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Normal Forms in Combinatory Logic

PATRICIA JOHANN

Abstract Let R be aconvergent term rewriting system, and let CR-equality
on (simply typed) combinatory logic terms be the equality induced by gnR-
equality on terms of the (simply typed) lambda calculus under any of the stan-
dard trandlations between these two frameworksfor higher-order reasoning. We
generalize the classical notion of strong reduction to a reduction relation which
generates CR-equality and whose irreducibles are exactly the trandlates of long
BR-normal forms. The classical notion of strong normal form in combinatory
logic is aso generalized, yielding yet another description of these trandates.
Their resulting tripartite characterization extends to the combined first-order al-
gebraic and higher-order setting the classical combinatory logic descriptions of
thetrandatesof long g-normal formsinthelambdacal culus. Asaconsequence,
the trandlates of long BR-normal forms are easily seen to serve as canonical
representativesfor CR-equivalence classes of combinatory logic termsfor non-
empty, aswell asfor empty, R.

1 Introduction  Theinteraction between higher-order and first-order algebraic rea-
soning has recently received much attention (see Breazu-Tannen [2], [3], and [4], and
Dougherty [8]), particularly the situation in which the equational theory in question
admits presentation as a convergent (confluent and terminating) term rewriting sys-
tem R. Reasoning in theories combining rewriting with higher-order logicistypically
described in terms of BnR-equality on the simply typed lambda calculus (LC). But
since simply typed combinatory logic (C £) provides an algebraic formalization of
higher-order reasoning, it is sometimes convenient to study Bn R-equality on LC by
examining theequality induced on C £ under any of the standard effectivetrand ations
between the terms of LC and C L. We call thisinduced equality extensional combi-
natory R-equality, or CR-equality for short; in the special case when Risempty, we
refer to extensional combinatory equality or C-equality.

Theinvestigation of Bn-equality isfacilitated by the existence of anotion of re-
ductionon LC-termswhich capturesit precisely. Indeed, thefact that Bn-reductionis
convergent on LC guarantees that the Sn-irreducibles comprise a class of canonical
representatives for the gn-equivalence classes of LC-terms. These “normal forms’
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provide atool for proving the consistency of Sn-equality on LC, aswell asfor estab-
lishing other inequalities between LC-terms, and computing the normal form for a
LC-term reflects the process of evaluating afunction at an argument. Of course, 8n-
equality is generated by Bn~1-reduction as well, and so, as their name suggests, the
classof long g-normal forms can also be taken asaclass of canonical representatives
for these purposes. Long g-normal forms have proven quite useful in the study of
higher-order unification methods (see for example Huet [16] and Gallier and Snyder
[10]).

Reflecting Bn-equality, C-equality has been well-studied in the literature (see
Curry and Feys[5], Hindley [11], Hindley and Lercher [13], Hindley and Seldin[15],
Lercher [20] and [21], and Mezghiche [22]). Since long S-normal forms are funda-
mentally important in the investigation of Bn-equality, it is natural to look for are-
duction relation on C L capturing C-equality in hopes of characterizing their trans-
lates as the irreducibles with respect to thisrelation. Unfortunately, C-equality is not
the equality generated by the axioms for weak equality, so that the weak irreducibles
in C £ do not correspond to the long g-normal formsin LC. Srong reduction does,
however, fit our specification exactly: if we say that a C L-termisin C-normal form
whenever it is the trandlate of a LC-term in long g-normal form (equivalently, the
trandate of a LC-term in Bn-normal form, since the trandations between £C- and
C L-terms are blind to n-equality), then the irreducibles with respect to strong reduc-
tion are precisely the C-normal forms.

In the presence of rewriting, we may hope for an analogous result. We define
here anotion of reduction on C L-terms suitable for capturing CR-equality and dem-
onstrate that the irreducibles with respect to this relation are precisely the translates
of thelong g R-normal forms (although not of the fn R-normal forms, since n-expan-
sions can induce first-order algebraic redexes, and so the incorporation of rewriting
into the higher-order paradigm requires that we restrict attention to trandlates of fully
n-expanded terms, as discussed in moredetail following Theorem 3.9 below). Infact,
we show that three classical notions of normal form with respect to C-equality—
namely, trandates of long g-normal forms, strong irreducibles, and strong normal
forms—can be extended to accommodate first-order algebraic rewriting in a natural
way, and that when this is done, the resulting notions coincide to describe a class of
canonical representatives with respect to CR-equality, just as their classical versions
do for C-equality.

By analogy with the normal formsin LC, we expect any canonical represen-
tatives of CR-equivalence classes to be irreducible with respect to the fundamental
reduction relations on C £ and to have the property that any C L-term is CR-equal to
exactly one such canonical representative. In addition, certain applications of higher-
order equational logic may requirethat afurther property of normal formsin LC per-
sist under thetransfer to C £, namely that the class of representatives be closed under
subterm extraction. Indeed, al three of these properties of CR-normal forms are re-
quired for the work which originally motivated the investigation reported here: in
Dougherty and Johann [9], the observation that the class of CR-normal forms satis-
fiesthem if Risconvergent isused to provethat, under that hypothesis, certain trans-
formations for deciding C R-equality on C L-terms can be “lifted” to transformations
which are capable of enumerating complete sets of their CR-unifiers. In any case, it
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will follow easily from our tripartite characterization of CR-normal forms that:

e every CR-normal form is both weakly irreducible and R-irreducible,
e every subterm of a CR-normal formisalso in CR-normal form, and
e every C L-termis CR-equal to aunique CR-normal form.

2 Preliminaries Wewill assumefamiliarity with classical results about thelambda
calculus and combinatory logic (asin, for example, [15]) and use the basic results on
the combination of the simply typed lambda cal culus and first-order algebraic rewrit-
ing. For definitions and notations regarding rewriting not given explicitly here, the
reader is referred to Dershowitz and Jouannaud [7].

The types are formed by closing a set of base types under the operation (a1 —
ay) for types aq and ap. Fix an infinite set, Vars, of typed variables and an infinite
set of typed constants. Certain constants, with associated arities, comprise the signa-
ture X over which our first-order algebraic termswill be defined. We assume that the
constantsinclude the symbols I, K, and S, given various types as usual. Although it
is possible to postulate only the various &’ and S, for technical reasons we will also
need to take the various I as primitive—see the discussion following Lemma 3.4 be-
low. Anatomiseither avariable or a constant; thetyped X, S, and I are called redex
atoms.

LC isthe set of explicitly simply typed lambdaterms over the atoms other than
the redex atoms; C L is the set of explicitly simply typed combinatory logic terms
over al atoms, including the redex atoms. We will never explicitly indicate the type
of (LC- or CL-) terms unless it is necessary. By the type-erasure of aterm T we
will mean the untyped lambda calculus or combinatory logic term, as appropriate,
obtained by disregarding al type informationin T.

The set of variables appearing in aterm T will be denoted Vars(T). The com-
binatory abstraction operator, as defined, for example, on page 25 of [15], is written
[[]. Wewrite = for syntactic equality between terms.

If T=hT....Tyisaterm and h isan atom, then h is called the head of T. The
classof algebraictermscontainsall variablesand all termsof theform f T;... Ty where
f € ¥ hasarity kand T isalgebraicfori =1, ..., k.

A substitution isafinitely supported mapping from Varsto LC or C L, as appro-
priate. A substitution o induces amapping on termswhich, abusing notation, we will
also denote by o.

On C L, weak equality is generated by weak reduction, denoted —> and de-
termined by the rules Ix — x, K Xy —> X, and Sxyz— xz(yz); weak- R reduction

(w—R>) and BnR-reduction (ﬁig) are the reduction relations generated by an alge-
brai c term rewriting system Rtogether with the rulesfor weak reduction or gn-reduct-

ion (2 ), respectively. For any notion of reduction — , write —- for the reflex-

ive, transitive closure of s and =, for the symmetric closure of ST N

is convergent (i.e., confluent and terminating), we may speak of the x-normal form
of aterm. In particular, we may refer to the w-normal form (usually called the weak
normal form) of a C L-term, and to the Bn- or An~1-normal form (the latter usually

called the long g-normal form) of a LC-term. If Ris convergent then so are Ll
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and ﬂ:{» (see [2]), and so we may similarly speak of the wR-normal form or the
long BR-normal form of a LC- or C L-term, as appropriate. We will write |8nf (X)
and | BRnf (X) for the long 8-normal form and the long BR-normal form of the LC-
term X, respectively. Given any reduction relation, we of course have irreducibles,
i.e., termswhich are irreducible with respect to that relation, as well asredexes, i.e.,
terms which are reducible, with respect to it.

Let£L:CL— LCandH : LC — C L bethewell-known translations between
LC and C L defined as follows:

Let
e [(a) = awhen aisanon-redex atom,
o L(I)=AXX,
o L(K) = AXY.X,

L(S) = Axyz.xz(yz), and
L(MN) = L(M)L(N);

and

e 7 (a) = awhenaisanatom,
o H(XY)=H(X)H (),
o H(XY)=[XH(Y), where

X]M = XM when x does not appear in M,

XIx=1,

X](Mx) = M when x does not appear in M, and
X](MN) = S([X]M)([X]N) otherwise.

— — o~ —

These trandlations are such that #H (L(X)) = X and L(H (M)) =g, M. Note
that although such translations allow passage between LC- and C L-terms, they are
not trangl ations of the respectivetheories, or even their higher-order parts, since weak
equality istoo coarse to reflect Bn-equality. For instance, the terms S and K I (of
appropriate types) are distinct weak normal forms in C £, but their translations are
Bn-equal LC-terms.

Given afirst-order algebraic theory which admits presentation as a convergent
term rewriting system R, define extensional combinatory R-equality, abbreviated
CR-equality, by M =cgr N iff L(M) =g,r L(N); it follows that for any LC-terms
Xand, X =4,r Y iff H (X) =cr H (Y). We omit the symbol R from the notation
and terminology when R is empty.

Throughout this paper, we will assume that R is a convergent (first-order) term
rewriting system defined on the set of algebraic terms over X.

3 Anotion of normal formfor CL  Thissection isdevoted to a characterization of
aclass of CR-normal forms which will be shown below to have the three properties
we expect of any class of canonical representativesfor the CR-equivaence classesin
C L, asdiscussed in the introduction.
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3.1 Classical notions of normal form It will be helpful to have a brief review of
normal formsin the pure higher-order calculi (without algebraic rewriting). Werecall
the basic results about three notions of combinatory normal form studied in the clas-
sical literature. These three notions coincide to yield a characterization of the class
of C-normal forms, formally defined by:

Definition 3.1 A CL-term M isin C-normal formif there exists a LC-term X in
long B-normal form such that M = # (X).

Itiswell-known that C-equality can be generated by adding to therulesfor weak
reductiontheextensionality rule: if Mxand Nx are C-equal and x doesnot appear free
in M or N, infer that M and N are C-equal. The classical notion of strong reduction
on CL, introduced in [5] and shown there to generate C-equality, is a reflection of
this observation.

Definition 3.2  Strong reduction, denoted > g, is the reduction relation whose set S
of rulesisthe smallest set containing the rules for weak reduction and closed under
theinferencerule

If M=[x]P, N=[XQ, (P,Q) € Sand M # N, then (M, N) € S

Wewill say that M strongly reducesto N if M > g N, and denoteby >> sthereflexive,
transitive closure of >s. We say that a C L-term M is > s-irreducible if there is no
term N suchthat M >g N.

It was shown by Curry [5] that C-equality can be defined by adding afinite num-
ber of equationsto the equationsfor weak equality, and so anatural questioniswheth-
er or not strong reduction is also finitely axiomatizable. Hindley [11] has demon-
strated that there can be no finite set of axioms, or even axiom schemes, which gen-
erate strong reduction when added to the rules for weak reduction. Indeed there is
considerable difficulty even in recognizing the set of rulesfor strong reduction.

From the difficulty of identifying strong redexes we might infer that describ-
ing the class of terms which are strongly irreducible is an equally daunting task. But
Lercher [21] has shown that it is possible to characterize them entirely by virtue of
their structure—he shows that they are the terms described by the following defini-
tion.

Definition 3.3 A CL-term M isin strong normal form provided either

e M =aM;... My with M; instrong normal formfori =1, ..., kand aanon-
redex atom, or
e M = [x]N with N in strong normal form.

Note that the statements in Definition 3.3 hold for LC-terms if “strong normal
form” is replaced throughout by “long g-normal form” and combinatory abstraction
is replaced by the usual lambda abstraction.

Wehavethefollowing result, for whose proof the reader isreferred to the sources
cited in the previous discussion.

Theorem 3.4 For a C L-term M the following are equivalent:

(1) Misinstrong normal form;
(2) M is>girreducible;



578 PATRICIA JOHANN

(3) Misin C-normal form.

Proof: The equivalence of (1) and (2) is the combination of results from [21] and
either [13] or Section 6F in [5], whilethe equivalence of (1) and (3) isstraightforward
(see Exercise 9.16 in [15]).

Note that if I isdefined as SK K instead of being taken as primitive, then the
> s-irreducibles are not precisely the strong normal forms: inthiscase, I isclearlyin
strong normal form, being [X]x, but since SK >s X I, we have

I>sKIK >sK(KIK)XK >s...

Theclassof C-normal formsindeed representsthe C-equivalenceclassesin C L:
Theorem 3.5 The class of C-normal formsis such that:

(1) Everytermin C-normal formisweakly irreducible;
(2) Every subtermof atermin C-normal formisalsoin C-normal form;
(3) Bvery C L-termis C-equal to a unique termin C-normal form.

Proof: (1) If M isin C-norma form, then M is >g-irreducible. But then M is
weakly irreducible since strong reduction contains the rules for weak reduction.

(2) If M isin C-normal form, then M is > s-irreducible. But any subterm of a
> s-irreducibletermisagain > s-irreducible, and isthereforein C-normal form. Thus
any subterm of M isitself in C-normal form.

(3) Suppose M =¢ P and M =¢ Q for two C-normal forms P and Q. Then
there exist long B-normal forms X and Y suchthat P = # (X) and Q = # (Y). Then
L(M) =g, LH (X) and L(M) =g, LH (Y),and so X =g, LH (X) =p, LIM) =,
LH (Y) =g, Y. Since Bn-reduction is convergent, we must have X =Y andso P =
HX)=HY)=Q.

3.2 Normal formsin the presence of algebraic rewriting  We define extensions of
the three classical notions of normal form on C £ presented in the last section, each of
which is seen to satisfy one of the properties we require of CR-normal forms. The-
orem 3.4 guarantees that the classical notions coincide and Theorem 3.5 shows that
they give aclass of canonical representatives with respect to C-equality; the content
of the next section is that our extensions behave analogously in the presence of alge-
braic rewriting.
Recall that the class of termsin C £ in which we are interested is given by:

Definition 3.6 A CL-term M isin CR-normal formif thereexistsa LC-term X in
long BR-normal form such that M = # X.

Since every LC-term is BnR-equivaent to a unique long SR-normal form, it
follows that every C L-term is CR-equal to a unique CR-normal form. The proof is
by analogy with that of the third part of Theorem 3.5.

We extend in a straightforward manner the notion of strong reduction to incor-
porate reduction via a convergent term rewriting system R, and thereby arrive at a
notion of reduction which generates CR-equality.
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Definition 3.7  R-strong reduction, denoted > gg, is the reduction relation whose
set S of rulesis the smallest set containing the rules for w R-reduction and closed
under theinferencerule

if M=[x]P, N=[X]Q, (P, Q) € S, and M % N, then (M, N) € Sr.

As above, we will say that M R-strongly reducesto N if M >gsr N, and denote by
>> gr the reflexive, transitive closure of >gsg. We say that a C L-term M is > gr-
irreducibleif thereisnoterm N suchthat M > s N. That the equality generated by
> gr isexactly CR-equality is straightforward.

Like strong reduction, R-strong reduction is not suitable as a tool for normal
form computations—the nonfinite axiomatizability in the classical setting isinherited
by this richer reduction relation. But of course, every subterm of a > gr-irreducible
term is also > sr-irreducible, and it will turn out that the > gr-irreducibles are pre-
cisely the CR-normal forms.

Wewill seein Theorem 3.9 that an R-enriched variation on the classical notion of
strong normal form provides athird characterization of CR-normal forms. The proof
that termsin this class are w R-irreducibleis by direct analogy with the classical case
(see Lemma 3.12 below).

Definition 3.8 A CL-term M isin R-strong normal form provided either

e M = aM;j... M, with M; in R-strong normal formfori=1,...,k, Min R-
normal form, a anon-redex atom, and arity(a) = kifae %, or

e M = [x]N with N in R-strong normal form.

The restrictions to R-normal form and on arity(a) in the first clause of Defini-
tion 3.8 are discussed immediately following the statement of Theorem 3.9. For the
remainder of this section we will assumethevalidity of the following theorem, whose
proof comprises the next section.

Theorem 3.9 For a C L-term, the following are equivalent:
(1) Misin R-strong normal form;
(2) M is>ggr-irreducible;
(8) MisinCR-normal form.

Note that if the CR-normal forms and R-strong normal forms are to coincide,
we must havethat arity(a) = kwhen a € T inthefirst clause of Definition 3.8. Oth-
ewise, X = Ay1...yn.aX;... Xcisnotinlong BR-normal form, and wewould have
to consider aterm X' = Ayy...VYnZ1...Zm.aXy... XdBnf(z) .. .18nf (zy), where
k + misthearity of a, to potentially circumvent thisdifficulty. But X’ isnot necessar-
ily in R-normal form, since introduction of the arguments |8nf (z) could introduce
an R-redex.

For example, if we havetherule fx — aand do not insist that arity(a) = kin
the definition of R-strong normal form, then theterm f isin R-strong normal form.
But there exists no X in long AR-normal form such that # X = f, since the only
candidatesfor X are f itself and A x. X, and so in this case the equival ence between
the first and third conditions in Theorem 3.9 can fail. Insisting that arity(a) = kin
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the definition of R-strong normal form precludes f from satisfying that definition: f
isnotinlong g-normal form, andif f = [X]Y,thenY = fx, whichisnotin R-normal
form and so not in R-strong normal form. So f isnot in R-strong normal form under
the definition whichis sensitiveto arity concerns, and, aswewill see, the equivalence
of the first and third conditions in Theorem 3.9 isrestored.

Of course, such care is not required when algebraic rewriting is not permitted,
and it is therefore easy to see that if f € X but f isnot at the head of the left-hand
sideof any rulein R, then f = [X1...X(] fX1...Xc isawaysin CR-normal form.

We have the following analogue of Theorem 3.5.

Theorem 3.10 The class of CR-normal formsis such that:

(1) Everytermin CR-normal formis wR-irreducible;
(2) Every subtermof atermin CR-normal formisalso in CR-normal form;
(3) Bvery C L-termis CR-equal to a unique termin CR-normal form.

Proof: That CR-normal forms are w R-irreducible follows from their characteriza-
tion asthosetermswhich are > sg-irreducible, together with thefact that R-strong re-
duction contains the rules for weak- R reduction. Since the class of > sr-irreducibles
is also closed under subterm formation and the class of CR-normal forms provides
a unique canonical representation for every CR-equivalence class (as discussed im-
mediately following Definition 3.6), the class of CR-normal forms must have these
properties.

Itisalso possibleto seedirectly that each R-strong normal formis R- and weakly
irreducible, afact of which we will make much usein Section 4. The proof requires
asimple lemma adapted from [21].

Lemma 3.11 Let M =[x]N. Then M is wR-irreducible iff every wR-redex of N
contains X. Moreover, if U isa wR-redex of M, then U is a subtermof N.

Proof: By inductionon N with cases corresponding to the clausesin the abstraction
algorithm.

If x & Vars(N), then M = K N. Any wR-redex of N must be aw R-redex of M
and vice-versa.

If N= X, then M = I. Then both M and N are wR-irreducible.

If N = Pxwithx ¢ Vars(P), then M = P. If M isw R-irreducible, then the only
possible w R-redex of N is N itself, which contains x. Conversely, if every w R-redex
of N containsx, then P = M isw R-irreducible. Clearly every wR-redex of M isaso
asubterm of N.

If N= PQ with Q # xand x € Vars(PQ), then M = S(X]P)([X]Q). If M
is wR-irreducible, then [X] P and [X] Q are. By the induction hypothesis, then, every
wR-redex of P or Q contains x. The only other possible wR-redex of N is N itself
which contains x. Conversely, if every wR-redex of N contains x, then every wR-
redex of P or Q contains x. By the induction hypothesis, this implies that [x] P and
[X] Q are wR-irreducible. But then M isalso. If U isa wR-redex of M, thenit is
contained in [X] P or [X] Q. By the induction hypothesis, U is a subterm of P or Q,
and therefore of N.

In particular, if M is wR-irreducible, then so is[x] M.
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Lemma 3.12 If M isin R-strong normal form, then M is w R-irreducible.

Proof: The proof is by induction on M with cases corresponding to the clausesin
Definition 3.8.

If M =aMj... M, then M in R-strong normal form impliesthat M; isalsoin
R-strong normal formfori =1, ..., k, and M isin R-normal form. By the induction
hypothesis, M; iswR-irreduciblefori =1, ..., k. Since M isin R-normal form and
there can be no head weak redex in M, M is wR-irreducible.

If M=[x]N isin R-strong normal form, then N isin R-strong normal form. By
the induction hypothesis, Nis w R-irreducible, so by Lemma 3.11, M must be also.

4 Equivalence of normal forms  In this section we prove Theorem 3.9; our proof
isby direct analogy with the classical case. We begin by showing that the CR-normal
forms are precisely the R-strong normal forms.

The observation that R-redexes in C-normal forms are translates of R-redexes
in LC will be useful in seeing that CR-normal forms arein R-strong normal form.

Lemma4.1 If Xisinlong g-normal formand # X = 6Sfor S algebraic, then
X = 0'Swhere 0 (x) = I8nf (LO(X)) for every x € Vars.

Proof: By inductionon S.
Lemma4.2 If Misin CR-normal form, then M isin R-strong normal form.

Proof: If M isin CR-normal form, then M = # X for some long BR-normal form
X. The proof is by induction on X.

If X=aX;... Xy, then H X=aH Xy ... H X, with X; inlong BR-normal form
fori =1,...,k, soby theinduction hypothesis, # X; isin R-strong normal form for
i=1,...,k Since Xisinlong BR-normal form, arity(a) = kif ac . Finaly, # X
isin R-normal form since otherwise, 4 X = 6S for some 6 and some algebraic S.
Thenby Lemmad4.1, X = 6’ Swhere ¢’ (x) = IBRnf (LO(X)) for all X € Vars. But this
contradicts the assumption that X isin R-normal form.

If X=Ax.Y,thenYisinlong B8R-normal form, so by the induction hypothesis,
HY isin R-strong normal form. Then H (AX.Y)=[X]#Y isin R-strong normal form.

The converseis not difficult:
Lemma 4.3 If Misin R-strong normal form, then M isin CR-normal form.

Proof: By induction on M with cases corresponding to the clausesin Definition 3.8.

If M=aM;...Mforae X, then M; isin R-strong normal form so that there
exists along BR-normal form X; such that # X; = M; fori = 1,...,k. Consider
X =aX;... X Clearly H X = M and X isinlong g-norma form. If X isnotin
R-normal form, then aX; ... Xy = 6Sfor some left-hand side Sof arulein R. But
then M = H X = H (9S) = (H 0 0)S, contradicting the fact that M isin R-normal
form.

If M=aM;... M forae Vars, then M; isin R-strong normal form so that there
existsalong BR-normal form X; suchthat # X; = M; fori =1, ..., k. Consider X =
AZy ... Zm.aXy... Xdpnf(z)...18nf(z,), where aX;... Xdanf(z)...18nf(zy,)
isof basetype. Clearly # X = M, and the fact that aX; ... X IBnf (zy) ...18nf (zy)
isinlong BR-normal form impliesthat X isaswell.
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If M = [X]N for N in R-strong normal form, then by the induction hypothesis,
thereexistsaY suchthat #Y = N and Y isinlong BR-normal form. Consider X =
AXY. Then H X=[X]H Y= [x]N= M and X isinlong BR-normal form since Y is.

Having established the equivalence of the conditionsinthefirst and third clauses
in Theorem 3.9, we now turn our attention to showing the equivalence of thefirst and
second, i.e., we prove that for any C L-term M, M is > gr-irreducible iff M isin R-
strong normal form. We begin by proving that every > gr-irreducible termisin R-
strong normal form. The next lemma and corollary exhibit asimple relation between
reductionin £LC andin C L.

Lemma4.4 For any LC-terms X and Y:

o if X—5 Y, then # X > g HY, and
o it XY, then H X > HY.

Proof: Both statements are proved by induction on X.

-1
Corollary 4.5 1f X "7 Y, then H X >> g HY.

Proof: By Lemma 4.4, if X5 Y, then # X >>gr HY, and if X—>Y, then
-1
HX>sp HY. F XS ¥, then HX = HY.
We can now see that:

Theorem 4.6 If M is > gr-irreducible, then M isin R-strong normal form.

,1R

Proof: Since LM N IBRNf(LM), M = H LM >>gg H (IBRNf(LM)) = N.
But since M is > gr-irreducible, we must have M = N. Then M isin CR-normal
formsince N is, and by Lemma4.2 isthereforein R-strong normal form.

To prove the converse, we first prove this result for untyped combinatory logic
terms, (called obs), and thenimmediately infer that it holdsfor C L-termssincetyping
isirrelevant to structural and reduction properties of terms. The proof of the converse
given below relies heavily on the fact that obs are untyped—which simply allows us
to avoid many of the purely technical difficultieswhich would arisein asimilar treat-
ment of simply typed C L-terms—while the proof just presented uses the typing of
C L-terms. Indeed, any reasonably simple proof that aterm whichis > sg-irreducible
isin R-strong normal form seems to require the use of types. It may, however, be
possibleto extend the notion of normal reduction from [5] to asuitable notion involv-
ing R, prove an analogue of Curry’s characterization of > s-irreducibles astermini of
normal reductions, and then use ajustification asin [21] to see that R-strong normal
formsand > sr-irreducibles areidentical in untyped combinatory logic. But sincethe
main thrust of this section isthat Curry’s normal form theoremis preserved for sim-
ply typed combinatory logic—insuring that we have a suitable notion of CR-normal
form there—we do not hesitate to restrict our attention to typed systems whenever
possible.

We begin the proof of

Theorem 4.7 Every C L-term M in R-strong normal formis > gr-irreducible.
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The following definitions and al phabetic conventions will be assumed.
Definition 4.8  The set of obs consists of all possible type-erasures of C L-terms.

Intheremainder of thispaper, thelettersu, v, w, X, Y, z, etc., will denotethetype-
erasuresof variables, whileL, M, N, P, Q, and their subscripted versionswill denote
arbitrary obs. We will abuse terminology and henceforth refer to the type-erasure of
avariable asavariable. Asusual, application will be assumed to be | eft-associative.

Of course, the notions of > gg-reduction and R-strong normal forms can be ex-
tended to obs in an obvious fashion (since symbols from X have fixed arities). As
suggested above, our proof of Theorem 4.7 then involves proving its analogue for
obs.

We would like to prove that every ob M which isin R-strong hormal form is
> gr-irreducible by induction on M, with cases according to the analogue of Defi-
nition 3.8 for obs. But this requires the ability to characterize > gr-redexes, and the
manner in which the reduction relation > gr is defined makes such a characteriza
tion especially difficult. To remedy this situation, we define anew axiomatic relation
>R on obs (Definition 4.11) whose redexes can be characterized with considerably
less difficulty. We then establish in Lemmas 4.12 through 4.15 some facts about the
interaction between combinatory abstraction and substitution on obs which are used
to prove that >> gr and the reduction relation induced by >R are equivalent (The-
orem 4.20). En route to proving this equivalence we ascertain a result far more im-
portant for our purposes, namely that if M is an > R-irreducible ob then it is > gr-
irreducible. Together with the observation that any ob in R-strong normal form is
necessarily also > R-irreducible (Theorem 4.21), this result allows usto conclude that
any obin R-strong normal formisalso > sg-irreducible, asdesired. The proof of The-
orem 4.21 is by induction on obs; it uses the properties of > R-redexes established
in Lemmas 4.24 through 4.26 and some straightforward facts about weak reduction
(Lemmas 4.27 and 4.28).

The reader familiar with the classical proof in [13] will observe that the axiom
schemes for >R do not include a reflexivity axiom but otherwise comprise an exten-
sion of those for Hindley’s ([11]) relation > by the rules of the algebraic reduction
relation R. The added complications in the proof here arise as consequences of the
possibility of reduction according to therulesin R.

Definition 4.9  Given an infinite set of metavariables digoint from the set of (all
type-erasures of) variables, the set of ob-schemesis defined inductively:

e every metavariable is an ob-scheme,

e X, S, and I are ob-schemes,

o for every (type-erasure of @) variable thereisadistinct symbol which isan ob-
scheme, and

e if U and V are ob-schemes, then sois (UV).

We assume the same conventions regarding application for ob-schemes that we
observe for obs. We denote metavariablesby A, B, C and their subscripted versions;
we will sometimes write Ay, ..., A for the first k metavariables. In what follows
U, V, W and their subscripted versions stand for arbitrary ob-schemes.
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| dentifying variables with the ob-scheme symbol s denoting them gives a* deno-
tation” for each ob. Thus, every ob-scheme without metavariables denotes a unique
ob, each ob isdenoted by precisely one such scheme, and we may identify an ob with
the ob-scheme without metavariables by which it is denoted.

Metavariables are intended, of course, to denote arbitrary obs in ob-schemes,
and interpreting the metavariables in an ob-scheme by obs defines an interpretation
of the entire ob-scheme. Whilesuch aninterpretationis, strictly speaking, another ob-
scheme, under the convention of the last paragraph, we will adopt the point of view
that an interpretation of the metavariables in an ob-scheme yields an ob.

Of coursg, it is possible to do away entirely with metavariables and ob-schemes
and the distinctions they induce. But the alternatives are either using protected sets
of variables, or requiring aset of variables digjoint from those used in term formation
from which all axiomswould be constructed, and prefacing many of the results here
with restrictions on the variables (both are essentially the same, although the latter
is what might be done in an implementation). In the interest of clarity, and to pre-
serve the parity between the results here and those for the classical calculi, we use
metavariablesin the style of Hindley.

Note that we can extend the usua definition of the combinatory abstraction
algorithm to ob-schemes containing metavariables by abstracting over ob-schemes
with respect to the (symbols corresponding to) variables. Write U[A; := Mq]...
[Ax := My] for the result of simultaneously replacing every occurrence of the meta-
variable A by the ob-scheme M;,i =1, ..., k.

Definition 4.10 If > denotes a binary relation between ob-schemes, then a sen-
tence scheme is an expression U > V. A sentence is a sentence scheme containing
no metavariables.

Let a set of sentence schemes called axiom schemes be given. If U > Visan
axiom scheme and {Aq, ..., A¢} includes all the metavariables in this scheme, and
if My, ..., My are any abs, then U[A; := Mq]...[Ac:= Mi] > V[AL :== Mq]...
[Ax := My] isan instance of the axiom scheme, called an axiom.

For the definition of the relation >R we need a final piece of notation. Let x
be avariable, and let A be a metavariable. Define AXL = A, A = Ax, and AR =
X. Let U be an ob-scheme with metavariables from the set {Ay, ..., A¢}. For any
i1,..., Ik with each ij taking on values from the set {1, 2, 3}, define Uy, j, to be
U[A; == AL [ A= A,

Observe that being able to replace a metavariable A by the ob-schemes Ax and
X in an ob-scheme U requires that obs and ob-schemes are untyped. For notational
convenience, wewill write A' for A and U;, _;, inplaceof Uy, i, Whenthevariable
x is discernible from the context.

Definition 4.11  Let > R be defined by the following axiom schemes:
(1) SALA A3 >R A1 Ag(AzAs),
(2 KALA >R A,
(3) IA]_ > R Al,
@ S(KADT >R A,
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(5) S(K A (KA) >RKALA,,
6) S(KI)>R1I,
(7) if U35V, thenU =RV,

(8) if U >RV isan axiom scheme other than 3 or 6, and if Aq, ..., A areal the
metavariables occurring in U, then for all variables x,

Ui, i > XAV,

isan axiom scheme for >R unlessi; = 1for all j suchthat Aj occursin U, or
[X]Ui,..i, = [XI Vi, i -

If U >RV, then the metavariables in U are the only metavariables which may
occur in 'V, and likewisefor thevariablesin U and V. Thenotations A'l, ije{l,2 3},
correspond to the three cases which might arise when forming an axiom from an ax-
iom scheme: ij = 1 corresponds to interpreting a metavariable by an ob which does
not contain x; ij = 2 corresponds to interpreting a metavariable by an ob of the form
Mx for some M with x not appearing in M; and i ; = 3 accommodates the remaining
cases. Thisdistinction will be important in Lemma 4.16.

The situation wheni; = ... = iy = 1 corresponds to interpreting the metavari-
ables of U and V by obs containing no occurrence of x. In this case we already have

[X]Ui, i, = KVUi, i, >R KM, i = XAV, s

so clearly this should not be added asa* new” axiom scheme. Similarly, if the axiom
scheme 3isused asU >R V in scheme 8, then we have one of two cases:
e XisnotinUj, j,,sothati; = land[X]Ui, i, =[X][TA1 =K (TA) >RKA =
[X] A1 = [X]Vi, -
e xappearsinU;, . Theneitheriy =3 sothat U, i, =[X]|Ix=1=[X]x=
XA = [XVi, iy, orin = 2sothat [XUi,, i, = [XTA} = SO D (XA} =

S(KD(IKAL) >R I[N AL >R[XJAL =[xV, .

In both cases, we derive no more information from the application of scheme 8.
Likewise, no additional information is obtained by using axiom scheme 6 in axiom
8. But observe that if we use, for example, the axiom scheme 4 in scheme 8, and if
i; = 3, then

[X]Ui,i, = [X(SE A Diy i = [XASE XL >R [Xx = [XVi, i
by scheme 8, but thisis not derivable from axiom schemes 1 through 7, since

[XSE) I = SIXSEX)) (X 1)
= SIS IXKX)) (K )
= S(SEKHKN(KI)

isinnormal form with respect to those axiom schemes. Sinceweindeed have derived
“new” information, this information is encoded as a hew axiom scheme generated
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from the ones that came “before” it. We can think of axiom scheme 8 as recording
lemma schemata.

Interpretation of metavariables can be accomplished sequentially and in any
order:

Lemma4.12 If A= B, thenfor all obs M and N, and ob-schemes U,
U[A:= M][B:= N]=U[B:= N][A:= M].
Proof: Just observe that the metavariable A cannot occur in the ob N, and that B

cannot occur in M.

The next two lemmas examine interpretations of abstractions and abstractions
of interpretations, providing insight into the structure of the axioms of >R

Lemma4.13 Let {Aq,..., A contain the metavariables occurring in the ob-
scheme U. Then for any obs My, ..., My,

([XJUi, i)[ A1 := Ma] . [Ac= M ] = [XI(U[AL = Mill] A= M|i<k])

provided x does not appear inU, My, ..., M.
Proof: By inductiononU;,_j,.

o If xdoesnot appear inU;, _;,, then xalso doesnot appear inU andi; =... =iy =1,
so that

((XJUi, i)[AL=M]. . [Ac=M] = (KU, i)[A1:=Mq]. . [Ac=M]
K (Ui, i [Ai=My]. . [Ac= M)
K (U[A; := Mq].. [ A= M)
= K(U[AL =M. [Ac= M)
[X](U[AL = M;_l]. A= M:(k])'

o If Ui, i, = x,thenU = A for some j suchthat i; = 3, so that

(XVii)[Aci=My]. . [Ac=M] = ([X]O[AL=My]. . [Ac:=M(]
= [Xx
= [\M]
= [XU[A=M]]. . [Ac= M.
o If Ui, i, =W, j xwith xnot appearing in W, ., thenU = WA for some j such

that i; = 3and A;j isnot in W, and moreover, i, = 1 for al n such that A, isin W.
Then

(Ui i[AL =M [AC= M) = ([XIW i O[AL = My L[ Aci= MY]
([IXI(WADi, i )[AL = M]. L [ A= M]
[XI((WA)[AL:= M:ill]. A= Mli(k])

= [X](U[A; = M:ill]. A= Mli<k])'
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o If Ui, i, = (VW);, _i,, With none of the above holding, then

X (Ui, i)[Ar:=M]. . [Ac=M] = [X]((VW)il_._ik[Ali.zMl]...[AkZ?Mk])
= [x]((VW)[Alzz.M'll]...[Ak::'MI'(k])
= [X(U[AL:= M. [Ac = M.

Lemma 4.14 For any ob M and variable x, define M*t = ([x]M)x if x appears
in M but x# M, and M** = M otherwise. Then for any ob M, metavariable A, and
ob-scheme U,

[XI(U[A = M*]) = [X](U[A:= M]).

Proof: By induction on U, under the assumption that M # x and x appearsin M
(otherwise there is nothing to prove).

Corollary 4.15 For any ob-scheme U, distinct metavariables Ay, . .., Ag, and obs
M, ..., My,

[XI(U[AL := MJFT. [ A= METD = [X(U[AL = My] .. [ A i= My)).

Proof: The proof uses Lemma4.14 k timesin conjunction with Lemma4.12.

The notation M** reflects the internal structure of the terms obtained when the
metavariable Ain U isinstantiated, which must be taken into account when applying
the abstraction algorithm. Inwhat follows, we will write M+ for M** when xisclear
from the context.

If M >R N isan axiom, then [X]M admits an > R-reduction:

Lemma4.16 If M >R Nisanaxiom, then [X]M >>R[x]N for all variables x.

Proof: For some axiom schemeU >RV andobs My, ..., My,
M= U[A; := M{]...[Ac:= My]

and
N = V[A]_ = Ml] .. [Ak = Mk]

If M; doesnot contain x, defineij = 1and Mjo = M;. If M; contains x but is distinct
from x, definei; = 2and Mjp = [X] M. If Mj = X, defineij = 3and Mjo = S. Then
if wewrite M'j"O for (Mjo)'s, M'jj0 = MJ.Jr as defined in Lemma 4.14. We have

[XIM [XI(U[A1 := My] ... [Ac:= Mg])
[X](U[A; == M1, [Ac= MJ])
[X](U[AL = M&]. .. [Aci= MED
(Ui i) [ AL i= Myg] . .. [Ax == Myq],

and so by asimilar result for N, we see that if [X]U;, i, # [X]Vi,...i, then clearly the
sentence [X]M >R [X]N must be an instance of the sentence scheme [X]U;, i, >R
[XIVi,. i~ 1f[X]Ui, i, = [XI Vi, i, then clearly [X]M >> R [x]N holds, and otherwise
[X]Vi, i, > R [X]Vi,...i, isan axiom schemein al but the following cases:

e Wheni; =...=ix=1. Inthiscasexdoesnot occurin Mq, ..., M, SO[X]M =
KM >REKN=[XN.
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e WhenU >RV isthescheme6. Then xisinneither M nor N, so the conclusion
follows asin the second case above.

e WhenU >R Visthescheme 3. Then M = IPand N = P. If P = x, then
[XIM = I = [X]x. If x does not appear in P, then neither M nor N contains x
and we again proceed asin the second case above. If x appearsin P but x # P,
then[XIM = [X]IP = S(X] ) ([X]P) = S(KXD)([X]P) >R I([X]P) >R [x]P =
[X]N, and the lemmais proved.

The above lemmais the key to proving that >> R isequivalent to >> g for obs.

Lemma4.17 If M >>gg N, then M >>R N, andif thereisa nontrivial stepin the
first derivation then thereis a nontrivial step in the second.

Proof: Sincetherulesfor X, S, I and R-reduction are part of the definition of >R,
it suffices to prove that for any variable x and obs M and N, M >R N implies that
[XIM >>R [x]N; there must always be at least one nontrivial step in the derivation
[X]M >>R[x]N if thereisonein the derivation [X]M >>gg [X]N sinceif [X]M >gr
[X]N, then [X]M = [X]N by Definition 3.7 and > R is not reflexive. We induct on the
deduction of M >R N, remembering that abstraction does not necessarily preserve
the structure of obs.

e If M >R Nisanaxiom, then by Lemma4.16, [X]M >> R [x]N.

e If M >R Nisdeduced becauseweknow M = LP, N= LQ,and P >R Q, then
the proof of thisinduction step is broken into clauses according to the evalua-
tion of [X]M and [X] N.

— If x does not appear in M, then x does not appear in N, s0 [X]M =
KM >RKN=[X]N.
— If x= P and x does not appear in L, then x >R Q. But then Q = x since

X can be shown to be > g-irreducible (directly). Therefore, M = Lx and
N = Lx, sothat M >R N isimpossible.

— If x appearsin M but P = x, then either
x X doesnot appear in LQ, sothat [X]M = [X]LP = S([X]L)([X]P) =

SEKL(HP) >R SEKL([HQ) = SKL)(KQ) >R K(LQ)
[X]N.

+ Q=xandxisnotinL,sothat [x]M = [X]LP >R S(KXL)([X]Q) =
S(KL)I >R L=[x]N.
* M =[XLP = S(XL)([XP) >>R S(XL (X Q) = [X]LQ.
o If M >R Nisdeduced because M = PL, N = QL, and P >R Q, then the proof
issimilar to the above case.

Corollary 4.18 If M is > R-irreducible, then it is > gr-irreducible.

It iseasy to get aconverseto Lemma4.17, and so we prove the equivalence of
the reduction relations generated by >R and > gg.

Lemma4.19 If M >>R N, then M >>gr N, and if thereisa nontrivial stepinthe
first derivation then thereis a nontrivial step in the second.
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Proof: It isenough to show that M >>gg N for every axiom M >R N; there must
always be at least one nontrivia step in the derivation M >>gg N if thereisonein
M >>R N sinceif M >R N then M # N by Definition 4.11 and since > g is not
reflexive. For instancesof schemes 1 through 7, thisiseasy. So supposethat the result
has been proved for every instance of an axiom schemeU >RV, where M >R N is
aninstance of [X]U;, i, >R [XIV, i, By Lemma4.13, M = [X]M* and N = [X] N*
for someinstance M* >R N* of U >R V. Since M* >R N*, theinduction hypothesis
gives M* >>gr N*. Then M = [X]M* >> g [X|N* = N by the definition of > gg.

Combining Lemmas 4.17 and 4.19, we have:
Theorem 4.20 M >>gg Niff M >>RN.

In order to prove Theorem 4.7, in light of Corollary 4.18 it suffices to see that:
Theorem 4.21 If M isin R-strong normal form, then M is >R.irreducible.

The proof of Theorem 4.21 requires some preliminary notions and results.

Definition 4.22 Anob-schemeU isaredex schemeif itistheleft-hand side of some
axiom scheme. A redex scheme U isbasic if it isthe left-hand side of one of the first
seven axiom schemes in Definition 4.11. A redex scheme is based on axiom scheme
7ifitis[x]Ui,. i, where either U isthe left-hand side of axiom scheme 7 or U itself
based on axiom scheme 7. Anob M isaredex if it isan instance of aredex scheme.

Lemma 4.23 Let U be aredex scheme. Then head(U) isnot a metavariable.

Proof: Thisisclearly trueif U isbasic. Otherwise, U = [X]V;, i, and theresult is
obtained by induction on V.

For any ob or ob-scheme U, let n(U) be the number of occurrences of non-
variable symbolsin U. As expected, abstraction increases n:

Lemma4.24 If U=[x;...x]V for somevariablesxy,..., X, thenn(U) > n(V).

Proof: The proof is by induction on k, with cases on the clausesin the definition of
the abstraction algorithm in case k = 1.

An analysis of redex schemes will facilitate our investigation of > R-reduction.
Lemma4.25 LetU bearedex scheme.

(1) If U isnot based on scheme 7, then U contains at most one occurrence of each
metavariable.

(2) If U isnot basic, then U is of one of the forms SU,U, or SU; withn(Uy) > 0,
or elseU isof theform fUy... Uy, witharity(f) > kand f € Z.

Proof:

(1) Thisisclear for basic redexes from schemes 1 through 6. Moreover, the appli-
cation of axiom scheme 8 does not introduce new metavariables.

(2) If Uisnot basic, thenU = [X]V,, i, for someredex schemeV, andi; =... =
ix = lisimpossible. Thus x appearsinV;, j, (otherwiseV;, ; isidentically x
andso V = A for some j such that i; = 3, but this isimpossible by virtue of
Lemma4.23).
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If Visbasic and V is an instance of axiom schemes 1, 4, and 5, then the re-
sult clearly holds. If V isan instance of axiom scheme 2, then U is not aredex
schemeunless V = K A1 Ay and either X # Ay, i, Or X appearsin K Aq i, i,
But then U isindeed of the form SU;U, with n(U1) > 0. If V isasin scheme
7, then either U is of the form SU,U, with n(Uy) > 0, or U is of the form
fU1...Un_1, wheren < arity(f).

If Visnot basic, thenitisof theform SV, Vs, SV withn(Vy) > 0,0r V... Vn
forarity(f) > m sothat U = [X]Vi, j is

o SIXISV)([X]Vy) or SV, if V = S§ViVs,, and in either case the first argu-
ment to the outermost occurrence of .S contains at least one occurrence of
anonvariable symbol since V; does.

o S(KS([X]Vy) if V = 5Vq, since V] # x. Clearly n(%KS) > O.

o V...V jorS(IX TV ...V, DXV if V= fVi... Vyp,andinthe
latter case, N([X] fV;...V, ) =n(fVv]...V, ;) >0.

The properties of weak reduction will beimportant in obtaining our proof that R-
strong normal forms are > R-irreducible. Our first observation is that redex schemes
other than those for weak reduction are not weakly reducible.

Lemma 4.26 Let U be aredex scheme. If U is not basic, then U isweakly irre-
ducible.

Proof: If U isnot basic, then U = [x] Vi, j, and x appearsin V;, ; for some >R
redex V. If Visbasic, then Vj, j, isof theform V;V, with x appearing in V,V, and
Vi and V, weakly irreducible. By Lemma3.11, then [X] V1 and [X] V. are weakly irre-
ducible, and thereforeU =[X]Vj,. i, isaswell. If Visnot basic, then V isweakly irre-
ducibleby theinduction hypothesis, and thereforesoisV, ;. Againby Lemma3.11,
U = [X]V,. i, isasoweakly irreducible.

The following fact is an easy consequence of confluence for weak reduction.
Lemma4.27 If V is weakly irreducible, U = [X]V, and Ux s W, then
W —» V.

Interpretations of weakly irreducible ob-schemes admit weak reductionsonly in
the interpretation part of the term:

Lemma 4.28 Suppose U is weakly irreducible, U contains at most one occur-
rence of each metavariable, and either U is itself a metavariable or else does not

have a metavariable at the head. If U[A; := My]...[Ac = M —> V, then V =
U[A; == MY]...[Ac:= M7 for some MY, ..., M? such that M; — M? for all i.

Proof: By induction on U. If U contains no occurrences of metavariables Ay, .. .,
A thenU[A; i= My]...[Ac = M ] =V, sowemay take M = M; fori =1, ..., k.

e If U= A for some j, then U[A; := My]...[Ac = Mi] = Mj —> V. Let
V=M?and MP = M; fori # j. ThenV = U[A; := M7]...[Ax:= M{] and

M —> MO for all i.
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e If U= TW for some T and W, then U[A; := M1]...[Ax '= M{] =
T[AL := Mi]. . [Ac i= MJW[ A1 := Mq].. [Ac i= M] —> V. Since U is
weakly irreducible and the rules for weak reduction are shalow, if
T[AL :i= My]...[Ac :i= M JW[ AL := Mq] ... [A« ;= M(] contains any weak
redexes, it must be because the M;’s contain some. Thus we must have V =
T[AL = MY .. [Ag = MOIW[A; == MY .. [A := MO] with M; — M?
for al i, i.e, V = U[A; = M?]...[Ac :== MJ] with M s MP for i =
1,...,k

Wearenow ready to provethat an obin R-strong normal formis > gr-irreducible
by proving Theorem 4.21.

Proof: By induction on the definition of R-strong normal form.
e If M = x, then M contains no > R-redex by Lemma 4.23.

o If M=xMj... Mgwith Mq, ..., Mg in R-strong normal form, then by thein-
duction hypothesis, each M; containsno > R-redex. Thustheonly possible > R-
redex in M is M itself, which isimpossible (this uses part 2 of Lemma 4.25).

o If M= fMy... Mgwith My, ..., Mg in R-strong normal form, then by thein-
duction hypothesis, each M; containsno > R-redex. Thustheonly possible > R-
redex is M itself. Since M isin R-strong normal form, arity(f) =k, andif M
isa > R-redex it must be by virtue of axiom scheme 7. But then M = oU for
U an R-redex scheme, contradicting M in R-normal form, and therefore M in
R-strong normal form.

e |If M =[x]Nwith N in R-strong normal form, then by theinduction hypothesis,
N contains no > R-redexes. The remainder of the proof is by induction on N,
noting that, in particular, N isweakly irreducible sinceit is > R-irreducible.

1. If N = x, then M = I whichisnot a > R-redex by part 2 of Lemma4.25.

2. If x doesnot appear in N, then M = K N. By part 2 of Lemma4.25, nei-
ther M = K N nor X itself are > R-redexes, so the only possible redexes
of M arethose of N. But N is > R-irreducible.

3. If N = Mx, then since N contains no > R-redexes, clearly X contains
none.

4. 1f N = NiNy, then M = [X]Ny N = S(XIND) ([XIN2) = SMy; M, where
M; = [X]N; fori =1, 2. Moreover, since N is >R.irreducible, so are N;
and N,. But then [x] Ny and [x] N, must also be > R-irreducible by thein-
duction hypothesison N, so the only possible > R-redexesin M are SM;
and M itsdlf by part 2 of Lemma 4.25. We consider the two cases sepa-
rately.

(&) Suppose SM isaredex. Then SM; isaninstance of aredex scheme
SU. If SU isbasic, then SU = S(K ), so that K1 =[x]N;. Then
N1 = I contradicting the hypothesisthat N = N; N, = I'N, isweakly
irreducible. So SU = [X]V,,..i, for someredex schemeV. ButthenV
cannot be basic, and cannot be fVy ...V, withn < arity(f) or SVy,
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either (by inspection). By Lemma4.25, part 2, the only other possi-
bility isthat V = SV V,. But then SU =[X]Vi, i, =[X|SVai, i, Vai,. i,
implies Vo, i, = X, so that [X] Vi, i, = [X]SUX. Findly, V = SUA
with A not appearing in U, and with the index corresponding to A
being 3, and hence M = SM1 My is an instance of ([X]Vi,..i,) M2
= ([X]SUx) M, = SUM,, and so is an instance of the redex scheme
SUA = V. So M itself isa > R-redex if SM; is, and therefore this
case may be included in the next.

Suppose M = SM1 M, isaredex, i.e., asubstitution instance of the
redex scheme SU,U,. If SU,U, is basic, then U; = KA, so that
M1 = K P =[X]N;. Thisimplies N; = P and x doesnot appear in P.
Now, eitherU, = TorU, = KB. IfUy =1, thenMo= 1,50 N, = x
(since Ny isweakly irreducible). Butthen M = SM1 M, = S(KXP) I
onone hand, and M = [X]N; N, = [X] Px = P on the other. Clearly
thisisimpossible. In the second case, M, = K Q and N, = Q for
X not appearing in N,. But then x does not appear in N; Ny, which
implies that x isnot in N, so that M = [X]N = % Nq, contrary to
M = SM{M,. So SU;U, cannot be basic. Therefore, SUU, =
[X]U;,..i, for aredex scheme U, so that M is an instance ([X]U;,..i,)
[Ar = Mj]...[An := My] of the axiom scheme [X]U;, i,. Since
M = [X]N, we know M does not contain x, and so x does not ap-
pear in M; for al j. By Lemma4.13, M = [X](U[A; := M{]...
[An = M) = [X]V. Moreover, we must have V = V;V, and
M = S([X]V1) ([X]V2) since otherwise SM1 M, = [X]V implies that
V = SMiMox. Butthen V = U[A; i= MP]...[Ac i= M/] for
the redex scheme U, so that U = SA; A, Az with iy and i, equal to
1 and iz = 3 (there are no other redex schemes in which § takes
three arguments). ThusV = SM;Mox and SU1U, = SA; Ao, which
is not a > R-redex scheme. Therefore, M = [X]N = [X]V, and by
Lemma 4.27 the facts that Mx — V and N is weakly irreducible
together imply V 5 N. Similarly, Mj = [X]N; = [X]V, implies
V, =% N, fori = 1, 2. There are three cases:

— If U isweakly irreducible, and U is linear in its metavariables,
then Lemma4.28impliesthat N=U[A;:= M. . [ Ac:=M<]
with M} —> M;iofor al j. This contradicts the fact that N is
not aredex.

— If U iswesakly irreducible, and U is not linear in its metavari-
ables, then it must be an instance of the left-hand side of an
axiom scheme based on scheme 7. We have U[A; = M'll] .
[Ac:= M} =V — N, soal the weak reductions must take
placeinsidetheterms M 'j" or terms obtained from them by weak
reductions. Since N is not an instance of U (this would contra-
dict the fact that N is not a redex), the_re exists an Aj such that
one occurrence of A; isreplaced by M'j” in N and another isre-



NORMAL FORMS 593

placed by Mij“’ in N. But then since weak reduction is Church-
Rosser, there existsan Lj which isacommon reduct of M'j“ and
M'j“’, and in the reductions M'j"’ s L and M'j“’ s L, we
are assuming that there is at least one weak reduction done. So
N —» U[A;:= Li]...[Ac:= L] with at least one step used
here, contradicting the assumption that N isweakly irreducible.

— If U isweakly reducible, thenU = SA; Ay Az or U = K A1 Ay or
U = I A, so that either V = SM{*M2ZMZ or V = KX MM or
V = IM}. But since V; — Ny, either SMM2 —5 Ny and
hence Ny = SN'N”, or X Mi* — Ny and hence Ny = K N, or
I 25 Ny, sothat N; = I. Ineach case, N = N; N, contains
aweak redex, contradicting the weak irreducibility of N. This
final contradiction completes the proof.

GivenaC L-term M in R-strong normal form, we may disregard its type infor-

mation, i.e., we may consider its type-erasure, and conclude via our restated propo-
sition that the resulting ob, whichisalso in R-strong normal form, is > Rirreducible.
Thisob istherefore also > sr-irreducible, and so M must be as well.

This completes the proof of Theorem 4.7, and hence of Theorem 3.9.
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