
Under consideration for publication in Math. Struct. in Comp. Science

On Proving the Correctness of Program

Transformations Based on Free Theorems for

Higher-order Polymorphic Calculi

Patricia Johann

Department of Computer Science, Rutgers University, Camden, NJ 08102 USA,

pjohann@crab.rutgers.edu

Received

A number of program transformations currently of interest can be derived from Wadler's \free

theorems" for calculi approximating modern functional languages. Although delicate but

fundamental issues arise in proving the correctness of free theorems-based program transformations,

these issues are usually left unaddressed in correctness proofs appearing in the literature. As a result,

most such proofs are incomplete, and most free theorems-based transformations are applied to

programs in calculi for which they are not actually known to be correct.

The purpose of this paper is three-fold. First, we raise and clarify some of the issues that must be

addressed when constructing correctness proofs for free theorems-based program transformations.

Second, we o�er a principled approach to developing such proofs. Third, we use Pitts' recent work on

parametricity and observational equivalence to show how our approach can be used to give the �rst

proof that transformations based on the Acid Rain theorems preserve observational equivalence of

programs in a polymorphic lambda calculus supporting FPC-style �xpoints and algebraic data types.

Correctness of the foldr-build rule, the destroy-unfoldr rule, and the hylofusion program

transformation for this calculus follows immediately. The same approach is expected to yield

complete correctness proofs for free theorems-based transformations in calculi which even more

closely resemble languages with which programmers are concerned in practice.

1. Introduction

How can a program transformation be proved correct? In this paper, we consider this question for pro-

gram transformations for higher-order polymorphic lambda calculi which approximate modern func-

tional languages. Because many program transformations currently of interest to functional program-

mers | including foldr-build (i.e., short cut) fusion (Gill 1996; Gill et al. 1993), destroy-unfoldr

fusion (Svenningsson 2002), hylofusion (Hu et al. 1996; Onoue et al. 1997), and their analogues for

non-list algebraic data types (Johann 2002b; Takano and Meijer 1995) | are inspired by various

\free theorems" (Wadler 1989), we focus particularly on correctness proofs for free theorem-based

program transformations in approximating calculi.y

The contribution of this paper is three-fold. First, we argue that delicate but fundamental issues

arise when constructing correctness proofs for free theorems-based program transformations. Since

these issues are typically overlooked in the literature, the justi�cations for such transformations

y As detailed in Section 2.2 below, a free theorem is an equational consequence of parametricity. The term `free' used
in this context should not be confused with the notion of `free' used in algebra.

P. Johann 2

which are o�ered there are almost always incomplete. As a result, most transformations based on

free theorems are applied to programs in languages for which they are not actually known to be

correct.

Second, we o�er a principled approach to developing complete correctness proofs for free theorems-

based transformations. At the heart of our approach is the notion of a parametric model which

preserves and reects observational equivalence in a calculus.z We argue that a calculus must admit

a parametric model in order for free theorems to hold for it, and that it must admit a model

which reects observational equivalence | i.e., a model which distinguishes terms which are not

observationally equivalent | if program transformations based on those theorems are to be provably

correct for it. We show further that if a calculus admits a parametric model which both preserves

and reects observational equivalence | i.e., whose induced notion of term equivalence coincides

precisely with observational equivalence | then this model can serve as a \universal correctness

testbed" for free theorems-based program transformations. Indeed, if a transformation based on

free theorems can be proved correct by appealing to any model of the calculus, then it can be

proved correct by appealing to a parametric model which both preserves and reects observational

equivalence.

Finally, we appeal to the parametric model of PolyFix observational equivalence constructed by

Pitts (Pitts 1998; 2000) to show how our approach can be used to give a proof of the Acid Rain

theorems (Takano and Meijer 1995) for that calculus. This model, described immediately following

Proposition 4.9, both preserves and reects PolyFix observational equivalence. The Acid Rain the-

orems are very general statements asserting equivalence between programs which produce and con-

sume data structures in uniform ways, on the one hand, and certain programs which can be derived

from them but which avoid the manipulation of intermediate data structures, on the other. PolyFix

is a non-strict polymorphic lambda calculus which extends the Girard-Reynolds polymorphic lambda

calculus with FPC-style �xpoints and `lazy' algebraic data types, in which observation of evaluation

is permitted only at those types. Our result constitutes the �rst proof that the Acid Rain theorems

preserve observational equivalence of programs in a higher-order polymorphic calculus supporting

�xpoints and algebraic data types. Correctness of the foldr-build rule, the destroy-unfoldr rule,

and hylofusion for PolyFix | all of which derive from these free theorems | follows immediately.

The remainder of this paper is organized as follows. In Section 2, we introduce the issues surround-

ing the correctness of free theorems-based program transformations with which we will be concerned

in this paper, and describe a generally applicable approach to addressing them. We further observe

that this approach, together with Pitts' parametric model of PolyFix observational equivalence, can

be used to prove the correctness of free theorems-based transformations on programs in that cal-

culus. The bulk of this paper is then devoted to making this observation precise. Toward that end,

Section 3 describes the syntax and operational semantics of PolyFix, and introduces an appropriate

notion of observational equivalence of PolyFix terms. Section 4 introduces some auxiliary notions

which are used to construct the parametric model of PolyFix observational equivalence discussed in

this paper. This model is obtained simply by identifying observationally equivalent PolyFix terms;

proof that it is parametric is given in (Pitts 1998; 2000) and sketched below. In Section 5 we derive

PolyFix analogues of some free theorems from (Wadler 1989). Importantly, the functions to which

z In the semantics literature | see, e.g., (Mitchell 1996) or (Reynolds 1998) | a model is said to be computationally

adequate (or sound) if it reects observational equivalence, and fully abstract if it both reects and preserves
observational equivalence. We use the above terminology because it highlights the connection between equivalence
in the model and observational equivalence, and because it allows us to discuss preservation and reection of
observational equivalence independently of one another.

Correctness of Free Theorems-based Transformations 3

these analogues pertain manipulate true algebraic data structures, rather than the functional repre-

sentations of these structures manipulated by their counterparts in Wadler's paper. In Section 6 we

show how Pitts' machinery for investigating parametric polymorphism and observational equivalence

can be used to prove correct the Acid Rain theorems for PolyFix. Although we prove the theorems

only for list-manipulating PolyFix functions, the fact that PolyFix supports arbitrary `lazy' algebraic

data structures ensures that our results are generalizable in a straightforward manner to non-list

algebraic data types as well. Section 7 concludes and o�ers some suggestions for future investigation.

2. The issues

2.1. Correctness and observational equivalence

In this paper we are interested in the correctness of program transformations based on free theorems.

It is therefore appropriate to begin by asking a general question about program correctness: What

does it mean to say that a program transformation is correct? More fundamentally, what does it

even mean to say that we have a program transformation L = R in the �rst place?

A given calculus can, of course, support many di�erent notions of program equivalence. Moreover,

di�erent program transformations may preserve some notions of equivalence but not others. For

these reasons, it is clearest to use notation for program transformations which explicitly speci�es the

notion of program equivalence to be preserved. Implicit in the notation L = R for a transformation

on programs in a given calculus is the assertion that an expression matching L in any program in that

calculus can be replaced by the corresponding instance of R without changing the observable behavior

of the program. In this paper, we will write L =obs R for a program transformation which preserves

observational equivalence. This notation reects our expectation that any reasonable notion =obs of

observational equivalence of terms will necessarily be a congruence.

To prove the correctness of a given program transformation for a particular calculus of interest,

it is necessary to demonstrate that contextual replacement of expressions according to the trans-

formation preserves the observational equivalence of its programs. This can be accomplished by

exhibiting a model reecting observational equivalence for the calculus, and then showing that the

left- and right-hand sides of the transformation under consideration have the same interpretation

in the model. While a model reecting observational equivalence in a calculus may indeed identify

precisely those terms which are observationally equivalent | i.e., may both preserve and reect

observational equivalence | this is not required: the notion of equivalence induced by a model re-

ecting observational equivalence need only distinguish terms having di�erent observable behavior

and be closed under congruence. These requirements ensure that each instance of the left-hand side of

the transformation is observationally equivalent to the corresponding instance of its right-hand side,

and that replacement, in any context, of any term by an observationally equivalent one preserves

observational equivalence.

It is possible to argue the correctness of di�erent program transformations on the basis of di�erent

models reecting observational equivalence. These models might even be produced on a case-by-case

basis. But since a model preserving and reecting observational equivalence for a calculus identi�es

the left- and right-hand sides of a transformation whenever any model reecting it does, we see

that it is no harder to demonstrate the correctness of a program transformation via a model which

both preserves and reects observational equivalence when one exists than it is to do so via a

model which simply reects observational equivalence. This observation eliminates the need for ad

hoc construction of models reecting observational equivalence, allowing us to prove correctness of

program transformations by appealing instead to a \universal" such model for each calculus.

P. Johann 4

2.2. Free theorems

Our focus in this paper is not on the correctness of just any program transformations, but rather on

the correctness of those transformations which have their basis in free theorems for various calculi.

We must therefore understand the circumstances under which such transformations may be at our

disposal, and so we ask: What is a free theorem? When do free theorems hold for a given calculus?

A free theorem (Wadler 1989) is an equivalence between two terms of the same type in a poly-

morphic calculus.x Free theorems record constraints on the behavior of polymorphic functions in a

calculus, and derive from the observation that a polymorphic function must always use the same

algorithm to compute its result, regardless of the type at which it is applied. The theorems are

\free" in the sense that they are immediate consequences of the syntactic structure of the types of

the polymorphic functions whose behavior they describe, and that they can often be read o� directly

from that structure.

Free theorems hold only for calculi which admit parametric models. A model for a calculus is said

to be parametric if the notion of equivalence it induces (by identifying terms which have the same

interpretation in the model) is the same as the notion of equivalence induced by some Reynolds-

style logical relation (Reynolds 1983). A logical relation is a type-strati�ed relation on terms which

is constructed in a syntax-directed, bottom-up way via a kind of \induction" on the structure of

the types in a calculus. The key to constructing a logical relation is to interpret each base type as

a relation between terms of that type, and to specify, for each type constructor, a corresponding

relational action which propagates these relations up the type hierarchy. This is done in such a

way that polymorphic functions are related if they \map related arguments to related results." Free

theorems all derive from the key observation about logical relations, namely that every closed term

of closed type is related to itself by the relational interpretation of its type.

Establishing that an equivalence between two closed terms of the same closed type in a polymor-

phic calculus is a free theorem is achieved by �rst exhibiting a parametric model for the calculus,

then observing that every closed term of the type in question is related to itself by the relational

interpretation of that type, and then \unwinding" this observation according to the relational inter-

pretations of types to get a relationship between two terms which can be judiciously instantiated to

infer that the two original terms are related in the model. (See, for example, (Wadler 1988), (Gill

et al. 1995), and (Takano and Meijer 1995).) Non-trivial side conditions sometimes arise during this

process, and these must also be shown to hold in order for the theorems to be applicable.

A given calculus might admit a number of parametric models, each giving rise to a di�erent

collection of free theorems. Di�erent equivalences can be shown to be free theorems by appealing to

di�erent parametric models, and these models can be constructed on a case-by-case basis. Wadler,

for example, derives his famous free theorems for the Girard-Reynolds polymorphic lambda calculus

�8 (Wadler 1988) by appealing to a parametric model for it which is based on the frame semantics of

(Bruce and Meyer 1984) and (Mitchell and Meyer 1985). Another parametric model for �8 is given

in (Breazu-Tannen and Coquand 1988).

Combining the (orthogonal) observations that each parametric model for a polymorphic calculus of

interest gives rise to free theorems for it, and that a model which preserves and reects observational

equivalence is \universal" for proving the correctness of program transformations for such a calculus,

we see that when the correctness of free theorems-based program transformations for a polymorphic

x There are, in fact, free theorems which are not equivalences, such as the semantic approximations studied in
(Reynolds 1983) and in (Johann and Voigtl�ander 2004). But the free theorems most commonly considered are
equivalences, as are all of the free theorems in (Wadler 1989) and all of those with which we will be concerned in
this paper.

Correctness of Free Theorems-based Transformations 5

calculus can be argued at all, then it can be argued by appealing to a parametric model which

preserves and respects observational equivalence. For any calculus which supports one, such a model

is \universal" for the correctness of free theorems-based program transformations.

2.3. Free theorems-based transformations for PolyFix

The free theorems-based transformations whose correctness we study in this paper transform pro-

grams not in �8 itself, but rather in calculi which more closely approximate modern functional

languages. We are particularly interested in the correctness for such calculi of transformations which

eliminate intermediate data structures from modularly constructed programs to produce more ef-

�cient monolithic equivalents. Examples of such transformations are the foldr-build rule, the

destroy-unfoldr rule, and the hylofusion transformation.

Most justi�cations for free theorems-based program transformations for approximating calculi

which appear in the literature appeal to Wadler's free theorems. Such appeals are, however, prob-

lematic: approximating calculi are typically obtained by adding features | �xpoint combinators

and algebraic data types are common | to �8, whereas Wadler's theorems apply only to �8 itself.

Moreover, analogues of Wadler's free theorems are not known, a priori, to hold for such extensions

of �8. It is, of course, entirely possible that such analogues do not hold for them at all.

Even when free theorems do hold for a particular extension of �8, there is no reason to suspect

that a parametric model in which they hold reects observational equivalence. This property of a

parametric model must be shown explicitly in order to deduce the correctness of any program trans-

formation based on free theorems. In particular, although there is a substantial body of literature on

parametricity for �8 itself | see, e.g., (Abadi et al. 1993), (Plotkin and Abadi 1993), and (Reynolds

and Plotkin 1993) | these works do not tie parametricity to the observational behavior of terms

in �8. Consequently, the results they report are not suitable for deducing the correctness of free

theorems-based program transformations even for �8, let alone for being extended for that purpose

for PolyFix.

In recent work on parametric polymorphism and observational equivalence (Pitts 1998; 2000),

Pitts uses an operationally-based logical relations technique to construct a parametric model which

both preserves and reects observational equivalence for PolyFix, a non-strict polymorphic lambda

calculus which extends �8 with FPC-style �xpoints and `lazy' algebraic data types, and in which

observation of evaluation is permitted only at those types.{ More speci�cally, Pitts introduces the

notion of a frame stack to describe the contexts in which PolyFix terms can be evaluated, uses

frame stacks to give a purely structural characterization of PolyFix termination, and then uses this

characterization of termination to de�ne a Reynolds-style logical relation which induces PolyFix

observational equivalence. Pitts not only ties the observational behavior of PolyFix programs into

the model's underlying relation, but also provides a good deal of useful technical machinery for

investigating observational equivalence.

The remainder of this paper is devoted to showing how Pitts' parametric model of PolyFix obser-

vational equivalence can be used to establish analogues of Wadler's free theorems for that calculus,

{ In (Pitts 2000) this construction and its consequences are worked out in detail for PolyPCF, a version of PolyFix
which supports no algebraic data types other than lists. Since PolyFix is obtained from PolyPCF only by adding
in non-list algebraic data types, and since no special properties of the list data type are used in (Pitts 2000), it is
completely straightforward | if notationally intensive | to develop analogous results for PolyFix to those from
(Pitts 2000) for PolyPCF. Indeed, (Pitts 1998) is an incomplete version of precisely such a development. We are
therefore justi�ed in appealing to PolyFix analogues of results from (Pitts 2000) throughout this paper.

P. Johann 6

as well as to prove the correctness of program transformations which derive from them. In particu-

lar, we use Pitts' characterization of PolyFix observational equivalence (given in Section 4 below) to

prove correct, for PolyFix, the Acid Rain Theorem for Catamorphisms and the Acid Rain Theorem

for Anamorphisms. Correctness of the foldr-build rule, the destroy-unfoldr rule, hylofusion,

and their analogues for non-list algebraic data types follows.

Since the destroy-unfoldr rule is just an alternate presentation of the Acid Rain Theorem for

Anamorphisms, our proof carries out | at least for PolyFix | the \substantial exercise" (Sven-

ningsson 2002) of showing that Pitts' model can be used to prove its correctness. That this model

might be so used is suggested by its previous successful use in proving the correctness for PolyFix

of short cut fusion and some of its generalizations which are also proper instances of the Acid Rain

Theorem for Catamorphisms (Johann 2002a; 2002b). To our knowledge, no complete proof that

either the Acid Rain Theorem for Catamorphisms or the Acid Rain Theorem for Anamorphisms

preserves observational equivalence of programs has previously appeared in the literature.k

Although we do not o�er a formal proof of this fact, it is not diÆcult to see that the approach

developed here can be used to prove the correctness, for any calculus admitting construction of a

parametric model preserving and reecting observational equivalence, of any free theorems-based

transformation on programs in that calculus. We thus have at our disposal a promising approach to

proving the correctness of such transformations for production-quality functional languages. While

deeply theoretical, Pitts' work is thus of enormous practical interest as well.

Like Wadler's free theorems, the theorems which we consider here do not apply directly to the

full-scale languages to which they must ultimately be extended if they are to be truly useful. Nev-

ertheless, this paper does mark progress on bridging the gap between the theories of parametricity

and observational equivalence on the one hand, and the use in practice of program transformations

and other free theorems guaranteed by these theories, on the other.

3. PolyFix

In this section we introduce PolyFix, the polymorphic lambda calculus for which we formalize, and

prove the correctness of, the Acid Rain theorems for lists. We also outline those aspects of obser-

vational equivalence for PolyFix terms which are needed in this endeavor. PolyFix was introduced

in (Pitts 1998), and those aspects of the calculus relevant to proving the correctness of program

transformations are summarized below.

3.1. Syntax

The Polymorphic Fixed Point Calculus PolyFix combines the Girard-Reynolds polymorphic lambda

calculus with �xed point recursion �a la Plotkin's FPC calculus at the level of terms and (positive)

recursion via non-strict constructors at the level of types (Fiore and Plotkin 1994; Reynolds 1974).

Since the treatment of ground types (e.g., natural numbers and booleans) in the theory developed

here is precisely the same as the treatment of algebraic data types, PolyFix is assumed to support

only the latter.

k Takano and Meijer o�er proofs of both Acid Rain theorems for a calculus with higher-order functions, �xpoints,
and algebraic data types, but, unfortunately, these proofs appeal to Wadler's free theorems for �8, rather than to
analogues of those theorems for the calculus in question. Moreover, the question of whether or not free theorems
describe the behavior of programs in Takano and Meijer's calculus up to observational equivalence is neither raised
nor resolved.

Correctness of Free Theorems-based Transformations 7

Types � ::= � type variable

j � ! � function type

j 8�:� 8-type

j Æ algebraic data type

Data types Æ ::= data(� = c1�k1 j ::: j cm�km)

Terms M ::= x variable

j �x : �:M function abstraction

j MM function application

j ��:M type abstraction

j M� type application

j fix M �xpoint recursion

j cÆiMki data value

j case M of fc1xk1)M j ::: j cmxkm)Mg case expression

Fig. 1. Syntax of PolyFix

The syntax of PolyFix types and terms is given in Figure 1. The syntax

data(� = c1�11:::�1k1 j ::: j cm�m1:::�mkm) (1)

is anonymous notation for a recursive data type Æ satisfying the �xed point equation

Æ = (�11[Æ=�]� :::� �1k1 [Æ=�]) + :::+ (�m1[Æ=�]� :::� �mkm [Æ=�])

Injections into this sum are named explicitly by Æ's constructors c1,...,cm; we write c
Æ
i to emphasize

that the constructor ci is associated with the data type Æ. Terms of type Æ are introduced using

Æ's constructors and eliminated using case expressions. The types �ij appearing in (1) can be built

up from type variables using function types, 8-types, and data types, provided the de�ned type �

occurs only positively in the �ij . The notion of a type variable occurring positively in another type

is given in De�nition 3.2 below.

Example 3.1. The following are PolyFix data types:

data(� = Pr � � 0)

data(� = Just � j Nothing)

data(� = Cons � � j Nil)

We denote these types by Pair � � 0, Maybe � , and List � , respectively.

As the de�nitions of Pair � � 0 and Maybe � illustrate, recursive data types can be recursive in the

trivial sense. In addition to being anonymous, PolyFix data types can be parameterized and nested.

In practice it may be convenient to restrict attention to �nite sets of named, mutually recursive data

types which are de�ned at top level.

PolyFix type variables, variables, and constructors range over disjoint countably in�nite sets. If s

ranges over a set S, then for each n, sn ranges over n-element sequences of elements of S. If M is

a term and sn is a sequence of n types or terms, we write Msn for the n-fold application Ms1:::sn.

We similarly write �xn : �n:M for the n-fold abstraction �x1 : �1: :::�xn : �n:M .

The constructions 8�(�), data(� = �), �x : �:�, ��:�, and case M of f::: j cixki) Mi j

:::g are binders. Free occurrences of the variables x1; :::; xki become bound in the case expression

case D of f::: j cixki) Mi j :::g. As is customary, we identify types and terms which di�er only

P. Johann 8

by renamings of their bound variables. We write ftv(e) for the (�nite) set of free type variables of a

type or term e, and fv (M) for the (�nite) set of free variables of a termM . The result of substituting

the type � for all free occurrences of the type variable � in a type or term e is denoted e[�=�]. The

result of substituting the term M 0 for all free occurrences of the variable x in the term M is denoted

M [M 0=x].

To be well-formed we require a data type as in (1) to have distinct data constructors ci, and to

be algebraic in the sense of the next de�nition. The data types Pair � � 0, Maybe � , and List � are

all algebraic.

De�nition 3.2. The sets ftv+(�) and ftv�(�) of free type variables occurring positively and occur-

ring negatively in the type � partition ftv(�) into two disjoint subsets. These are given by

ftv+(�) = f�g

ftv�(�) = ;

ftv�(� ! � 0) = ftv�(�) [ftv�(� 0)

ftv�(8�: �) = ftv�(�) n f�g

ftv�(Æ) =
Sm
i=1

Skm
j=1 ftv

�(�ij) n f�g if Æ is as in (1).

A data type (1) is algebraic if there are only positive free occurrences of its bound variable � in the

types �ij , i.e., if � 62 ftv�(�ij) for all i = 1; :::;m and j = 1; :::; ki.

We restrict our attention to PolyFix terms which are typeable. The type assignment relation for

PolyFix is standard; it is given in Figure 2. A typing environment � is a pair A;D with A a �nite

set of type variables, and D a function de�ned on a �nite set dom(D) of variables which maps each

x 2 dom(D) to a type with free type variables in A. We write � `M : � to indicate that termM has

type � in the type environment �. We also write �; x : � for the typing environment obtained from

� = A; D by extending the function D to map x 62 dom(D) to � , and �; � for the type environment

obtained by extending A with a type variable � 62 A. Implicit in the notation � ` M : � are the

assumptions that � = A; D, that ftv(M) � A, that ftv(�) � A, and that fv (M) � dom(D). Note

that if � = A;D and �; � `M : � for some M and � , then the fact that � 62 A ensures that � does

not appear among the free type variables of �. The implicit assumptions thus render unnecessary

the requirement that � not be among the free variables of � that usually accompanies the rule in

Figure 2 for deriving type assignments of the form � ` ��:M : 8�:� .

The explicit type annotations on lambda-bound term variables and on constructors in data values

ensure that well-formed PolyFix terms have unique types. More speci�cally, given � and M , there

is at most one type � for which � ` M : � holds. For convenience we will sometimes suppress type

information below.

A type � is closed if ftv (�) = ;. A term M is closed if fv(M) = ;, regardless of whether or not M

contains free type variables. The set of closed PolyFix types is denoted Typ. If � 2 Typ, then the

set of closed PolyFix terms M for which ;; ; `M : � is denoted Term(�).

The (closed) PolyFix terms in Figure 3 appear in the Acid Rain theorems in Section 6. We write

Nil� and Cons� for NilList � and ConsList � , respectively, and similarly for the constructors of the

Pair and Maybe types. We write l� for the Church encoding 8�: �! (� ! �! �)! � of the data

type List � .

Correctness of Free Theorems-based Transformations 9

�; x : � ` x : �
� `M : � ! �

� ` fix M : �

�; x : �1 `M : �2

� ` �x : �1:M : �1 ! �2

� ` F : �1 ! �2 � ` A : �1

� ` F A : �2

�; � `M : �

� ` ��:M : 8�:�

� ` G : 8�:�1

� ` G�2 : �1[�2=�]

� `Mj : �j [Æ=�] j = 1; ::; ki
if Æ is data(� = c1�1k1 j ::: j cm�mkm)

� ` c
Æ
iM1:::Mki : Æ

� ` D : Æ �; xki : �ki [Æ=�] ` Mi : � i = 1; ::; m
if Æ is data(� = c1�1k1 j ::: j cm�mkm)

� ` case D of fc1xk1)M1 j ::: j cmxkm)Mmg : �

Fig. 2. PolyFix type assignment

foldr : 8�: 8�: � ! (�! � ! �)! List �! �

foldr = ��:��: �n : �: �c : �! � ! �: �xs : List �: unbuild � xs � n c

unbuild � = fix(�h : List � ! l� :�xs : List �:��: �n : �:�c : � ! �! �:

case xs of fNil�) n j Cons� z zs) c z (h zs �n c)g)

build+ : 8�:8:(8�:� ! (�! � ! �)! ! �)! ! List �

build+ = ��:�: �g : 8�: � ! (�! � ! �)! ! �: �e : :

g (List �) Nil� (�h : �: �t : List �: Cons� h t) e

unfoldr : 8�:8�:(� !Maybe (Pair � �))! � ! List �

unfoldr = ��:��:fix(�h : (� !Maybe (Pair � �))! � ! List �:

�p : � !Maybe (Pair � �): �e : �:

case p e of fNothingPair � �) Nil� j

JustPair � �(Pr� � x y)) Cons� x (h � � p y)g)

destroy : 8�:8:(8�: (�!Maybe (Pair � �))! �!)! List � !

destroy = ��:�:�g : 8�: (�!Maybe (Pair � �))! �! : �xs : List �:

g (List �) (listpsi �) xs

listpsi : 8�:List �! Maybe (Pair � (List �))

listpsi = ��:�xs : List�: case xs of fNil�) NothingPair � (List �) j

Cons� z zs) JustPair � (List �)(Pr� (List �) z zs)g

Fig. 3. PolyFix terms

3.2. Operational semantics

The operational semantics of PolyFix is given by the evaluation relation in Figure 4. It relates closed

terms M to values V of the same closed types. The set of PolyFix values is given by

V ::= �x : �:M j ��:M j cÆiMki

P. Johann 10

V + V if V is a value
F + �x : �:M M [A=x] + V

F A + V

G + ��:M M [�=�] + V

G� + V

M (fix M) + V

fixM + V

D + c
Æ
iMki M [Mki=xki] + V

if Æ is data(� = c1�1k1 j ::: j cm�mkm)
case D of f::: j cixki)M j :::g + V

Fig. 4. PolyFix evaluation relation

We write M + V if M evaluates to V , and M + to indicate that M + V for some value V .

According to Figure 4, PolyFix function application is given a call-by-name semantics, constructors

are non-strict, and type applications are not evaluated \under the �." Although PolyFix evaluation

is deterministic, the rule for fix entails the existence of terms whose evaluation does not terminate.

Indeed, if
 is the \polymorphic bottom" ��:fix(�x : �:x), then
 � diverges for every type � , i.e.,

for no type � is there a value V such that
 � + V . In fact,
 is the only closed term of type 8�:�

up to observational equivalence. In other words, if M is any other closed term of type 8�:� then

M =obs
 : 8�:�, where =obs is as de�ned in the next subsection.

If M and M 0 are PolyFix terms, then all terms of the form PrM M 0, Nothing, JustM , Nil, and

ConsM M 0 are PolyFix values.

3.3. Observational equivalence

Informally, two terms in a programming language are observationally equivalent if they are inter-

changeable in any program with no change in observable behavior when the resulting programs are

executed. If, as in (Pitts 1998), we take a PolyFix program to be a closed term of some data type,

and the observable behavior of a PolyFix program to be the outermost constructor of the value, if

any, to which it evaluates, then we can formalize this by de�ning two PolyFix terms M1 and M2

such that � ` M1 : � and � ` M2 : � to be observationally equivalent with respect to � if, for any

context M[�] for which M[M1];M[M2] 2 Term(Æ) for some closed data type Æ,

M[M1] + i� M[M2] +

In other words, two PolyFix terms are observationally equivalent if they exhibit the same ground

termination behavior in context. As usual, an evaluation context M[�] is a PolyFix term with a

subterm replaced by the placeholder `�', and M[M] denotes the term which results from replacing

the placeholder by the term M . We write � ` M1 =obs M2 : � to indicate that M1 and M2 are

observationally equivalent terms of type � with respect to �. If M1 and M2 are closed terms and �

is a closed type, then we write M1 =obs M2 : � instead of ;; ; `M1 =obs M2 : � . In this case we say

simply that M1 and M2 are observationally equivalent.

4. Parametricity

Pitts' construction of a parametric model which preserves and reects PolyFix observational equiv-

alence puts the operationally-based logical relations machinery developed in (Pitts 1998; 2000) to

good use. Pitts uses the notion of >>-closure of term relations to identify those which are admissi-

ble for �xpoint induction and, thereby, to de�ne the relational actions which give rise to parametric

Correctness of Free Theorems-based Transformations 11

� ` Id : � ,! �

� ` S : � 0 ,! � 00 � `M : �

� ` S Æ (�M) : (� ,! � 0) ,! � 00

� ` S : � 0[�=�] ,! � 00 � not free in �

� ` S Æ (� �) : (8�:� 0) ,! � 00

� ` S : � ,! � 0 �; xki : �iki `Mi : � i = 1; ::; m

� ` S Æ (case � of fc1x1k1)M1 j ::: j :::cmxmkm)Mmg) : Æ ,! � 0

Fig. 5. Frame stack type judgements

models for PolyFix. Since >>-closure is de�ned in terms of the structural termination relation >

on PolyFix terms, and since observational equivalence is de�ned in terms of the termination prop-

erties of PolyFix terms, this allows him to tie the theory of PolyFix observational equivalence into

a notion of relational parametricity which is analogous to that introduced by Reynolds for the pure

polymorphic lambda calculus (Reynolds 1983). This notion of relational parametricity makes precise

the sense in which a PolyFix function is or is not \suÆciently polymorphic" to support observational

equivalence-preserving free theorems.

After introducing the structural termination relation> and the notion of>>-closure in Section 4.1,

they are used to de�ne, in Section 4.2, the relational actions for which the Parametricity Theorem

for PolyFix is formalized. In the interest of brevity we present here only those portions of the theory

of >>-closure necessary for proving the correctness of free theorems-based program transformations.

For a more detailed discussion of >>-closure, the reader is referred to (Abadi 2000) and (Pitts 2000).

4.1. Frame stacks and >>-closed relations

The notion of >>-closure is induced by a Galois connection between term relations and relations

between evaluation contexts. Pitts recasts evaluation contexts as frame stacks, which aids in their

analysis.

De�nition 4.1. The grammar for PolyFix frame stacks is

S ::= Id j S Æ F

where F ranges over frames:

F ::= (�M) j (��) j case � of f:::g

Frame stacks have types and typing derivations, although explicit type information is not included

in their syntax. The type judgement � ` S : � ,! � 0 for a frame stack S indicates the argument

type � and the result type � 0 of S. As usual, � is a typing environment and certain well-formedness

conditions of judgements hold; in particular, � is assumed to contain all free variables and all free

type variables of all expressions occurring in the judgement. The axioms and rules de�ning this

judgement are given in Figure 5.

We will only be concerned with stacks which are typeable. Although well-formed frame stacks do

not have unique types, they do satisfy the following property: Given �, S, and � , there is at most one

� 0 such that � ` S : � ,! � 0 holds. This property is suÆcient for our purposes, since the argument

types of frame stacks will always be known at the time of use.

P. Johann 12

S = S0 Æ (�A) S0 >M [A=x]

S > �x : �:M

S Æ (�A) > F

S > F A

S = S0 Æ (��) S0 >M [�=�]

S > ��:M

S Æ (��) > G

S > G�

S Æ (�fixM) >M

S > fixM

S = Id

S > ciMki

S = S0 Æ case � of f::: j ciMki)M 0 j :::g S0 >M 0[Mki=xki]

S > c
Æ
iMki

S Æ case � of f:::g >M

S > case M of f:::g

Fig. 6. PolyFix structural termination relation

Given closed types � and � 0, we write Stack(�; � 0) for the set of frame stacks for which ;; ; ` S :

� ,! � 0. Since we are interested in observing observational equivalence only when � 0 is a data type,

we write

Stack(�) =
[
fStack(�; Æ) j Æ is an algebraic data typeg

The operation S;M 7! SM of applying a frame stack to a term is the analogue for frame stacks of

the operation of �lling the hole in an evaluation context with a term. It is de�ned by induction on

the number of frames in a stack as follows:

Id M = M

(S Æ F)M = S(F [M])

Here, F [M] is the term that results from replacing `�' by M in the frame F . Note that if S 2

Stack(�; � 0) and M 2 Term(�), then SM 2 Term(� 0).

Unlike PolyFix evaluation, frame stack application is strict in its second argument. This follows

from the fact that

SM + V i� there exists a value V 0 such that M + V 0 and S V 0 + V

which can be proved by induction on the number of frames in the frame stack S. The corresponding

property

F [M] + V i� there exists a value V 0 such that M + V 0 and F [V 0] + V

for frames, needed for the base case of the induction, follows directly from the inductive de�nition

of the PolyFix evaluation relation in Figure 4.

PolyFix termination is captured by the structural termination relation (�)>(�) de�ned in Fig-

ure 6: for all closed types � , all closed algebraic data types Æ, all frame stacks S 2 Stack(�; Æ), and

all M 2 Term(�),

SM + i� S>M

De�nition 4.2. A PolyFix term relation is a binary relation between (typeable) closed terms.

Given closed types � and � 0 we write Rel(�; � 0) for the set of term relations which are subsets of

Term(�) � Term(� 0). A PolyFix stack relation is a binary relation between (typeable) frame stacks

Correctness of Free Theorems-based Transformations 13

whose result types are data types. We write Rel>(�; � 0) for the set of relations which are subsets of

Stack(�)� Stack(� 0).

The relation (�)> transforms stack relations into term relations and vice versa, and is the key

ingredient in the de�nition of >>-closure.

De�nition 4.3. Given any closed types � and � 0, and any r 2 Rel(�; � 0), de�ne r> 2 Rel>(�; � 0)

by

(S; S0) 2 r> i� for all (M;M 0) 2 r: S>M i� S0>M 0

Similarly, given any s 2 Rel>(�; � 0), de�ne s> 2 Rel(�; � 0) by

(M;M 0) 2 s> i� for all (S; S0) 2 s: S>M i� S0>M 0

De�nition 4.4. A term relation r is said to be >>-closed if r = r>>.

Since r � r>> always holds, this is equivalent to requiring that r>> � r. Expanding the de�nitions

of r> and s> above gives (M;M 0) 2 r>> i�

for each pair (S; S0) of (appropriately typed) stacks,

if for all (N;N 0) 2 r: S>N i� S0>N 0

then S>M i� S0>M 0 (2)

This characterization of >>-closedness will be used in Section 6.3. It is reminiscent of the notion of

continuity for relations. This is not surprising, since Abadi (Abadi 2000) has shown that every >>-

closed relation is admissible, i.e., is strict and continuous. He has also established that the converse

implication does not hold.

4.2. Relational actions and parametricity

We are now in a position to de�ne the relational actions which give rise to parametric models which

preserve and reect PolyFix observational equivalence. The following constructions on term relations

describe the ways in which the various PolyFix constructors act on them.

De�nition 4.5. Action of ! on term relations: Given r1 2 Rel(�1; �
0
1) and r2 2 Rel(�2; �

0
2),

de�ne r1 ! r2 2 Rel(�1 ! �2; �
0
1 ! � 02) by

(F; F 0) 2 r1 ! r2 i� for all (A;A0) 2 r1: (FA; F
0A0) 2 r2

Action of 8 on term relations: Let �1 and � 01 be types with at most one free type variable � and

let R be a function mapping term relations r 2 Rel(�2; �
0
2) for any closed types �2 and � 02 to term

relations R(r) 2 Rel(�1[�2=�]; �
0
1[�

0
2=�]). De�ne the term relation 8r: R(r) 2 Rel(8�:�1;8�:� 01) by

(G;G0) 2 8r: R(r) i� for all �2; �
0
2 2 Typ: for all r 2 Rel(�2; �

0
2): (G�2; G

0� 02) 2 R(r)

Action of data constructors on term relations: Let Æ and Æ0 be the closed data types

Æ = data(� = c1�11:::�1k1 j ::: j cm�m1:::�mkm)

and

Æ0 = data(� = c1�
0
11:::�

0
1k1 j ::: j cm�

0
m1:::�

0
mkm)

For each i = 1; :::;m, given term relations rij 2 Rel(�ij [Æ=�]; �
0
ij [Æ

0=�]) for j = 1; :::; ki, we de�ne the

term relation ciri1:::riki 2 Rel(Æ; Æ0) by

ciri1:::riki = f(cÆiMki ; c
Æ
iM

0
ki
) j for all j = 1; :::; ki: (Mj ;M

0
j) 2 rijg:

P. Johann 14

Using these notions of actions we can de�ne the relations on terms in which we are interested.

De�nition 4.6. A relational action � for PolyFix comprises a family of mappings

r1 2 Rel(�1; �
0
1); :::; rn 2 Rel(�n; �

0
n) 7! �� (rn=�n) 2 Rel(� [�n=�n]; � [� 0n=�n])

from tuples of term relations to term relations, one for each type � and each list �n of distinct

variables containing the free variables of � . These mappings must satisfy the following �ve conditions:

1 ��(r=�; rn=�n) = r

2 ��1!�2(rn=�n) = ��1(rn=�n)! ��2(rn=�n)

3 �8�:� (rn=�n) = 8r:��(r
>>=�; rn=�n)

4 If Æ is as in (1), then �Æ(rn=�n) is a �xed point of the mapping

r 7!

n[
i=1

cÆi (��i1(r=�; rn=�n)) ::: (��iki
(r=�; rn=�n))

!>>

5 Assuming ftv(�) � f�n; �0mg and ftv(� 0m) � f�ng,

�� [� 0

m
=�0

m
](rn=�n) = �� (rn=�n; (�� 0

m

(rn=�n))=�0m)

To see that the third clause above is sensible, note that � [�n=�n] and � [� 0n=�n] are types containing

at most one free variable, namely �, and that �� maps any term relation r 2 Rel(�; �0) for closed

types � and �0 to the term relation �� (r=�; rn=�n) 2 Rel(� [�n=�n][�=�]; � [� 0n=�n][�
0=�]). According

to De�nition 4.5, we therefore have 8r:�� (r=�; rn=�n) 2 Rel(8�:� [�n=�n];8�:� [� 0n=�n]), as required

by De�nition 4.6.

De�nition 4.7. The relational action � is given as in De�nition 4.6, where the greatest �xed point

is taken when de�ning the relational action at a data type Æ in the fourth clause above.

The greatest �xed point of the mapping in the fourth clause of De�nition 4.6 exists by Tarski's

�xed point theorem (Tarski 1955): each of the sets Rel(�; � 0) forms a complete lattice with respect to

set inclusion, and the restriction to algebraic data types ensures that the mapping is monotone. The

relation � identi�es programs as much as possible, distinguishing them only if there are observable

reasons for doing so. This gives a coinductive character to the action of � at algebraic data types.

Example 4.8. Let � and � 0 be closed types, let r 2 Rel(�; � 0), and let r0 2 Rel(List �;List � 0).

1 The action of Cons on term relations is

Cons r r0 = f(Cons� H T; Cons� 0 H 0 T 0) j (H;H 0) 2 r and (T; T 0) 2 r0g

2 The action of Nil on term relations is Nil = f(Nil� ; Nil� 0)g

3 De�ne 1+(r�r0) 2 Rel(List �;List � 0) by

1+(r�r0) = f(Cons� H T; Cons� 0 H 0 T 0) j (H;H 0) 2 r and (T; T 0) 2 r0g [f(Nil� ; Nil� 0)g

and write List r for the greatest �xed point of the mapping r0 7! (1+(r�r0))>>. Then �List � (rn=�n) =

List �� (rn=�n) and, in particular, �List �(r=�; rn=�n) = List ��(r=�; rn=�n) = List r. Note that,

for every relation r, List r is >>-closed and List r>> = List r. These observations will be used

in Section 5.

4 Since for every pair of appropriately typed stacks S and S0, neither S >
 (List �) nor S0 >
 (List � 0)

ever holds, and since (1+(r�r0))>> is>>-closed, (2) guarantees that the pair (
 (List �);
 (List � 0))

is always in (1+(r�r0))>>. Thus (
 (List �);
 (List � 0)) 2 List r.

Correctness of Free Theorems-based Transformations 15

Focusing attention on �� (), we have the following analogue of Corollary 4.1 of (Pitts 2000). This

result also appears as Proposition 4.5 in (Pitts 1998).

Proposition 4.9. (Parametricity Theorem for closed PolyFix terms) If � is a relational

action, then for each closed type � and each closed term M of type � , (M;M) 2 �� ().

Pitts has actually shown that the notion of program equivalence induced by �� () coincides with

observational equivalence of closed PolyFix terms at the closed type � . In fact, he shows a stronger

correspondence between � and observational equivalence: using an appropriate notion of closing

substitution to extend � to a relation � `M �M 0 : � between open terms, he shows that

� `M =obs M
0 : � i� � `M �M 0 : � (3)

This result ensures that the identi�cation of observationally equivalent terms will yield a parametric

model which preserves and reects PolyFix observational equivalence. It is this model, consisting

of equivalence classes of terms with respect to observational equivalence, with which we will be

concerned in the remainder of this paper. In the next section, we will prove the correctness of a

number of free theorems-based program transformations by appealing to this model. Correctness

of each transformation will be proved by �rst arguing that, since the model is parametric, it gives

rise to a relationship between terms which can be instantiated to establish that the left- and right-

hand sides of the free theorem are related by the logical relation underlying the model, and are

therefore equivalent in the model. We will then observe that, since the model preserves and reects

observational equivlance, the terms on the left- and right-hand sides of the free theorem must, in

fact, be observationally equivalent.

For our purposes the following corollaries of (3) will be particularly useful:

Proposition 4.10. For all closed types � and closed terms M and M 0 of type � ,

M =obs M
0 : � i� for all S 2 Stack(�): S>M i� S>M 0

Proposition 4.11. For all terms M and M 0 of type � and A of type � 0,

(�x : � 0:M)A =obs M [A=x] : � (4)

(��:M)� 0 =obs M [� 0=�] : � [� 0=�] (5)

case ciMki of f::: j cixki)M 0 j :::g =obs M 0[Mki=xki]) : � (6)

fixM =obs M(fixM)) : � (7)

5. Some free theorems for PolyFix

The following analogues of examples from (Wadler 1989) illustrate the process of obtaining free

theorems for PolyFix. Both take termination into account in their >>-closedness requirements on the

term relations r and s interpreting the quanti�ed type variables � and �. Moreover, both theorems

hold for true list-manipulating functions, rather than the corresponding functions considered in

(Wadler 1989) which manipulate functional representations of lists.

Example 5.1. Let g be a closed term of type 8�:List � ! List �. By the Parametricity Theorem,

we have

(g; g) 2 �8�:List �!List �()

Applying the de�nition of � for 8-types shows that this holds i� for all closed types � and �0 and

for all r 2 Rel(�; �0),

(g �; g �0) 2 �List �!List �(r
>>=�)

P. Johann 16

The de�nition of � for arrow types thus guarantees that for all (xs; xs0) 2 �List �(r
>>=�),

(g � xs; g �0xs0) 2 �List �(r
>>=�)

i.e., for all (xs; xs0) 2 List r>>,

(g � xs; g �0xs0) 2 List r>>

Because List r>> = List r for all r, this is the same as the requirement that, for all (xs; xs0) 2 List r,

(g � xs; g �0xs0) 2 List r

Writing Æ for relational composition, we can reformulate this as

g �0 Æ List r � List r Æ g �

If we restrict attention to relations which are functions and write map f to denote the PolyFix

function which produces a new list by applying the function f to every element of an input list,

then we obtain a more familiar formulation of this result: for all closed types � and �0, and for every

function f : � ! �0,

g �0 Æ map f =obs map f Æ g �

This result can be read as asserting the naturality of g. In (Plotkin and Abadi 1993) it is shown that

parametricity implies dinaturality | and, therefore, naturality for �rst-order functions | in �8. No

analogous result has been established for PolyFix.

Example 5.2. Let g be a closed term of type 8�:8�:(� ! � ! �) ! � ! List � ! �. By the

Parametricity Theorem, we have

(g; g) 2 �8�:8�:(�!�!�)!�!List �!�()

Applying the de�nition of � for 8-types twice shows that this holds i� for all closed types �, �0, � ,

and � 0, and for all r 2 Rel(�; �0) and s 2 Rel(�; � 0),

(g � �; g �0� 0) 2 (r>> ! s>> ! s>>)! s>> ! List r>> ! s>>

Applying the de�nition of! on relations twice guarantees that, for all (�;�0) 2 r>> ! s>> ! s>>

and (u; u0) 2 s>>,

(g � � (�)u; g �0� 0(�0)u0) 2 List r>> ! s>>

Assuming r and s are >>-closed, and expanding the condition on (�;�0), this is the same as

requiring that

if for all (x; x0) 2 r and (y; y0) 2 s; (�x y;�0 x0 y0) 2 s;

and if (u; u0) 2 s;

then g �0� 0(�0)u0 Æ List r � s Æ g � � (�)u

Further restricting attention to relations which are functions yields the following equivalent formu-

lation: for all closed types �, �0, � , and � 0, and for all >>-closed f : � ! �0 and h : � ! � 0,

if for all x : � and y : �; h(x� y) =obs (fx)�0 (hy);

and if hu = u0

then g �0� 0(�0)u0 Æ map f =obs h Æ g � � (�)u

6. Free theorems for PolyFix program fusion

In this section we both state precisely and prove the correctness of the Acid Rain theorems for

PolyFix. Correctness of the foldr-build rule, the destroy-unfoldr rule, and the hylofusion trans-

Correctness of Free Theorems-based Transformations 17

formation for compositions of list-processing PolyFix functions follows immediately. Although we

prove the Acid Rain theorems only for list-manipulating functions in this paper, our approach is

generalizable to non-list algebraic data types in a straightforward manner, along the same lines as

in (Pitts 1998) and (Johann 2002b).

6.1. The Acid Rain theorems

Since the PolyFix analogue of Theorem 5.1 of (Pitts 2000) guarantees that observational equivalence

for open terms is reducible to observational equivalence for closed terms of closed type, we need state

and prove the Acid Rain theorems only for closed terms of closed type.

The Acid Rain Theorem for Catamorphisms generalizes the result type of the function g in the

standard foldr-build rule. It is given in terms of the standard catamorphism foldr for lists, and

the generalization build+ of the standard list-producing function build. Operationally, foldr takes

as input types � and � 0, a replacement term n : � 0 for Nil� , a replacement term c : � ! � 0 ! � 0

for Cons� , and a term xs of type List � . It replaces all (fully applied) occurrences of Cons� in xs

by c, and the single (fully applied) occurrence of Nil� in xs by n. The result is a value of type

� 0. The function build+, on the other hand, takes as input types � and � 00, a term g of type

8�: � ! (� ! � ! �)! � 00 ! �, and a term e of type � 00. It returns the term

g (List �) Nil� (�h : �: �t : List �: Cons� h t) e

of type List � . PolyFix de�nitions of foldr and build+ appear in Figure 3.

The Acid Rain Theorem for Catamorphisms ensures that if g has type 8�: � ! (� ! � ! �) !

� 00 ! �, and if e has type � 00, then any occurrence of foldr � � 0 n c (build+ � � 00 g e) in a program

can be replaced by g � 0 n c e without changing the observational behavior of the program. It is

formalized as

Theorem 6.1. (Acid Rain Theorem for Catamorphisms) Let � , � 0, and � 00 be closed types,

and let

g : 8�: � ! (� ! � ! �)! � 00 ! �;

n : � 0;

c : � ! � 0 ! � 0;

and

e : � 00

be closed terms. Then

foldr � � 0 n c (build+ � � 00 g e) =obs g �
0 n c e : � 0

Another way to prove the Acid Rain Theorem for Catamorphisms would be to derive it from the

isomorphism Pitts establishes in Example 2.8 of (Pitts 2000) between types of the form List � and

their Church encodings 8�: �! (� ! �! �)! �. The Acid Rain Theorem for Catamorphisms for

non-list algebraic data types can be derived in the same way from corresponding isomorphisms be-

tween them and their Church encodings. It may also be possible to derive the Acid Rain Theorem for

Anamorphisms, as well as its analogues for non-list data types, directly from similar isomorphisms.

The Acid Rain Theorem for Anamorphisms is the dual of the foldr-build+ rule. As discussed

in (Svenningsson 2002), it can be given in terms of two programming constructs | called unfoldr

P. Johann 18

and destroy | which \dualize" foldr and build+, respectively. The function destroy is in turn

de�ned in terms of an auxiliary function listpsi.

The function unfoldr takes as input types � and � 00, a term p : � 00 !Maybe (Pair � 0 � 00), and a

term e : � 00. It returns the term of type List � 0 given by

unfoldr � � 00 p e = case p e of fNothingPair � � 00) Nil� j

JustPair � � 00(Pr� � 00 x y)) Cons� x (unfoldr � � 00 p y)g)

The function destroy, on the other hand, takes as input types � and � 0, a term g of type 8�: (�!

Maybe (Pair � �)) ! �! � 0, and a term xs of type List � . It returns the element of type � 0 given

by

destroy � � 0 g = g (List �) (listpsi �) xs

Here,

listpsi � Nil� = Nothing
Pair� (List �)

listpsi � (Cons� z zs) = JustPair� (List �)
(Pr� (List �) z zs)

The de�nitions of unfoldr and destroy appear in Figure 3.

The Acid Rain Theorem for Anamorphisms ensures that if g : 8�: (� ! Maybe (Pair � �)) !

� ! � 0, if p : � 00 ! Maybe (Pair � � 00) never returns JustPair
� �00

(
 (Pair � � 00)) and admits a

\stack equivalent" in the sense indicated in the statement of the theorem, and if e : � 00, then any

occurrence of destroy � � 0 g (unfoldr � � 00 p e) in a program can be replaced by g � 00 p e : � 0

without changing the observational behavior of the program. (The requirement that p never returns

JustPair
� �00

(
 (Pair � � 00)) is an artifact of the particular choice of presentation of unfoldr in terms

of the typeMaybe (Pair � � 00), rather than in terms of a type of the form data(� = N j J � � 00). The

latter does not contain a \junk" value corresponding to JustPair
� �00

(
 (Pair � � 00)).) It is formalized

by

Theorem 6.2. (Acid Rain Theorem for Anamorphisms) Let � , � 0, and � 00 be closed types,

and let

g : 8�: (�!Maybe (Pair � �))! �! � 0

and

e : � 00

be closed terms, and let

p : � 00 !Maybe (Pair � � 00)

be a closed term which never returns JustPair
� �00

(
 (Pair � � 00)) and for which there exists a stack

Sp such that for all a : � 00, p a =obs Sp a : Maybe (Pair � � 00). Then

destroy � � 0 g (unfoldr � � 00 p e) =obs g �
00 p e : � 0

Note that both conditions on p are necessary. If g = 8�:�x:�y: case x y of JustPair� � z ! Nil�0 ,

if p = �x: case x of Nil�00 ! JustPair
� (List�00)

(
 (Pair � (List �00))), and if e = Nil�00 , then

p has a stack equivalent, p does sometimes return JustPair
� (List�00)

(
 (Pair � (List �00)), and the

terms destroy � (List �0) g (unfoldr � (List �00) p e) and g (List �00) p e are not observation-

ally equivalent. On the other hand, if g = 8�:�x:�y: case x (
�) of NothingPair� � ! Nil�0 , if p =

�x: NothingPair � (List �00), and if e = Nil�00 , then p never returns JustPair � (List �00) (
 (Pair � (List �00))),

p does not have a stack equivalent, and again destroy � (List �0) g (unfoldr � (List �00) p e) and

g (List �00) p e are not observationally equivalent.

If, as we conjecture, every strict function p admits such a \stack equivalent" Sp, then the above is

Correctness of Free Theorems-based Transformations 19

precisely the usual Acid Rain Theorem for Anamorphisms. Note that although no conditions on p

are explicitly mentioned in either (Takano and Meijer 1995) nor (Svenningsson 2002), the counterex-

amples above show that the usual Acid Rain Theorem for Anamorphisms must certainly include the

requirements that p is strict and, when unfoldr is de�ned in terms of the type Maybe (Pair � � 00),

never returns JustPair
� �00

(
 (Pair � � 00)).

6.2. Acid Rain for Catamorphisms is correct

Let � be as in De�nition 4.7, and let � , � 0, � 00, and g be as in the statement of Theorem 6.1. Since

g and its type are closed, Proposition 4.9 ensures that

(g; g) 2 �8�:�!(�!�!�)!� 00!�() (8)

Applying the de�nition of � for 8-types shows that (8) holds i� for all closed types � 00 and � 0 and

for all r 2 Rel(�0; �),

(g �0; g �) 2 ��!(�!�!�)!� 00!�(r
>>=�)

Two-fold application of the de�nition of � for arrow types ensures that for all (n0; n) 2 r>>, (c0; c) 2

��!�!�(r
>>=�), and (e0; e) 2 ��(), (8) holds i�

(g � 00 n0 c0 e0; g � 0 n c e) 2 r>>

Expanding the condition on (c0; c) shows it equivalent to the assertion that if (a0; a) 2 �� (r
>>=�)

and (b0; b) 2 r>>, then (c0 a0 b0; c a b) 2 r>>. Since (8) holds, we conclude that for all closed types

�0 and � and for all r 2 Rel(�0; �),

if (n0; n) 2 r>>;

if (e0; e) 2 �� 00();

and if (a0; a) 2 �� (r
>>=�) and (b0; b) 2 r>> imply (c0 a0 b0; c a b) 2 r>>;

then (g � 00 n0 c0 e0; g � 0 n c e) 2 r>> (9)

Note that all of the terms appearing in (9) are closed.

Now consider the instantiation

� 00 = List �

r = f(g; g0) j foldr � � 0 n c g =obs g0 : � 0g

c0 = �x: �y: Cons x y

n0 = Nil

e0 = e

If we can verify that the hypotheses of (9) hold and that r is >>-closed, then we may conclude that

foldr � � 0 n c (g (List �) Nil (�x: �y:Cons x y) e) =obs g � 0 n c e : � 0

Then, since build+ � � 00 g e =obs g (List �) Nil (�x:�y:Cons x y) e : List � 0, we will have proved

the correctness of the Acid Rain Theorem for Catamorphisms.

To verify that the hypotheses of (9) hold we �rst observe that the >>-closedness of r is proved

in (Johann 2002a); the proof uses the techniques of the next subsection. Using this fact, we then

note that foldr � � 0 n c n0 =obs foldr � � 0 n c Nil =obs n : � 0, i.e., that (n0; n) 2 r. Moreover,

since � and � 00 are closed, �� (r
>>=�) is precisely �� () and �� 00(r>>=�) is precisely �� 00(). Thus, if

(a0; a) 2 �� (r
>>=�) and (e0; e) 2 �� 00(r>>=�), then by (3) we have a0 =obs a : � and e0 =obs e : �

00.

If, in addition, (b0; b) 2 r, then foldr � � 0 n c b0 =obs b : �
0. Since =obs is a congruence, equivalences

P. Johann 20

(4) through (7) guarantee that

foldr � � 0 n c (c0 a0 b0) =obs c a b : � 0;

i.e., that (c0 a0 b0; c a b) 2 r. Since all hypotheses of (9) are satis�ed and r is >>-closed, we have

that

foldr � � 0 n c (g (List �) Nil (�x: �y:Cons x y) e) =obs g � 0 n c e : � 0

as desired.

6.3. Acid Rain for Anamorphisms is correct

Let � be as in De�nition 4.7, and let � , � 0, � 00, and g be as in the statement of Proposition 6.2. Since

g and its type are closed, Proposition 4.9 ensures that

(g; g) 2 �8�: (�!Maybe (Pair � �))!�!� 0() (10)

Applying the de�nition of � for 8-types shows that (10) holds i� for all closed types � and �0, and

for all r 2 Rel(�0; �),

(g �0; g �) 2 �(�!Maybe (Pair � �))!�!� 0(r>>=�)

Two-fold application of the de�nition of � for arrow types ensures that, for all

(p0; p) 2 ��!Maybe (Pair � �)(r
>>=�)

and

(e0; e) 2 r>>;

(10) holds i�

(g �0 p0 e0; g � p e) 2 �� 0()

Expanding the condition on (p0; p) shows that it is equivalent to the assertion that if (a0; a) 2 r>>,

then (p0 a0; p a) 2 �Maybe (Pair � �)(r
>>=�). But �Maybe (Pair � �)(r

>>=�) is

f(Nothing; Nothing)g

[f(Just (Pair w0 z0); Just (Pair w z)) j (w0; w) 2 �� () and (z0; z) 2 r>>g

[f(Just (
 (Pair � �0)); Just (
 (Pair � �)))g

[f(
 (Maybe (Pair � �0));
 (Maybe (Pair � �)))g

Since (10) holds, we conclude that for every closed type � and for all r 2 Rel(�0; �),

if (e0; e) 2 r>>;

and if (a0; a) 2 r>> implies

(p0 a0; p a) 2 f(Nothing; Nothing)g

[f(Just (Pair w0 z0); Just (Pair w z)) j (w0; w) 2 �� () and (z0; z) 2 r>>g

[f(Just (
 (Pair � �0)); Just (
 (Pair � �)))g

[f(
 (Maybe (Pair � �0));
 (Maybe (Pair � �)))g

then (g �0 p0 e0; g � p e) 2 �� 0() (11)

Note that all of the terms appearing in (11) are closed.

Correctness of Free Theorems-based Transformations 21

Now consider the instantiation

� = � 00

�0 = List �

r = f(M;M 0) jM =obs unfoldr � � 00 p M 0 : List �g

p0 = listpsi �

e0 = unfoldr � � 00 p e

If we can verify that the hypotheses of (11) hold, then we may conclude that

(g (List �) (listpsi �) (unfoldr � � 00 p e); g � 00 p e) 2 �� 0()

and so by (3)

g (List �) (listpsi �) (unfoldr � � 00 p e) =obs g � 00 p e : � 0

Then, observing that destroy � � 0 g xs =obs g (List �) listpsi xs : � 0 and instantiating xs with

unfoldr � � 00 p e, we will have proved the correctness of the Acid Rain Theorem for Anamorphisms.

To this end, we �rst prove that r is >>-closed. To see this, suppose (M;M 0) 2 r>>. We want to

verify that M =obs unfoldr � � 00 p M 0 : List � . Note that Sp must have the form Id Æ S0p for some

frame S0p. Let F be the frame

case of

fNothing) Nil j

Just (Pr x y)) Cons x (unfoldr � � 00 p y)g

and let S 2 Stack(� 00;List �) be the \stack equivalent"

S = Id Æ F Æ S0p

of the evaluation context unfoldr � � 00 p. Then S is such that for all N : � 00,

S N =obs unfoldr � � 00 p N : List � (12)

since

unfoldr � � 00 p N =obs (�f : � 00 !Maybe (Pair � � 00): �b : � 00:

case f b of fNothing) Nil j

Just (Pr x y)) Cons x (unfoldr � � 00 f y)g) p N

=obs case pN of

fNothing) Nil j

Just (Pr x y)) Cons x (unfoldr � � 00 p y)g

=obs (Id Æ F Æ S0p)N

=obs S N : List �

The �rst equivalence is by (7) and the de�nition of unfoldr, the second is by repeated application

of (4) and (6), the third is by the de�nition of frame stack application, and the fourth is by the

de�nition of S.

Observe that if we de�ne the append operation on frame stacks by

S@Id = S

and

S0@(S Æ F) = (S0@S) Æ F

then

(S0@S)>M i� S0> (SM) (13)

P. Johann 22

Moreover, for any S0 2 Stack(�), the frame stack S0@S has the property that for all (N;N 0) with

unfoldr � � 00 p N 0 =obs N : List � ,

(S0@S)>N 0

i� S0>SN 0

i� S0> unfoldr � � 00 p N 0

i� S0>N

The �rst equivalence by (13), and the second is by Proposition 4.10 and (12), and the third is by

Proposition 4.10 and the hypothesis that unfoldr � � 00 p N 0 =obs N : List � . Together with (2),

the fact that (M;M 0) 2 r>> therefore implies that

(S0@S)>M 0 i� S0>M (14)

But then

S0>M i� (S0@S)>M 0 i� S0>SM 0 i� S0> unfoldr � � 00 p M 0

Here, the �rst equivalence is by (14), the second is by (13), and the third is by (12). Since S0 was

arbitrary we have shown that

for all S0 2 Stack(� 0): S0>M i� S0> unfoldr� � 00 p M 0

By Proposition 4.10, we therefore have that M =obs unfoldr � � 00 p M 0 : � 0, and thus that r is

>>-closed. (Alternatively, r can be viewed as the \graph" f(M;M 0) jM =obs SM 0)g of S, which

is >>-closed by the analogue for PolyFix of Lemma 6.1 of (Pitts 2000).)

We now use the observation that r is >>-closed to verify the hypotheses of (11). First observe

that (e0; e) 2 r trivially. Next note that if (a0; a) 2 r, i.e., if a0 =obs unfoldr � � 00 p a : List � , then

p0a0 = listpsi � a0

=obs listpsi � (unfoldr � � 00 p a)

Since p a is not Just (
 (Pair � � 00)), there are three cases to consider:

| If p a = Nothing, then

p0a0 =obs listpsi � (unfoldr � � 00 p a)

=obs listpsi � Nil

=obs Nothing

So (p0a0; pa) 2 f(Nothing; Nothing)g in this case.

| If p a = Just (Pair b c), then

p0a0 =obs listpsi � (unfoldr � � 00 p a)

=obs listpsi � (Cons b (unfoldr � � 00 p c)

=obs Just (Pair b (unfoldr � � 00 p c))

Since (b; b) 2 �� () and (unfoldr � � 00 p c; c) 2 r | both trivially | we have that (p0a0; pa) 2

f(Just (Pair w0 z0); Just (Pair w z)) j (w0; w) 2 �� () and (z0; z) 2 r>>g, as desired.
| If p a =
 (Maybe (Pair � � 00)) then

p0a0 =obs listpsi � (unfoldr � � 00 p a)

=obs listpsi � (
 (List �))

=obs
 (Maybe (Pair � (List �)))

Thus (p0a0; pa) 2 f(
 (Maybe (Pair � (List �)));
 (Maybe (Pair � � 00)))g, as desired.

Since the hypotheses of (11) hold, the theorem is proved.

Correctness of Free Theorems-based Transformations 23

7. Conclusion and future work

We have observed that, in order to correctly state and prove analogues of Wadler's free theorems

for a polymorphic calculus, it suÆces to exhibit a parametric model for that calculus. We have also

observed that, in order to prove the correctness of a program transformation for such a calculus |

in particular, to capture the intuition that the transformation preserves observational equivalence of

programs | it suÆces to exhibit a model which reects observational equivalence for that calculus

and then to show that the left-and right-hand-sides of the transformation have the same interpre-

tation in the model. Finally, we have argued that, in order to prove the correctness of a program

transformation which derives from free theorems, it suÆces to provide a parametric model which

preserves and reects observational equivalence | i.e., a model whose relational equivalence coin-

cides with observational equivalence | which appropriately interprets the left- and right-hand-sides

of the transformation. Unfortunately, the need to tie the operational semantics of a calculus into the

logical relation underlying a parametric model for it has been overlooked in most correctness proofs

for free theorems-based program transformations appearing in the literature.

Pitts' construction of a parametric model which preserves and reects PolyFix observational equiv-

alence provides the basis of a promising approach to proving the correctness of free theorems-based

program transformations for that calculus. We have used his model to give the �rst-ever proof of

correctness for the Acid Rain theorems for a calculus with higher-order functions, �xpoints, and

algebraic data types. In addition, we have argued that this same approach can be used to prove the

correctness of any free theorems-based program transformation for any calculus admitting construc-

tion of a Pitts-style parametric model which preserves and reects observational equivalence.

While PolyFix supports some of the important features of modern functional languages, our results

still need to be extended to calculi which more closely resemble such languages if they are to be

truly relevant program transformation in practice. Such extensions are the goal of future work.

Another goal of future work is to modify the approach to proving program correctness put forth

in this paper to accommodate calculi with non-call-by-name operational semantics. We anticipate

the investigation of both a call-by-value PolyFix and a `lazy' PolyFix, i.e., a PolyFix with call-

by-name evaluation in which termination at function types is observable. Although a parametric

model preserving and reecting observational equivalence for a call-by-value version of PolyPCF

appears in (Pitts 1998a), the details for a full call-by-value PolyFix and a `lazy' PolyFix remain to

be established.

Acknowledgments I am grateful to Dan Dougherty for many thoughtful comments and probing

questions about this work, and to Janis Voigtl�ander for ongoing enlightening conversations about

parametricity and free theorems. I also thank the anonymous referees for their helpful remarks.

References

Abadi, M. >>-closed relations and admissibility. Mathematical Structures in Computer Science, 10 (2000)

313-320.
Abadi, M. Cardelli, L., and Curien, P.-L. Formal parametric polymorphism. Theoretical Computer Science,

121 (1993), 9-58.
Breazu-Tannen, V. and Coquand, T. Extensional models for polymorphism. Theoretical Computer Science,

59 (1988) 85-114.
Bruce, K. B. and Meyer, A. R. The semantics of second-order polymorphic lambda calculus. In Semantics

of Data Types, LNCS 173 (1984) 131-144.
Fiore, M. and Plotkin, G. An axiomatization of computationally adequate domain theoretic models of FPC.

Proceedings, 9th Annual Symposium on Logic in Computer Science, (1994) 92-102.

P. Johann 24

Gill, A. Cheap Deforestation for Non-strict Functional Languages. PhD thesis, Glasgow University (1996).

Gill, A., Launchbury, J., and Peyton Jones, S. L. A short cut to deforestation. Proceedings, Conference on

Functional Languages and Computer Architecture, (1993) 223-232.

Hu, Z., Iwasaki, H., and Takeichi, M. Deriving structural hylomorphisms from recursive de�nitions. Pro-

ceedings, International Conference on Functional Programming, (1996) 73-82.

Johann, P. Short cut fusion is correct. Journal of Functional Programming, 13(4) (2003) 797-814.

Johann, P. A generalization of short-cut fusion and its correctness proof. Higher-Order and Symbolic Com-

putation, 15 (2002) 273-300. An earlier version of this paper appears as Johann, P. Short Cut Fusion:

Proved and Improved. Proceedings, Workshop on Semantics, Applications, and Implementation of Pro-

gram Generation, LNCS 2196 (2001) 47-71.

Johann, P. and Voigtl�ander, J. Free Theorems in the Presence of seq. Proceedings, Conference on Principles

of Programming Languages, (2004).

Mitchell, J. C. Foundations for Programming Languages. MIT Press, 1996.

Mitchell, J. C. and Meyer, A. R. Second-order logical relations. In Logic of Programs, LNCS 193 (1985)

235-236.

Onoue, Y., Hu, Z., Iwasaki, H., and Takeichi, M. A calculational system HYLO. Proceedings, IFIP TC 2

Working Conference on Algorithmic Languages and Calculi, (1997) 76-106.

Pitts, A. Parametric polymorphism, recursive types, and operational equivalence. Unpublished Manuscript.

Pitts, A. Existential types: Logical relations and operational equivalence. Proceedings, International Collo-

quium on Automata, Languages, and Programming, (1998), 309-326.

Pitts, A. Parametric polymorphism and operational equivalence. Mathematical Structures in Computer

Science, 10 (2000) 1-39.

Plotkin, G. D. and Abadi, M. A logic for parametric polymorphism. Proceedings, Conference on Typed

Lambda Calculus and Applications, LNCS 664 (1993) 361-375.

Takano, A. and Meijer, E. Shortcut deforestation in calculational form. Proceedings, Conference on Func-

tional Programming and Computer Architecture, (1995) 324-333.

Reynolds, J. C. Toward a theory of type structure. Proceedings, Paris Colloquium on Programming, LNCS

19 (1974) 408-425.

Reynolds, J. C. Types, abstraction, and parametric polymorphism. Information Processing, 83 (1983) 513-

523.

Reynolds, J. C. Theories of Programming Languages. Cambridge University Press, 1998.

Reynolds, J.C. and Plotkin, G. D. On functors expressible in the polymorphic typed lambda calculus.

Information and Computation, 121 (1993) 411-440.

Svenningsson, J. Shortcut fusion for accumulating parameters and zip-like functions. Proceedings, Interna-

tional Conference on Functional Programming, (2002) 124-132.

Tarski, A. A lattice-theoretical �xpoint theorem and its applications. Paci�c Journal of Mathematics, 5

(1955) 285-309.

Wadler, P. Theorems for free! Proceedings, Conference on Functional Programming and Computer Archi-

tecture, (1989) 347-359.

