :β)→ Ra b→ Ŝeq R (inj a) (inj b)

p̂airing : ∀{α1 α2 β1 β2}(R1 : Rel α1 β1)(R2 : Rel α2 β2)→
∀(s1 : Seq α1)(s2 : Seq α2)(t1 : Seq β1)(t2 : Seq β2)→
Ŝeq R1 s1 t1 → Ŝeq R2 s2 t2 → Ŝeq (R1 ×̂ R2) (pairing s1 s2) (pairing t1 t2)

Here, _ ×̂ _ is the relational interpretation of the product type constructor _ × _ defined on relations
R1 : Rel A1B1 and R2 : Rel A2B2 by (R1 ×̂R2) (a1, a2) (b1, b2) = (R1 a1 b1) × (R2 a2 b2) for all a1 :A1,
a2 :A2, b1 :B1, b2 :B2.

Now, assuming extensionality for relations (i.e., R is equal to S when they relate the same elements),
if R is the equality relation on Bool× Bool, where Bool is the type of booleans, then Ŝeq R is the equality
relation on Seq (Bool× Bool). On the other hand, if S is the binary relation on Bool × Bool with only
S (false, false) (true, true) uninhabited, then Ŝeq S (pairing s1 s2) (pairing t1 t2) is uninhabited for any s1, s2,
t1, and t2 because S is not a product of relations. However, S contains R, so Ŝeq S s t should be inhabited
at least whenever Ŝeq Rs t is. That it is not violates the inclusion-preservation property expected of Ŝeq.

3 Completing GADTs: Toward a solution

To remedy the problem exposed in Section 2, we first observe that we can obtain an alternative relational
interpretation for Seq by first embedding it into (a data type that is essentially) an ADT S and then
constructing the relational interpretation of S as above. The data type S is given by:

data S : Set→ Setwhere

i :∀{α} → α→ S α

p : ∀{α1 α2 α} → (α1 × α2→ α)→ S α1 → S α2 → S α

(3)

We can compute the relational interpretation of S as we did above for ADTs. This gives:

data Ŝ : ∀{αβ} → Rel αβ → Rel (S α) (S β)where

î :∀{αβ}(R : Rel αβ)(a :α)(b :β)→ Ra b→ Ŝ R (i a) (i b)

p̂ : ∀{α1 α2 β1 β2 αβ}(R1 : Rel α1 β1)(R2 : Rel α2 β2)(R : Rel αβ)→
∀(s1 : S α1)(s2 : S α2)(t1 : S β1)(t2 : S β2)(f :α1 × α2→ α)(g :β1 × β2→ β)→
((R1 ×̂ R2) →̂ R) f g→ Ŝ R1 s1 t1 → Ŝ R2 s2 t2 → Ŝ R (p f s1 s2) (p g t1 t2)

Here, _ →̂ _ is the relational interpretation of the function type constructor _→ _ defined for any
R : Rel AB and S : Rel C D by (R →̂ S) f g = ∀(a :A)(b :B)→ Ra b→ S (f a) (g b).

Note that there is an embedding ι of Seq into S, obtained by mapping a sequence of the form inj a to i a

and one of the form pairing s1 s2 with s1 : Seq A1 and s2 : Seq A2 to p idA1×A2 (ι s1) (ι s2). With ι and Ŝ in
hand, we can now define the relational interpretation of Seq by Ŝeq Rs t = Ŝ R (ι s) (ι t). It is easy to see that
the relational interpretation Ŝeq not only ensures that the constructors of Seq are parametric, but also satisfies
the inclusion-preservation property. Indeed, if i :R ⊆ S then we can define Ŝ i : ŜR ⊆ ŜS simply by mapping
î Ra bw to î S a b (i w) and p̂R1R2Rs1 s2 t1 t2 f g ww1w2 to p̂R1R2 S s1 s2 t1 t2 f g (i ◦ w) (Ŝ i w1)(Ŝ i w2).

The method described for Seq can easily be extended to any GADT. Indeed, given any GADT G, its
completion Gc is obtained by first identifying each constructor c :∀α.Φ→ GΨ whose return instance Ψ of G

4

Cagne, Johann

is not simply α and replacing it by cc :∀αβ.(Ψ→ β)→ Φ→ Gβ. The name completion is justified by the
embedding ιG of G into Gc defined on each element of the form c x by cc idΨ x. The completion Gc is akin
to an ADT in the sense that the return type of each of its constructors is a variable instance of Gc; however,
it is not an ADT per se because each of its constructors cc :∀αβ.(Ψ→ β) → Φ → Gβ quantifies over a
possibly non-empty vector α of type variables as well as over the vector β of type variables appearing in
cc’s return instance. Nevertheless, the relational interpretation Ĝc of Gc can be constructed as in Section 2,
and the relational interpretation Ĝ of G is then defined by restriction as ĜR g h = ĜcR (ιG g) (ιG h). The
resulting relational interpretation Ĝ inherits the inclusion-preservation property of Ĝc and also ensures that
each of the constructors c of G is parametric.

When G is simply an ADT its completion Gc is just a copy of G itself (since then there is no constructor
c :∀α.Φ→ GΨ whose return instance Ψ is not α). In this case, the relational interpretation Ĝ defined in
this section is trivially the same as the relational interpretation associated to it by the method described in
Section 2. The construction of Ĝ in this section for an arbitrary GADT G thus produces true generalizations
of the relational interpretations of ADTs, as introduced for lists by Wadler and subsequently developed for
more general data types by others (see, e.g., [BJP10,JG07]).

4 Applications

4.1 Free theorems

The relational interpretations defined for GADTs in the previous section can be used to establish free
theorems à la Wadler. We illustrate this with the data type Seq. Given a type A and an element a :A,
we say that a sequence s : Seq A contains only a as data either when s = inj a or when s = pairing s1 s2 —
which forces a to be of the form (a1, a2) — and s1 contains only a1 as data and s2 contains only a2 as data.

Proposition 4.1 Let f :∀α.α → Seq α be a parametric polymorphic function. For any type A and any
element a :A, the sequence f Aa contains only a as data.

Proof. Since the function f is parametric, for any types A and B, any relation R : Rel AB, any a :A and
any b :B, the sequences f Aa and f B b are related by ŜeqR whenever Ra b holds. Now, fix a type A and an
element a :A and consider the relation δa : Rel AA that relates x and y only when both are a itself. Because
δa a a, we get a witness of Ŝeq δa (f Aa) (f Aa). It remains to show, by induction on s : Seq A, that if
Ŝeq δa s s then s contains only a as data. If s = inj x for some x :A, then the element we have in Ŝeq δa s s =

Ŝ δa (i x) (i x) must be of the form î δa xxw with w : δa xx. By definition of δa, w entails that x is a itself,
and thus s = inj a does indeed contain only a as data. If s = pairing s1 s2, then A is of the form A1×A2, a is of
the form (a1, a2), and the element we have in Ŝeq δa s s = Ŝ δa (p idA1×A2 (ι s1) (ι s2)) (p idA1×A2 (ι s1) (ι s2))
must be of the form p̂R1R2 δa s1 s2 s1 s2 idA1×A2 idA1×A2 ww1w2 with R1 : Rel A1A1, R2 : Rel A2A2,
w : ((R1 ×̂R2) →̂ δa) idA1×A2 idA1×A2 , w1 : Ŝeq R1 s1 s1, and w2 : Ŝeq R2 s2 s2. From w, we can prove that
R1 ⊆ δa1 and R2 ⊆ δa2 . Then from w1 and w2, inclusion-preservation of Ŝeq gives witnesses v1 and v2 of
Ŝeq δa1 s1 s1 and Ŝeq δa2 s2 s2, respectively. By the induction hypothesis, v1 gives that s1 has only a1 as data
and v2 gives that s2 contains only a2 as data. That is, s = pairing s1 s2 contains only a = (a1, a2) as data.2

4.2 Graph lemma

If R is the graph of a function f :A→ B, then ĜR is of particular interest. When G is an ADT, then the
graph lemma says that ĜR is exactly the graph of the function mapG f :GA→ GB, where mapG is the
usual map function associated with the ADT G. However, when G is a more general GADT, then there can
be no map function associated with G ([JP19,JC22]). In other words, the relation ĜR is not necessarily
the graph of a function from GA to GB. Significantly, ĜR can still be understood as the graph of a
partial function from GA to GB; see Proposition 4.2 below. The key observation is that the completion
Gc of G has a map function mapGc

: (A→ B)→ GcA→ GcB whose application to f is defined for each
constructor cc by mapGc

f (cc hx) = cc (f ◦ h)x.

5

Cagne, Johann

Proposition 4.2 Let f :A→ B be a function and let G be a GADT. If R is the graph of f , then ĜR is the
graph of a partial function, i.e., for any x :GA, there is at most one y :GB such that ĜR x y is inhabited.

Proof. Let x :GA and y, y′ :GB be such that ĜR x y and ĜR x y′ are inhabited. Then ĜcR (ι x) (ι y)

and ĜcR (ι x) (ι y′) are inhabited as well. Since Gc has a map function, ĜcR is also the graph of a function,
so ι y = ι y′, and thus the injectivity of the embedding ι implies y = y′. 2

Using Proposition 4.2, we can define a “function mapping operation” mG for G by declaring mG f x to
be y if ĜR x y is inhabited and undefined if no such y exists. This definition of mG generalizes the notion of
mappability introduced in [JC22]: when f is mappable over x in the specification G in the sense of [JC22],
then the partial function mG f above is defined on x. The converse does not hold, however, as shown in
Example 4.3.

Example 4.3 Consider the functions f :Bool×Bool→ Bool×Bool and g : Bool→ Bool defined by f (x, y) =
(y, x) and g x = ¬x. It should be fairly intuitive to the reader that we can map (for Seq) the function f × g
over the sequence s = pairing (inj (true, false)) (inj true), with result s′ = pairing (inj (false, true)) (inj false).
More formally, according to the algorithm of [JC22], f ×g is indeed mappable over s in the specification Seq,
with result s′. In fact, writing R for the graph of f × g, we can give an actual witness of Ŝeq Rs s′, namely

p̂R1R2R (i (true, false)) (i true) (i (false, true)) (i false) id idw (̂i R1 (true, false) (false, true)w1) (̂i R2 true falsew2)

Here, R1 is the graph of f , R2 is the graph of g, w is a proof of inclusion (actually equality) of R1 ×̂ R2

in R, and w1 and w2 are witnesses of f (true, false) = (false, true) and g true = false, respectively. However,
the partial function mSeq (f × g) is also defined on elements on which the algorithm of [JC22] would
not consider f × g to be mappable, such as t = pairing (pairing (inj true) (inj false)) (inj true). Indeed, the
algorithm finds f × g to not be mappable over t because f is not of the form f1 × f2 but the first argument
of the outer pairing in t is again constructed from pairing. Nevertheless, mSeq (f × g) t still exists and equals
t′ = pairing (pairing (inj false) (inj true)) (inj false) because there is a witness of Ŝeq R t t′, namely

p̂R1R2R (p id (i true) (i false)) (i true) (p id (i false) (i true)) (i false) id idww1 (̂i R2 true falsew2)

Here, R2 is again the graph of g, and w2 is again a witness of g true = false, but R1 is the relation that only
relates (true, false) with (false, true) (and nothing else), w is a witness that R1 ×̂R2 is included (strictly!)
in R, and w1 is of the form

p̂R′1R
′′
1 R1 (i true) (i false) (i false) (i true) id id z (̂i R′1 true falsew

′
1) (̂i R′′1 false truew

′′
1)

Here, R′1 relates true with false (and nothing else) with witness w′1, R′′1 relates false with true (and nothing
else) with witness w′′1 , and z is a witness of inclusion (actually equality) of R′1 ×̂R′′1 in R1.

5 Issues

The research programme outlined above seems eminently reasonable. However, to carry it out precisely,
and thus to obtain results such as those in Section 4, we need to define a source language extending System
F with built-in GADTs and a target (dependent) type theory strong enough to express the relational
interpretations described in Sections 2 and 3. In trying to do so, the following issues concerning the target
type theory arise:

(i) We have chosen to model relations between A and B as functions A→ B → Set, i.e., as proof-relevant
relations. However, we have also freely used notions most naturally associated to proof-irrelevant
relations, such as inclusion of relations. A rigorous treatment would either replace inclusion with an
operation mapping witnesses to witnesses, or replace Set by a proof-irrelevant sort of propositions such
as Coq’s Prop. The former choice amounts to representing relations as spans and replacing inclusions
of relations by morphisms between those spans, whereas the latter choice provides direct support for
the proof-irrelevant notions used herein.

6

Cagne, Johann

(ii) In Section 4.2, we investigated a graph lemma for GADTs. There again, proof-relevance plays an
important role. Indeed, the graph of a function f :A → B is the relation Gr f : Rel AB defined by
Gr f a b = (f a ≡ b), where ≡ is the equality type former of the prospective target type theory. Whether
or not this relation Gr f is proof-relevant depends on whether or not the target type theory supports a
version of Axiom K. Assuming Axiom K is, however, problematic: in a language like Agda, for example,
Axiom K makes it possible to prove that the data constructors of inductive data types are injective.
This is in direct opposition to the data constructors’ expected parametric behavior.

(iii) To interpret GADTs correctly, the target type theory needs an impredicative universe that supports
inductive constructions. The Calculus of Inductive Constructions offers such a universe (namely, Prop)
at the bottom of its hierarchy. However, this universe is proof-irrelevant, and thus is not suitable for our
purposes. Indeed, carrying out our constructions in such a universe would effectively identify all data
structures of any given instance of a GADT. In addition, it is well-known that impredicativity is inconsis-
tent with strong dependent sums, which eliminates some obvious candidates for the target type theory.

Resolving Point (i) may require new technical ideas, but we do not expect it to pose fundamental difficulties.
Points (ii) and (iii) pose a different challenge: either we design a target type theory with the desired features,
or we prove that we cannot. The former would provide a framework for understanding parametricity of
(languages with) GADTs. The latter would definitively show that GADTs understood as types of data
structures cannot be parametric, and thus the claim that GADTs generalize ADTs (implicit in the “GADT”
terminology) is not justified.

Acknowledgment. This work was supported by NSF awards CCF1906388 and CCF2203217.

References

[BJP10] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametricity and dependent types. In Proceedings
of the 15th ACM SIGPLAN International Conference on Functional Programming, page 345–356. Association for
Computing Machinery, 2010.

[Gir72] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. PhD thesis,
University of Paris, 1972.

[GLP93] Andy Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to deforestation. In Functional Programming
Languages and Computer Architecture, pages 223–232, 1993.

[JC22] Patricia Johann and Pierre Cagne. Characterizing functions mappable over GADTs. In Ilya Sergey, editor,
Programming Languages and Systems, volume 13658 of Lecture Notes in Computer Science, pages 135–154. Springer,
2022.

[JG07] Patricia Johann and Neil Ghani. Initial Algebra Semantics Is Enough! In Typed Lambda Calculus and Applications,
volume 4583 of Lecture Notes in Computer Science, page 207–222. Springer Berlin Heidelberg, 2007.

[JP19] Patricia Johann and Andrew Polonsky. Higher-Kinded Data Types: Syntax and Semantics. In 34th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 1–13, 2019.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Programming Symposium, Proceedings Colloque Sur La
Programmation, pages 408––423. Springer-Verlag, 1974.

[Rey83] John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In Richard Edward Allison Mason, editor,
Proceedings of the IFIP 9th World Computer Congress, volume 83 of Information Processing, pages 513–523.
North-Holland/IFIP, 1983.

[SSSB24] Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, and Lars Birkedal. The Essence of Generalized Algebraic
Data Types. In Michael Hicks, editor, Proceedings of the ACM on Programming Languages, volume 8 of POPL.
Association for Computing Machinery, jan 2024.

[Wad89] Philip Wadler. Theorems for free! In Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, page 347–359. Association for Computing Machinery, 1989.

7

	Introduction
	Naive approach: The problem
	Completing GADTs: Toward a solution
	Applications
	Free theorems
	Graph lemma

	Issues
	References

