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Normal Forms in Combinatory Logic

PATRICIA JOHANN

Abstract Let R be a convergent term rewriting system, and let CR-equality
on (simply typed) combinatory logic terms be the equality induced by βηR-
equality on terms of the (simply typed) lambda calculus under any of the stan-
dard translations between these two frameworks for higher-order reasoning. We
generalize the classical notion of strong reduction to a reduction relation which
generates CR-equality and whose irreducibles are exactly the translates of long
βR-normal forms. The classical notion of strong normal form in combinatory
logic is also generalized, yielding yet another description of these translates.
Their resulting tripartite characterization extends to the combined first-order al-
gebraic and higher-order setting the classical combinatory logic descriptions of
the translates of long β-normal forms in the lambda calculus. As a consequence,
the translates of long βR-normal forms are easily seen to serve as canonical
representatives for CR-equivalence classes of combinatory logic terms for non-
empty, as well as for empty, R.

1 Introduction The interaction between higher-order and first-order algebraic rea-
soning has recently received much attention (see Breazu-Tannen [2], [3], and [4], and
Dougherty [8]), particularly the situation in which the equational theory in question
admits presentation as a convergent (confluent and terminating) term rewriting sys-
tem R. Reasoning in theories combining rewriting with higher-order logic is typically
described in terms of βηR-equality on the simply typed lambda calculus (LC ). But
since simply typed combinatory logic (C L) provides an algebraic formalization of
higher-order reasoning, it is sometimes convenient to study βηR-equality on LC by
examining the equality induced on C L under any of the standard effective translations
between the terms of LC and C L . We call this induced equality extensional combi-
natory R-equality, or CR-equality for short; in the special case when R is empty, we
refer to extensional combinatory equality or C-equality.

The investigation of βη-equality is facilitated by the existence of a notion of re-
duction on LC -terms which captures it precisely. Indeed, the fact that βη-reduction is
convergent on LC guarantees that the βη-irreducibles comprise a class of canonical
representatives for the βη-equivalence classes of LC -terms. These “normal forms”
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provide a tool for proving the consistency of βη-equality on LC , as well as for estab-
lishing other inequalities between LC -terms, and computing the normal form for a
LC -term reflects the process of evaluating a function at an argument. Of course, βη-
equality is generated by βη−1-reduction as well, and so, as their name suggests, the
class of long β-normal forms can also be taken as a class of canonical representatives
for these purposes. Long β-normal forms have proven quite useful in the study of
higher-order unification methods (see for example Huet [16] and Gallier and Snyder
[10]).

Reflecting βη-equality, C-equality has been well-studied in the literature (see
Curry and Feys [5], Hindley [11], Hindley and Lercher [13], Hindley and Seldin [15],
Lercher [20] and [21], and Mezghiche [22]). Since long β-normal forms are funda-
mentally important in the investigation of βη-equality, it is natural to look for a re-
duction relation on C L capturing C-equality in hopes of characterizing their trans-
lates as the irreducibles with respect to this relation. Unfortunately, C-equality is not
the equality generated by the axioms for weak equality, so that the weak irreducibles
in C L do not correspond to the long β-normal forms in LC . Strong reduction does,
however, fit our specification exactly: if we say that a C L-term is in C-normal form
whenever it is the translate of a LC -term in long β-normal form (equivalently, the
translate of a LC -term in βη-normal form, since the translations between LC - and
C L-terms are blind to η-equality), then the irreducibles with respect to strong reduc-
tion are precisely the C-normal forms.

In the presence of rewriting, we may hope for an analogous result. We define
here a notion of reduction on C L-terms suitable for capturing CR-equality and dem-
onstrate that the irreducibles with respect to this relation are precisely the translates
of the long βR-normal forms (although not of the βηR-normal forms, since η-expan-
sions can induce first-order algebraic redexes, and so the incorporation of rewriting
into the higher-order paradigm requires that we restrict attention to translates of fully
η-expanded terms, as discussed in more detail following Theorem 3.9 below). In fact,
we show that three classical notions of normal form with respect to C-equality—
namely, translates of long β-normal forms, strong irreducibles, and strong normal
forms—can be extended to accommodate first-order algebraic rewriting in a natural
way, and that when this is done, the resulting notions coincide to describe a class of
canonical representatives with respect to CR-equality, just as their classical versions
do for C-equality.

By analogy with the normal forms in LC , we expect any canonical represen-
tatives of CR-equivalence classes to be irreducible with respect to the fundamental
reduction relations on C L and to have the property that any C L-term is CR-equal to
exactly one such canonical representative. In addition, certain applications of higher-
order equational logic may require that a further property of normal forms in LC per-
sist under the transfer to C L , namely that the class of representatives be closed under
subterm extraction. Indeed, all three of these properties of CR-normal forms are re-
quired for the work which originally motivated the investigation reported here: in
Dougherty and Johann [9], the observation that the class of CR-normal forms satis-
fies them if R is convergent is used to prove that, under that hypothesis, certain trans-
formations for deciding CR-equality on C L-terms can be “lifted” to transformations
which are capable of enumerating complete sets of their CR-unifiers. In any case, it
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will follow easily from our tripartite characterization of CR-normal forms that:

• every CR-normal form is both weakly irreducible and R-irreducible,

• every subterm of a CR-normal form is also in CR-normal form, and

• every C L-term is CR-equal to a unique CR-normal form.

2 Preliminaries We will assume familiarity with classical results about the lambda
calculus and combinatory logic (as in, for example, [15]) and use the basic results on
the combination of the simply typed lambda calculus and first-order algebraic rewrit-
ing. For definitions and notations regarding rewriting not given explicitly here, the
reader is referred to Dershowitz and Jouannaud [7].

The types are formed by closing a set of base types under the operation (α1 →
α2) for types α1 and α2. Fix an infinite set, Vars, of typed variables and an infinite
set of typed constants. Certain constants, with associated arities, comprise the signa-
ture � over which our first-order algebraic terms will be defined. We assume that the
constants include the symbols I , K , and S, given various types as usual. Although it
is possible to postulate only the various K and S, for technical reasons we will also
need to take the various I as primitive—see the discussion following Lemma 3.4 be-
low. An atom is either a variable or a constant; the typed K , S, and I are called redex
atoms.

LC is the set of explicitly simply typed lambda terms over the atoms other than
the redex atoms; C L is the set of explicitly simply typed combinatory logic terms
over all atoms, including the redex atoms. We will never explicitly indicate the type
of (LC - or C L-) terms unless it is necessary. By the type-erasure of a term T we
will mean the untyped lambda calculus or combinatory logic term, as appropriate,
obtained by disregarding all type information in T .

The set of variables appearing in a term T will be denoted Vars(T ). The com-
binatory abstraction operator, as defined, for example, on page 25 of [15], is written
[·]. We write ≡ for syntactic equality between terms.

If T ≡ hT1...Tn is a term and h is an atom, then h is called the head of T . The
class of algebraic terms contains all variables and all terms of the form f T1...Tk where
f ∈ � has arity k and Ti is algebraic for i = 1, . . . , k.

A substitution is a finitely supported mapping from Vars to LC or C L , as appro-
priate. A substitution σ induces a mapping on terms which, abusing notation, we will
also denote by σ.

On C L , weak equality is generated by weak reduction, denoted
w−→ and de-

termined by the rules I x −→ x, K xy −→ x, and Sxyz −→ xz(yz); weak-R reduction

(
wR−→ ) and βηR-reduction (

βηR−→ ) are the reduction relations generated by an alge-
braic term rewriting system R together with the rules for weak reduction or βη-reduct-

ion (
βη−→ ), respectively. For any notion of reduction

∗−→ , write
∗−→−→ for the reflex-

ive, transitive closure of
∗−→ and =∗ for the symmetric closure of

∗−→−→ . If
∗−→−→

is convergent (i.e., confluent and terminating), we may speak of the ∗-normal form
of a term. In particular, we may refer to the w-normal form (usually called the weak
normal form) of a C L-term, and to the βη- or βη−1-normal form (the latter usually

called the long β-normal form) of a LC -term. If R is convergent then so are
wR−→−→
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and
βR−→−→ (see [2]), and so we may similarly speak of the wR-normal form or the

long βR-normal form of a LC - or C L-term, as appropriate. We will write lβn f (X)

and lβRnf (X) for the long β-normal form and the long βR-normal form of the LC -
term X, respectively. Given any reduction relation, we of course have irreducibles,
i.e., terms which are irreducible with respect to that relation, as well as redexes, i.e.,
terms which are reducible, with respect to it.

Let L : C L → LC and H : LC → C L be the well-known translations between
LC and C L defined as follows:

Let

• L(a) ≡ a when a is a non-redex atom,

• L(I ) ≡ λx.x,

• L(K ) ≡ λxy.x,

• L(S) ≡ λxyz.xz(yz), and

• L(M N) ≡ L(M)L(N);

and

• H (a) ≡ a when a is an atom,

• H (XY ) ≡ H (X)H (Y ),

• H (λx.Y ) ≡ [x]H (Y ), where

– [x]M ≡ K M when x does not appear in M,

– [x]x ≡ I ,

– [x](Mx) ≡ M when x does not appear in M, and

– [x](M N) ≡ S([x]M)([x]N) otherwise.

These translations are such that H (L(X)) ≡ X and L(H (M)) =βη M. Note
that although such translations allow passage between LC - and C L-terms, they are
not translations of the respective theories, or even their higher-order parts, since weak
equality is too coarse to reflect βη-equality. For instance, the terms SK and K I (of
appropriate types) are distinct weak normal forms in C L , but their translations are
βη-equal LC -terms.

Given a first-order algebraic theory which admits presentation as a convergent
term rewriting system R, define extensional combinatory R-equality, abbreviated
CR-equality, by M =CR N iff L(M) =βηR L(N); it follows that for any LC -terms
X and Y , X =βηR Y iff H (X) =CR H (Y ). We omit the symbol R from the notation
and terminology when R is empty.

Throughout this paper, we will assume that R is a convergent (first-order) term
rewriting system defined on the set of algebraic terms over �.

3 A notion of normal form for C L This section is devoted to a characterization of
a class of CR-normal forms which will be shown below to have the three properties
we expect of any class of canonical representatives for the CR-equivalence classes in
C L , as discussed in the introduction.
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3.1 Classical notions of normal form It will be helpful to have a brief review of
normal forms in the pure higher-order calculi (without algebraic rewriting). We recall
the basic results about three notions of combinatory normal form studied in the clas-
sical literature. These three notions coincide to yield a characterization of the class
of C-normal forms, formally defined by:

Definition 3.1 A C L-term M is in C-normal form if there exists a LC -term X in
long β-normal form such that M ≡ H (X).

It is well-known that C-equality can be generated by adding to the rules for weak
reduction the extensionality rule: if Mx and Nx are C-equal and x does not appear free
in M or N, infer that M and N are C-equal. The classical notion of strong reduction
on C L , introduced in [5] and shown there to generate C-equality, is a reflection of
this observation.

Definition 3.2 Strong reduction, denoted >S, is the reduction relation whose set S
of rules is the smallest set containing the rules for weak reduction and closed under
the inference rule

If M ≡ [x]P, N ≡ [x]Q, (P, Q) ∈ S, and M �≡ N, then (M, N) ∈ S.

We will say that M strongly reduces to N if M >S N, and denote by >>S the reflexive,
transitive closure of >S. We say that a C L-term M is >S-irreducible if there is no
term N such that M >S N.

It was shown by Curry [5] that C-equality can be defined by adding a finite num-
ber of equations to the equations for weak equality, and so a natural question is wheth-
er or not strong reduction is also finitely axiomatizable. Hindley [11] has demon-
strated that there can be no finite set of axioms, or even axiom schemes, which gen-
erate strong reduction when added to the rules for weak reduction. Indeed there is
considerable difficulty even in recognizing the set of rules for strong reduction.

From the difficulty of identifying strong redexes we might infer that describ-
ing the class of terms which are strongly irreducible is an equally daunting task. But
Lercher [21] has shown that it is possible to characterize them entirely by virtue of
their structure—he shows that they are the terms described by the following defini-
tion.

Definition 3.3 A C L-term M is in strong normal form provided either

• M ≡ aM1 . . . Mk with Mi in strong normal form for i = 1, . . . , k and a a non-
redex atom, or

• M ≡ [x]N with N in strong normal form.

Note that the statements in Definition 3.3 hold for LC -terms if “strong normal
form” is replaced throughout by “long β-normal form” and combinatory abstraction
is replaced by the usual lambda abstraction.

We have the following result, for whose proof the reader is referred to the sources
cited in the previous discussion.

Theorem 3.4 For a C L-term M the following are equivalent:

(1) M is in strong normal form;
(2) M is >S-irreducible;



578 PATRICIA JOHANN

(3) M is in C-normal form.

Proof: The equivalence of (1) and (2) is the combination of results from [21] and
either [13] or Section 6F in [5], while the equivalence of (1) and (3) is straightforward
(see Exercise 9.16 in [15]).

Note that if I is defined as SK K instead of being taken as primitive, then the
>S-irreducibles are not precisely the strong normal forms: in this case, I is clearly in
strong normal form, being [x]x, but since SK >S K I , we have

I >S K IK >S K (K IK )K >S . . .

The class of C-normal forms indeed represents the C-equivalence classes in C L :

Theorem 3.5 The class of C-normal forms is such that:

(1) Every term in C-normal form is weakly irreducible;

(2) Every subterm of a term in C-normal form is also in C-normal form;

(3) Every C L-term is C-equal to a unique term in C-normal form.

Proof: (1) If M is in C-normal form, then M is >S-irreducible. But then M is
weakly irreducible since strong reduction contains the rules for weak reduction.

(2) If M is in C-normal form, then M is >S-irreducible. But any subterm of a
>S-irreducible term is again >S-irreducible, and is therefore in C-normal form. Thus
any subterm of M is itself in C-normal form.

(3) Suppose M =C P and M =C Q for two C-normal forms P and Q. Then
there exist long β-normal forms X and Y such that P ≡ H (X) and Q ≡ H (Y ). Then
L(M) =βη LH (X) and L(M) =βη LH (Y ), and so X =βη LH (X) =βη L(M) =βη

LH (Y ) =βη Y . Since βη-reduction is convergent, we must have X ≡ Y and so P ≡
H (X) ≡ H (Y ) ≡ Q.

3.2 Normal forms in the presence of algebraic rewriting We define extensions of
the three classical notions of normal form on C L presented in the last section, each of
which is seen to satisfy one of the properties we require of CR-normal forms. The-
orem 3.4 guarantees that the classical notions coincide and Theorem 3.5 shows that
they give a class of canonical representatives with respect to C-equality; the content
of the next section is that our extensions behave analogously in the presence of alge-
braic rewriting.

Recall that the class of terms in C L in which we are interested is given by:

Definition 3.6 A C L-term M is in CR-normal form if there exists a LC -term X in
long βR-normal form such that M ≡ H X.

Since every LC -term is βηR-equivalent to a unique long βR-normal form, it
follows that every C L-term is CR-equal to a unique CR-normal form. The proof is
by analogy with that of the third part of Theorem 3.5.

We extend in a straightforward manner the notion of strong reduction to incor-
porate reduction via a convergent term rewriting system R, and thereby arrive at a
notion of reduction which generates CR-equality.
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Definition 3.7 R-strong reduction, denoted >SR, is the reduction relation whose
set SR of rules is the smallest set containing the rules for wR-reduction and closed
under the inference rule

if M ≡ [x]P, N ≡ [x]Q, (P, Q) ∈ SR, and M �≡ N, then (M, N) ∈ SR.

As above, we will say that M R-strongly reduces to N if M >SR N, and denote by
>>SR the reflexive, transitive closure of >SR. We say that a C L-term M is >SR-
irreducible if there is no term N such that M >SR N. That the equality generated by
>SR is exactly CR-equality is straightforward.

Like strong reduction, R-strong reduction is not suitable as a tool for normal
form computations—the nonfinite axiomatizability in the classical setting is inherited
by this richer reduction relation. But of course, every subterm of a >SR-irreducible
term is also >SR-irreducible, and it will turn out that the >SR-irreducibles are pre-
cisely the CR-normal forms.

We will see in Theorem 3.9 that an R-enriched variation on the classical notion of
strong normal form provides a third characterization of CR-normal forms. The proof
that terms in this class are wR-irreducible is by direct analogy with the classical case
(see Lemma 3.12 below).

Definition 3.8 A C L-term M is in R-strong normal form provided either

• M ≡ aM1 . . . Mk with Mi in R-strong normal form for i = 1, . . . , k, M in R-
normal form, a a non-redex atom, and arity(a) = k if a ∈ �, or

• M ≡ [x]N with N in R-strong normal form.

The restrictions to R-normal form and on arity(a) in the first clause of Defini-
tion 3.8 are discussed immediately following the statement of Theorem 3.9. For the
remainder of this section we will assume the validity of the following theorem, whose
proof comprises the next section.

Theorem 3.9 For a C L-term, the following are equivalent:

(1) M is in R-strong normal form;

(2) M is >SR-irreducible;

(3) M is in CR-normal form.

Note that if the CR-normal forms and R-strong normal forms are to coincide,
we must have that arity(a) = k when a ∈ � in the first clause of Definition 3.8. Oth-
erwise, X ≡ λy1 . . . yn.aX1 . . . Xk is not in long βR-normal form, and we would have
to consider a term X ′ ≡ λy1 . . . ynz1 . . . zm.aX1 . . . Xklβn f (z1) . . . lβn f (zm), where
k + m is the arity of a, to potentially circumvent this difficulty. But X ′ is not necessar-
ily in R-normal form, since introduction of the arguments lβn f (zi) could introduce
an R-redex.

For example, if we have the rule f x −→ a and do not insist that arity(a) = k in
the definition of R-strong normal form, then the term f is in R-strong normal form.
But there exists no X in long βR-normal form such that H X ≡ f , since the only
candidates for X are f itself and λx. f x, and so in this case the equivalence between
the first and third conditions in Theorem 3.9 can fail. Insisting that arity(a) = k in
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the definition of R-strong normal form precludes f from satisfying that definition: f
is not in long β-normal form, and if f ≡ [x]Y , then Y ≡ f x, which is not in R-normal
form and so not in R-strong normal form. So f is not in R-strong normal form under
the definition which is sensitive to arity concerns, and, as we will see, the equivalence
of the first and third conditions in Theorem 3.9 is restored.

Of course, such care is not required when algebraic rewriting is not permitted,
and it is therefore easy to see that if f ∈ � but f is not at the head of the left-hand
side of any rule in R, then f ≡ [x1 . . . xk] f x1 . . . xk is always in CR-normal form.

We have the following analogue of Theorem 3.5.

Theorem 3.10 The class of CR-normal forms is such that:

(1) Every term in CR-normal form is wR-irreducible;

(2) Every subterm of a term in CR-normal form is also in CR-normal form;

(3) Every C L-term is CR-equal to a unique term in CR-normal form.

Proof: That CR-normal forms are wR-irreducible follows from their characteriza-
tion as those terms which are >SR-irreducible, together with the fact that R-strong re-
duction contains the rules for weak-R reduction. Since the class of >SR-irreducibles
is also closed under subterm formation and the class of CR-normal forms provides
a unique canonical representation for every CR-equivalence class (as discussed im-
mediately following Definition 3.6), the class of CR-normal forms must have these
properties.

It is also possible to see directly that each R-strong normal form is R- and weakly
irreducible, a fact of which we will make much use in Section 4. The proof requires
a simple lemma adapted from [21].

Lemma 3.11 Let M ≡ [x]N. Then M is wR-irreducible iff every wR-redex of N
contains x. Moreover, if U is a wR-redex of M, then U is a subterm of N.

Proof: By induction on N with cases corresponding to the clauses in the abstraction
algorithm.

If x �∈ Vars(N), then M ≡ K N. Any wR-redex of N must be a wR-redex of M
and vice-versa.

If N ≡ x, then M ≡ I . Then both M and N are wR-irreducible.
If N ≡ Px with x �∈ Vars(P), then M ≡ P. If M is wR-irreducible, then the only

possible wR-redex of N is N itself, which contains x. Conversely, if every wR-redex
of N contains x, then P ≡ M is wR-irreducible. Clearly every wR-redex of M is also
a subterm of N.

If N ≡ PQ with Q �≡ x and x ∈ Vars(PQ), then M ≡ S([x]P)([x]Q). If M
is wR-irreducible, then [x]P and [x]Q are. By the induction hypothesis, then, every
wR-redex of P or Q contains x. The only other possible wR-redex of N is N itself
which contains x. Conversely, if every wR-redex of N contains x, then every wR-
redex of P or Q contains x. By the induction hypothesis, this implies that [x]P and
[x]Q are wR-irreducible. But then M is also. If U is a wR-redex of M, then it is
contained in [x]P or [x]Q. By the induction hypothesis, U is a subterm of P or Q,
and therefore of N.

In particular, if M is wR-irreducible, then so is [x]M.
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Lemma 3.12 If M is in R-strong normal form, then M is wR-irreducible.

Proof: The proof is by induction on M with cases corresponding to the clauses in
Definition 3.8.

If M ≡ aM1 . . . Mk, then M in R-strong normal form implies that Mi is also in
R-strong normal form for i = 1, . . . , k, and M is in R-normal form. By the induction
hypothesis, Mi is wR-irreducible for i = 1, . . . , k. Since M is in R-normal form and
there can be no head weak redex in M, M is wR-irreducible.

If M ≡[x]N is in R-strong normal form, then N is in R-strong normal form. By
the induction hypothesis, N is wR-irreducible, so by Lemma 3.11, M must be also.

4 Equivalence of normal forms In this section we prove Theorem 3.9; our proof
is by direct analogy with the classical case. We begin by showing that the CR-normal
forms are precisely the R-strong normal forms.

The observation that R-redexes in C-normal forms are translates of R-redexes
in LC will be useful in seeing that CR-normal forms are in R-strong normal form.

Lemma 4.1 If X is in long β-normal form and H X ≡ θS for S algebraic, then
X ≡ θ′S where θ′(x) ≡ lβn f (Lθ(x)) for every x ∈ Vars.

Proof: By induction on S.

Lemma 4.2 If M is in CR-normal form, then M is in R-strong normal form.

Proof: If M is in CR-normal form, then M ≡ H X for some long βR-normal form
X. The proof is by induction on X.

If X ≡ aX1 . . . Xk, then H X ≡ aH X1 . . . H Xk, with Xi in long βR-normal form
for i = 1, . . . , k, so by the induction hypothesis, H Xi is in R-strong normal form for
i = 1, . . . , k. Since X is in long βR-normal form, arity(a) = k if a ∈ �. Finally, H X
is in R-normal form since otherwise, H X ≡ θS for some θ and some algebraic S.
Then by Lemma 4.1, X ≡ θ′S where θ′(x) ≡ lβRnf (Lθ(x)) for all x ∈ Vars. But this
contradicts the assumption that X is in R-normal form.

If X ≡ λx.Y , then Y is in long βR-normal form, so by the induction hypothesis,
H Y is in R-strong normal form. Then H (λx.Y )≡[x]H Y is in R-strong normal form.

The converse is not difficult:

Lemma 4.3 If M is in R-strong normal form, then M is in CR-normal form.

Proof: By induction on M with cases corresponding to the clauses in Definition 3.8.
If M ≡ aM1 . . . Mk for a ∈ �, then Mi is in R-strong normal form so that there

exists a long βR-normal form Xi such that H Xi ≡ Mi for i = 1, . . . , k. Consider
X ≡ aX1 . . . Xk. Clearly H X ≡ M and X is in long β-normal form. If X is not in
R-normal form, then aX1 . . . Xk ≡ θS for some left-hand side S of a rule in R. But
then M ≡ H X ≡ H (θS) ≡ (H ◦ θ)S, contradicting the fact that M is in R-normal
form.

If M ≡ aM1 . . . Mk for a ∈ Vars, then Mi is in R-strong normal form so that there
exists a long βR-normal form Xi such that H Xi ≡ Mi for i = 1, . . . , k. Consider X ≡
λz1 . . . zm.aX1 . . . Xklβn f (z1) . . . lβn f (zm), where aX1 . . . Xklβn f (z1) . . . lβn f (zm)

is of base type. Clearly H X ≡ M, and the fact that aX1 . . . Xklβn f (z1) . . . lβn f (zm)

is in long βR-normal form implies that X is as well.
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If M ≡ [x]N for N in R-strong normal form, then by the induction hypothesis,
there exists a Y such that H Y ≡ N and Y is in long βR-normal form. Consider X ≡
λx.Y . Then H X ≡ [x]H Y ≡ [x]N ≡ M and X is in long βR-normal form since Y is.

Having established the equivalence of the conditions in the first and third clauses
in Theorem 3.9, we now turn our attention to showing the equivalence of the first and
second, i.e., we prove that for any C L-term M, M is >SR-irreducible iff M is in R-
strong normal form. We begin by proving that every >SR-irreducible term is in R-
strong normal form. The next lemma and corollary exhibit a simple relation between
reduction in LC and in C L .

Lemma 4.4 For any LC -terms X and Y:

• if X
R−→ Y, then H X >SR H Y, and

• if X
β−→ Y, then H X >>SR H Y.

Proof: Both statements are proved by induction on X.

Corollary 4.5 If X
βηη−1 R−→ Y, then H X >>SR H Y.

Proof: By Lemma 4.4, if X
β−→ Y , then H X >>SR H Y , and if X

R−→ Y , then

H X >SR H Y . If X
ηη−1

−→ Y , then H X ≡ H Y .

We can now see that:

Theorem 4.6 If M is >SR-irreducible, then M is in R-strong normal form.

Proof: Since L M
βη−1 R−→−→ lβRnf (L M), M ≡ H L M >>SR H (lβRnf (L M)) ≡ N.

But since M is >SR-irreducible, we must have M ≡ N. Then M is in CR-normal
form since N is, and by Lemma 4.2 is therefore in R-strong normal form.

To prove the converse, we first prove this result for untyped combinatory logic
terms, (called obs), and then immediately infer that it holds for C L-terms since typing
is irrelevant to structural and reduction properties of terms. The proof of the converse
given below relies heavily on the fact that obs are untyped—which simply allows us
to avoid many of the purely technical difficulties which would arise in a similar treat-
ment of simply typed C L-terms—while the proof just presented uses the typing of
C L-terms. Indeed, any reasonably simple proof that a term which is >SR-irreducible
is in R-strong normal form seems to require the use of types. It may, however, be
possible to extend the notion of normal reduction from [5] to a suitable notion involv-
ing R, prove an analogue of Curry’s characterization of >S-irreducibles as termini of
normal reductions, and then use a justification as in [21] to see that R-strong normal
forms and >SR-irreducibles are identical in untyped combinatory logic. But since the
main thrust of this section is that Curry’s normal form theorem is preserved for sim-
ply typed combinatory logic—insuring that we have a suitable notion of CR-normal
form there—we do not hesitate to restrict our attention to typed systems whenever
possible.

We begin the proof of

Theorem 4.7 Every C L-term M in R-strong normal form is >SR-irreducible.
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The following definitions and alphabetic conventions will be assumed.

Definition 4.8 The set of obs consists of all possible type-erasures of C L-terms.

In the remainder of this paper, the letters u, v,w, x, y, z, etc., will denote the type-
erasures of variables, while L, M, N, P, Q, and their subscripted versions will denote
arbitrary obs. We will abuse terminology and henceforth refer to the type-erasure of
a variable as a variable. As usual, application will be assumed to be left-associative.

Of course, the notions of >SR-reduction and R-strong normal forms can be ex-
tended to obs in an obvious fashion (since symbols from � have fixed arities). As
suggested above, our proof of Theorem 4.7 then involves proving its analogue for
obs.

We would like to prove that every ob M which is in R-strong normal form is
>SR-irreducible by induction on M, with cases according to the analogue of Defi-
nition 3.8 for obs. But this requires the ability to characterize >SR-redexes, and the
manner in which the reduction relation >SR is defined makes such a characteriza-
tion especially difficult. To remedy this situation, we define a new axiomatic relation
>R on obs (Definition 4.11) whose redexes can be characterized with considerably
less difficulty. We then establish in Lemmas 4.12 through 4.15 some facts about the
interaction between combinatory abstraction and substitution on obs which are used
to prove that >>SR and the reduction relation induced by >R are equivalent (The-
orem 4.20). En route to proving this equivalence we ascertain a result far more im-
portant for our purposes, namely that if M is an >R-irreducible ob then it is >SR-
irreducible. Together with the observation that any ob in R-strong normal form is
necessarily also >R-irreducible (Theorem 4.21), this result allows us to conclude that
any ob in R-strong normal form is also >SR-irreducible, as desired. The proof of The-
orem 4.21 is by induction on obs; it uses the properties of >R-redexes established
in Lemmas 4.24 through 4.26 and some straightforward facts about weak reduction
(Lemmas 4.27 and 4.28).

The reader familiar with the classical proof in [13] will observe that the axiom
schemes for >R do not include a reflexivity axiom but otherwise comprise an exten-
sion of those for Hindley’s ([11]) relation � by the rules of the algebraic reduction
relation R. The added complications in the proof here arise as consequences of the
possibility of reduction according to the rules in R.

Definition 4.9 Given an infinite set of metavariables disjoint from the set of (all
type-erasures of) variables, the set of ob-schemes is defined inductively:

• every metavariable is an ob-scheme,

• K , S, and I are ob-schemes,

• for every (type-erasure of a) variable there is a distinct symbol which is an ob-
scheme, and

• if U and V are ob-schemes, then so is (UV ).

We assume the same conventions regarding application for ob-schemes that we
observe for obs. We denote metavariables by A, B, C and their subscripted versions;
we will sometimes write A1, . . . , Ak for the first k metavariables. In what follows
U, V, W and their subscripted versions stand for arbitrary ob-schemes.
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Identifying variables with the ob-scheme symbols denoting them gives a “deno-
tation” for each ob. Thus, every ob-scheme without metavariables denotes a unique
ob, each ob is denoted by precisely one such scheme, and we may identify an ob with
the ob-scheme without metavariables by which it is denoted.

Metavariables are intended, of course, to denote arbitrary obs in ob-schemes,
and interpreting the metavariables in an ob-scheme by obs defines an interpretation
of the entire ob-scheme. While such an interpretation is, strictly speaking, another ob-
scheme, under the convention of the last paragraph, we will adopt the point of view
that an interpretation of the metavariables in an ob-scheme yields an ob.

Of course, it is possible to do away entirely with metavariables and ob-schemes
and the distinctions they induce. But the alternatives are either using protected sets
of variables, or requiring a set of variables disjoint from those used in term formation
from which all axioms would be constructed, and prefacing many of the results here
with restrictions on the variables (both are essentially the same, although the latter
is what might be done in an implementation). In the interest of clarity, and to pre-
serve the parity between the results here and those for the classical calculi, we use
metavariables in the style of Hindley.

Note that we can extend the usual definition of the combinatory abstraction
algorithm to ob-schemes containing metavariables by abstracting over ob-schemes
with respect to the (symbols corresponding to) variables. Write U[A1 := M1] . . .

[Ak := Mk] for the result of simultaneously replacing every occurrence of the meta-
variable Ai by the ob-scheme Mi, i = 1, . . . , k.

Definition 4.10 If > denotes a binary relation between ob-schemes, then a sen-
tence scheme is an expression U > V . A sentence is a sentence scheme containing
no metavariables.

Let a set of sentence schemes called axiom schemes be given. If U > V is an
axiom scheme and {A1, . . . , Ak} includes all the metavariables in this scheme, and
if M1, . . . , Mk are any obs, then U[A1 := M1] . . . [Ak := Mk] > V[A1 := M1] . . .

[Ak := Mk] is an instance of the axiom scheme, called an axiom.

For the definition of the relation >R we need a final piece of notation. Let x
be a variable, and let A be a metavariable. Define Ax1 ≡ A, Ax2 ≡ Ax, and Ax3 ≡
x. Let U be an ob-scheme with metavariables from the set {A1, . . . , Ak}. For any
i1, . . . , ik with each i j taking on values from the set {1, 2, 3}, define Ux,i1...ik to be
U[A1 := Axi1

1 ] . . . [Ak := Axik
k ].

Observe that being able to replace a metavariable A by the ob-schemes Ax and
x in an ob-scheme U requires that obs and ob-schemes are untyped. For notational
convenience, we will write Ai for Axi and Ui1...ik in place of Ux,i1...ik when the variable
x is discernible from the context.

Definition 4.11 Let >R be defined by the following axiom schemes:

(1) S A1 A2 A3 >R A1 A3(A2 A3),

(2) K A1 A2 >R A1,

(3) I A1 >R A1,

(4) S(K A1)I >R A1,
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(5) S(K A1)(K A2) >R K A1 A2,

(6) S(K I ) >R I ,

(7) if U
R−→ V , then U >R V ,

(8) if U >R V is an axiom scheme other than 3 or 6, and if A1, . . . , Ak are all the
metavariables occurring in U, then for all variables x,

[x]Ui1...ik >R [x]Vi1...ik

is an axiom scheme for >R unless i j = 1 for all j such that A j occurs in U, or
[x]Ui1...ik ≡ [x]Vi1...ik .

If U >R V , then the metavariables in U are the only metavariables which may
occur in V , and likewise for the variables in U and V . The notations Ai j , i j ∈ {1, 2, 3},
correspond to the three cases which might arise when forming an axiom from an ax-
iom scheme: i j = 1 corresponds to interpreting a metavariable by an ob which does
not contain x; i j = 2 corresponds to interpreting a metavariable by an ob of the form
Mx for some M with x not appearing in M; and i j = 3 accommodates the remaining
cases. This distinction will be important in Lemma 4.16.

The situation when i1 = . . . = ik = 1 corresponds to interpreting the metavari-
ables of U and V by obs containing no occurrence of x. In this case we already have

[x]Ui1...ik ≡ K Ui1...ik >R K Vi1...ik ≡ [x]Vi1...ik ,

so clearly this should not be added as a “new” axiom scheme. Similarly, if the axiom
scheme 3 is used as U >R V in scheme 8, then we have one of two cases:

• x is not in Ui1...ik , so that i1 = 1 and [x]Ui1...ik ≡ [x]I A1 ≡ K (I A1) >R K A1 ≡
[x]A1 ≡ [x]Vi1...ik .

• x appears in Ui1...ik . Then either i1 = 3 so that Ui1,...,ik ≡ [x]I x ≡ I ≡ [x]x ≡
[x]Ai1

1 ≡ [x]Vi1...ik , or i1 = 2 so that [x]Ui1,...,ik ≡ [x]I Ai1
1 ≡ S([x]I )([x]Ai1

1 ) ≡
S(K I )([x]Ai1

1 ) >R I ([x]Ai1
1 ) >R [x]Ai1

1 ≡ [x]Vi1...ik .

In both cases, we derive no more information from the application of scheme 8.
Likewise, no additional information is obtained by using axiom scheme 6 in axiom
8. But observe that if we use, for example, the axiom scheme 4 in scheme 8, and if
i1 = 3, then

[x]Ui1...ik ≡ [x](S(K A)I )i1...ik ≡ [x]S(K x)I >R [x]x ≡ [x]Vi1...ik

by scheme 8, but this is not derivable from axiom schemes 1 through 7, since

[x]S(K x)I ≡ S([x]S(K x))([x]I )

≡ S(S([x]S)([x]K x))(K I )

≡ S(S(K S)K )(K I )

is in normal form with respect to those axiom schemes. Since we indeed have derived
“new” information, this information is encoded as a new axiom scheme generated
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from the ones that came “before” it. We can think of axiom scheme 8 as recording
lemma schemata.

Interpretation of metavariables can be accomplished sequentially and in any
order:

Lemma 4.12 If A �≡ B, then for all obs M and N, and ob-schemes U,

U[A := M][B := N] ≡ U[B := N][A := M].

Proof: Just observe that the metavariable A cannot occur in the ob N, and that B
cannot occur in M.

The next two lemmas examine interpretations of abstractions and abstractions
of interpretations, providing insight into the structure of the axioms of >R.

Lemma 4.13 Let {A1, . . . , Ak} contain the metavariables occurring in the ob-
scheme U. Then for any obs M1, . . . , Mk,

([x]Ui1...ik )[A1 := M1] . . . [Ak := Mk] ≡ [x](U[A1 := Mi1
1 ] . . . [Ak := Mik

k ])

provided x does not appear in U, M1, . . . , Mk.

Proof: By induction on Ui1...ik .

• If x does not appear in Ui1...ik , then x also does not appear in U and i1 = . . . = ik = 1,
so that

([x]Ui1...ik )[A1 := M1]. . .[Ak := Mk] ≡ (K Ui1...ik )[A1 := M1]. . .[Ak := Mk]

≡ K (Ui1...ik [A1 := M1]. . .[Ak := Mk])

≡ K (U[A1 := M1]. . .[Ak := Mk])

≡ K (U[A1 := Mi1
1 ]. . .[Ak := Mik

k ])

≡ [x](U[A1 := Mi1
1 ]. . .[Ak := Mik

k ]).

• If Ui1...ik ≡ x, then U ≡ A j for some j such that i j = 3, so that

([x]Ui1...ik )[A1 := M1]. . .[Ak := Mk] ≡ ([x]x)[A1 := M1]. . .[Ak := Mk]

≡ [x]x

≡ [x]M
i j

j

≡ [x](U[A1 := Mi1
1 ]. . .[Ak := Mik

k ]).

• If Ui1...ik ≡ Wi1...ik x with x not appearing in Wi1...xk , then U ≡ W A j for some j such
that i j = 3 and A j is not in W , and moreover, in = 1 for all n such that An is in W .
Then

([x]Ui1...ik )[A1 := M1]. . .[Ak := Mk] ≡ ([x]Wi1...ik x)[A1 := M1]. . .[Ak := Mk]

≡ ([x](W A j)i1...ik )[A1 := M1]. . .[Ak := Mk]

≡ [x]((W A j)[A1 := Mi1
1 ]. . .[Ak := Mik

k ])

≡ [x](U[A1 := Mi1
1 ]. . .[Ak := Mik

k ]).
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• If Ui1...ik ≡ (VW )i1...ik , with none of the above holding, then

[x](Ui1...ik )[A1 := M1]. . .[Ak := Mk] ≡ [x]((VW )i1...ik [A1 := M1]. . .[Ak := Mk])

≡ [x]((VW )[A1 := Mi1
1 ]. . .[Ak := Mik

k ])

≡ [x](U[A1 := Mi1
1 ]. . .[Ak := Mik

k ]).

Lemma 4.14 For any ob M and variable x, define Mx+ ≡ ([x]M)x if x appears
in M but x �≡ M, and Mx+ ≡ M otherwise. Then for any ob M, metavariable A, and
ob-scheme U,

[x](U[A := Mx+]) ≡ [x](U[A := M]).

Proof: By induction on U, under the assumption that M �≡ x and x appears in M
(otherwise there is nothing to prove).

Corollary 4.15 For any ob-scheme U, distinct metavariables A1, . . . , Ak, and obs
M1, . . . , Mk,

[x](U[A1 := Mx+
1 ] . . . [Ak := Mx+

k ]) ≡ [x](U[A1 := M1] . . . [Ak := Mk]).

Proof: The proof uses Lemma 4.14 k times in conjunction with Lemma 4.12.

The notation Mx+ reflects the internal structure of the terms obtained when the
metavariable A in U is instantiated, which must be taken into account when applying
the abstraction algorithm. In what follows, we will write M+ for Mx+ when x is clear
from the context.

If M >R N is an axiom, then [x]M admits an >R-reduction:

Lemma 4.16 If M >R N is an axiom, then [x]M >>R [x]N for all variables x.

Proof: For some axiom scheme U >R V and obs M1, . . . , Mk,

M ≡ U[A1 := M1] . . . [Ak := Mk]

and
N ≡ V[A1 := M1] . . . [Ak := Mk].

If M j does not contain x, define i j = 1 and M j0 ≡ M j. If M j contains x but is distinct
from x, define i j = 2 and M j0 ≡ [x]M j. If M j ≡ x, define i j = 3 and M j0 ≡ S. Then

if we write M
i j

j0 for (M j0)
i j , M

i j

j0 ≡ M+
j as defined in Lemma 4.14. We have

[x]M ≡ [x](U[A1 := M1] . . . [Ak := Mk])
≡ [x](U[A1 := M+

1 ] . . . [Ak := M+
k ])

≡ [x](U[A1 := Mi1
10] . . . [Ak := Mik

k0])
≡ ([x]Ui1...ik )[A1 := M10] . . . [Ak := Mk0],

and so by a similar result for N, we see that if [x]Ui1...ik �≡ [x]Vi1...ik then clearly the
sentence [x]M >R [x]N must be an instance of the sentence scheme [x]Ui1...ik >R

[x]Vi1...ik . If [x]Ui1...ik ≡ [x]Vi1...ik , then clearly [x]M >>R [x]N holds, and otherwise
[x]Ui1...ik >R [x]Vi1...ik is an axiom scheme in all but the following cases:

• When i1 = . . . = ik = 1. In this case x does not occur in M1, . . . , Mk, so [x]M ≡
K M >R K N ≡ [x]N.
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• When U >R V is the scheme 6. Then x is in neither M nor N, so the conclusion
follows as in the second case above.

• When U >R V is the scheme 3. Then M ≡ I P and N ≡ P. If P ≡ x, then
[x]M ≡ I ≡ [x]x. If x does not appear in P, then neither M nor N contains x
and we again proceed as in the second case above. If x appears in P but x �≡ P,
then [x]M ≡ [x]I P ≡ S([x]I )([x]P) ≡ S(K I )([x]P) >R I ([x]P) >R [x]P ≡
[x]N, and the lemma is proved.

The above lemma is the key to proving that >>R is equivalent to >>SR for obs.

Lemma 4.17 If M >>SR N, then M >>R N, and if there is a nontrivial step in the
first derivation then there is a nontrivial step in the second.

Proof: Since the rules for K , S,I and R-reduction are part of the definition of >R,
it suffices to prove that for any variable x and obs M and N, M >R N implies that
[x]M >>R [x]N; there must always be at least one nontrivial step in the derivation
[x]M >>R [x]N if there is one in the derivation [x]M >>SR [x]N since if [x]M >SR

[x]N, then [x]M �≡ [x]N by Definition 3.7 and >R is not reflexive. We induct on the
deduction of M >R N, remembering that abstraction does not necessarily preserve
the structure of obs.

• If M >R N is an axiom, then by Lemma 4.16, [x]M >>R [x]N.

• If M >R N is deduced because we know M ≡ LP, N ≡ LQ, and P >R Q, then
the proof of this induction step is broken into clauses according to the evalua-
tion of [x]M and [x]N.

– If x does not appear in M, then x does not appear in N, so [x]M ≡
K M >R K N ≡ [x]N.

– If x ≡ P and x does not appear in L, then x >R Q. But then Q ≡ x since
x can be shown to be >R-irreducible (directly). Therefore, M ≡ Lx and
N ≡ Lx, so that M >R N is impossible.

– If x appears in M but P �≡ x, then either

∗ x does not appear in LQ, so that [x]M ≡ [x]LP ≡ S([x]L)([x]P) ≡
S(K L)([x]P) >R S(K L)([x]Q) ≡ S(K L)(K Q) >R K (LQ) ≡
[x]N.

∗ Q ≡ x and x is not in L, so that [x]M ≡ [x]LP >R S(K L)([x]Q) ≡
S(K L)I >R L ≡ [x]N.

∗ [x]M ≡ [x]LP ≡ S([x]L)([x]P) >>R S([x]L)([x]Q) ≡ [x]LQ.

• If M >R N is deduced because M ≡ PL, N ≡ QL, and P >R Q, then the proof
is similar to the above case.

Corollary 4.18 If M is >R-irreducible, then it is >SR-irreducible.

It is easy to get a converse to Lemma 4.17, and so we prove the equivalence of
the reduction relations generated by >R and >SR.

Lemma 4.19 If M >>R N, then M >>SR N, and if there is a nontrivial step in the
first derivation then there is a nontrivial step in the second.
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Proof: It is enough to show that M >>SR N for every axiom M >R N; there must
always be at least one nontrivial step in the derivation M >>SR N if there is one in
M >>R N since if M >R N then M �≡ N by Definition 4.11 and since >SR is not
reflexive. For instances of schemes 1 through 7, this is easy. So suppose that the result
has been proved for every instance of an axiom scheme U >R V , where M >R N is
an instance of [x]Ui1...ik >R [x]Vi1...ik . By Lemma 4.13, M ≡ [x]M∗ and N ≡ [x]N∗

for some instance M∗ >R N∗ of U >R V . Since M∗ >R N∗, the induction hypothesis
gives M∗ >>SR N∗. Then M ≡ [x]M∗ >>SR [x]N∗ ≡ N by the definition of >SR.

Combining Lemmas 4.17 and 4.19, we have:

Theorem 4.20 M >>SR N iff M >>R N.

In order to prove Theorem 4.7, in light of Corollary 4.18 it suffices to see that:

Theorem 4.21 If M is in R-strong normal form, then M is >R-irreducible.

The proof of Theorem 4.21 requires some preliminary notions and results.

Definition 4.22 An ob-scheme U is a redex scheme if it is the left-hand side of some
axiom scheme. A redex scheme U is basic if it is the left-hand side of one of the first
seven axiom schemes in Definition 4.11. A redex scheme is based on axiom scheme
7 if it is [x]Ui1...ik where either U is the left-hand side of axiom scheme 7 or U itself
based on axiom scheme 7. An ob M is a redex if it is an instance of a redex scheme.

Lemma 4.23 Let U be a redex scheme. Then head(U) is not a metavariable.

Proof: This is clearly true if U is basic. Otherwise, U ≡ [x]Vi1...ik and the result is
obtained by induction on V .

For any ob or ob-scheme U, let n(U) be the number of occurrences of non-
variable symbols in U. As expected, abstraction increases n:

Lemma 4.24 If U ≡ [x1. . .xk]V for some variables x1,. . . , xk, then n(U) ≥ n(V ).

Proof: The proof is by induction on k, with cases on the clauses in the definition of
the abstraction algorithm in case k = 1.

An analysis of redex schemes will facilitate our investigation of >R-reduction.

Lemma 4.25 Let U be a redex scheme.

(1) If U is not based on scheme 7, then U contains at most one occurrence of each
metavariable.

(2) If U is not basic, then U is of one of the forms SU1U2 or SU1 with n(U1) > 0,
or else U is of the form f U1 . . .Uk, with arity( f ) > k and f ∈ �.

Proof:

(1) This is clear for basic redexes from schemes 1 through 6. Moreover, the appli-
cation of axiom scheme 8 does not introduce new metavariables.

(2) If U is not basic, then U ≡ [x]Vi1...ik for some redex scheme V , and i1 = . . . =
ik = 1 is impossible. Thus x appears in Vi1...ik (otherwise Vi1...ik is identically x
and so V ≡ A j for some j such that i j = 3, but this is impossible by virtue of
Lemma 4.23).
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If V is basic and V is an instance of axiom schemes 1, 4, and 5, then the re-
sult clearly holds. If V is an instance of axiom scheme 2, then U is not a redex
scheme unless V ≡ K A1 A2 and either x �≡ A2,i1...ik or x appears in K A1,i1...ik .
But then U is indeed of the form SU1U2 with n(U1) > 0. If V is as in scheme
7, then either U is of the form SU1U2 with n(U1) > 0, or U is of the form
f U1 . . .Un−1, where n ≤ arity( f ).

If V is not basic, then it is of the form SV1V2, SV1 with n(V1) > 0, or f V1 . . . Vm

for arity( f ) > m, so that U ≡ [x]Vi1...ik is

• S([x]SV ′
1)([x]V ′

2) or SV ′
1 if V ≡ SV1V2, and in either case the first argu-

ment to the outermost occurrence of S contains at least one occurrence of
a nonvariable symbol since V1 does.

• S(K S)([x]V ′
1) if V ≡ SV1, since V ′

1 �≡ x. Clearly n(K S) > 0.

• f V ′
1 . . . V ′

m−1 or S([x] f V ′
1 . . . V ′

m−1)([x]V ′
m) if V ≡ f V1 . . . Vm, and in the

latter case, n([x] f V ′
1 . . . V ′

m−1) ≥ n( f V ′
1 . . . V ′

m−1) > 0.

The properties of weak reduction will be important in obtaining our proof that R-
strong normal forms are >R-irreducible. Our first observation is that redex schemes
other than those for weak reduction are not weakly reducible.

Lemma 4.26 Let U be a redex scheme. If U is not basic, then U is weakly irre-
ducible.

Proof: If U is not basic, then U ≡ [x]Vi1...ik and x appears in Vi1...ik for some >R-
redex V . If V is basic, then Vi1...ik is of the form V1V2 with x appearing in V1V2 and
V1 and V2 weakly irreducible. By Lemma 3.11, then [x]V1 and [x]V2 are weakly irre-
ducible, and therefore U ≡ [x]Vi1...ik is as well. If V is not basic, then V is weakly irre-
ducible by the induction hypothesis, and therefore so is Vi1...ik . Again by Lemma 3.11,
U ≡ [x]Vi1...ik is also weakly irreducible.

The following fact is an easy consequence of confluence for weak reduction.

Lemma 4.27 If V is weakly irreducible, U ≡ [x]V, and Ux
w−→−→ W, then

W
w−→−→ V.

Interpretations of weakly irreducible ob-schemes admit weak reductions only in
the interpretation part of the term:

Lemma 4.28 Suppose U is weakly irreducible, U contains at most one occur-
rence of each metavariable, and either U is itself a metavariable or else does not

have a metavariable at the head. If U[A1 := M1] . . . [Ak := Mk]
w−→−→ V, then V ≡

U[A1 := M0
1 ] . . . [Ak := M0

k ] for some M0
1 , . . . , M0

k such that Mi
w−→−→ M0

i for all i.

Proof: By induction on U. If U contains no occurrences of metavariables A1, . . . ,

Ak, then U[A1 := M1] . . . [Ak := Mk] ≡ V , so we may take M0
i ≡ Mi for i = 1, . . . , k.

• If U ≡ A j for some j, then U[A1 := M1] . . . [Ak := Mk] ≡ M j
w−→−→ V . Let

V ≡ M0
j and M0

i ≡ Mi for i �= j. Then V ≡ U[A1 := M0
1 ] . . . [Ak := M0

k ] and

Mi
w−→−→ M0

i for all i.
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• If U ≡ TW for some T and W , then U[A1 := M1] . . . [Ak := Mk] ≡
T[A1 := M1]. . .[Ak := Mk]W[A1 := M1]. . .[Ak := Mk]

w−→−→ V . Since U is
weakly irreducible and the rules for weak reduction are shallow, if
T[A1 := M1] . . . [Ak := Mk]W[A1 := M1] . . . [Ak := Mk] contains any weak
redexes, it must be because the Mi’s contain some. Thus we must have V ≡
T[A1 := M0

1 ] . . . [Ak := M0
k ]W[A1 := M0

1 ] . . . [Ak := M0
k ] with Mi

w−→−→ M0
i

for all i, i.e., V ≡ U[A1 := M0
1 ] . . . [Ak := M0

k ] with Mi
w−→−→ M0

i for i =
1, . . . , k.

We are now ready to prove that an ob in R-strong normal form is >SR-irreducible
by proving Theorem 4.21.

Proof: By induction on the definition of R-strong normal form.

• If M ≡ x, then M contains no >R-redex by Lemma 4.23.

• If M ≡ xM1 . . . Mk with M1, . . . , Mk in R-strong normal form, then by the in-
duction hypothesis, each Mi contains no >R-redex. Thus the only possible >R-
redex in M is M itself, which is impossible (this uses part 2 of Lemma 4.25).

• If M ≡ f M1 . . . Mk with M1, . . . , Mk in R-strong normal form, then by the in-
duction hypothesis, each Mi contains no >R-redex. Thus the only possible >R-
redex is M itself. Since M is in R-strong normal form, arity( f ) = k, and if M
is a >R-redex it must be by virtue of axiom scheme 7. But then M ≡ σU for
U an R-redex scheme, contradicting M in R-normal form, and therefore M in
R-strong normal form.

• If M ≡ [x]N with N in R-strong normal form, then by the induction hypothesis,
N contains no >R-redexes. The remainder of the proof is by induction on N,
noting that, in particular, N is weakly irreducible since it is >R-irreducible.

1. If N ≡ x, then M ≡ I which is not a >R-redex by part 2 of Lemma 4.25.

2. If x does not appear in N, then M ≡ K N. By part 2 of Lemma 4.25, nei-
ther M ≡ K N nor K itself are >R-redexes, so the only possible redexes
of M are those of N. But N is >R-irreducible.

3. If N ≡ Mx, then since N contains no >R-redexes, clearly X contains
none.

4. If N ≡ N1 N2, then M ≡ [x]N1 N2 ≡ S([x]N1)([x]N2) ≡ S M1 M2 where
Mi ≡ [x]Ni for i = 1, 2. Moreover, since N is >R-irreducible, so are N1

and N2. But then [x]N1 and [x]N2 must also be >R-irreducible by the in-
duction hypothesis on N, so the only possible >R-redexes in M are S M1

and M itself by part 2 of Lemma 4.25. We consider the two cases sepa-
rately.

(a) Suppose S M1 is a redex. Then S M1 is an instance of a redex scheme
SU. If SU is basic, then SU ≡ S(K I ), so that K I ≡ [x]N1. Then
N1 ≡ I contradicting the hypothesis that N ≡ N1 N2 ≡ I N2 is weakly
irreducible. So SU ≡ [x]Vi1...ik for some redex scheme V . But then V
cannot be basic, and cannot be f V1 . . . Vn with n < arity( f ) or SV1,
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either (by inspection). By Lemma 4.25, part 2, the only other possi-
bility is that V ≡SV1V2. But then SU ≡[x]Vi1...ik ≡[x]SV1i1...ik V2i1...ik
implies V2i1...ik ≡ x, so that [x]Vi1...ik ≡ [x]SUx. Finally, V ≡ SUA
with A not appearing in U, and with the index corresponding to A
being 3, and hence M ≡ S M1 M2 is an instance of ([x]Vi1...ik )M2

≡ ([x]SUx)M2 ≡ SU M2, and so is an instance of the redex scheme
SUA ≡ V . So M itself is a >R-redex if S M1 is, and therefore this
case may be included in the next.

(b) Suppose M ≡ S M1 M2 is a redex, i.e., a substitution instance of the
redex scheme SU1U2. If SU1U2 is basic, then U1 ≡ K A, so that
M1 ≡ K P ≡ [x]N1. This implies N1 ≡ P and x does not appear in P.
Now, either U2 ≡ I or U2 ≡ K B. If U2 ≡ I , then M2 ≡ I , so N2 ≡ x
(since N2 is weakly irreducible). But then M ≡ S M1 M2 ≡ S(K P)I
on one hand, and M ≡ [x]N1 N2 ≡ [x]Px ≡ P on the other. Clearly
this is impossible. In the second case, M2 ≡ K Q and N2 ≡ Q for
x not appearing in N2. But then x does not appear in N1 N2, which
implies that x is not in N, so that M ≡ [x]N ≡ K N1, contrary to
M ≡ S M1 M2. So SU1U2 cannot be basic. Therefore, SU1U2 ≡
[x]Ui1...ik for a redex scheme U, so that M is an instance ([x]Ui1...ik )

[A1 := M j] . . . [An := Mn] of the axiom scheme [x]Ui1...ik . Since
M ≡ [x]N, we know M does not contain x, and so x does not ap-
pear in M j for all j. By Lemma 4.13, M ≡ [x](U[A1 := Mi1

1 ] . . .

[An := Min
n ]) ≡ [x]V . Moreover, we must have V ≡ V1V2 and

M ≡ S([x]V1)([x]V2) since otherwise S M1 M2 ≡ [x]V implies that
V ≡ S M1 M2x. But then V ≡ U[A1 := Mi1

1 ] . . . [Ak := Mik
k ] for

the redex scheme U, so that U ≡ S A1 A2 A3 with i1 and i2 equal to
1 and i3 = 3 (there are no other redex schemes in which S takes
three arguments). Thus V ≡ S M1 M2x and SU1U2 ≡ S A1 A2, which
is not a >R-redex scheme. Therefore, M ≡ [x]N ≡ [x]V , and by

Lemma 4.27 the facts that Mx
w−→−→ V and N is weakly irreducible

together imply V
w−→−→ N. Similarly, Mi ≡ [x]Ni ≡ [x]Vi implies

Vi
w−→−→ Ni for i = 1, 2. There are three cases:

– If U is weakly irreducible, and U is linear in its metavariables,
then Lemma 4.28 implies that N≡U[A1 :=Mi10

1 ]. . .[Ak :=Mik0
k ]

with M
i j

j

w−→−→ M
i j0
j for all j. This contradicts the fact that N is

not a redex.

– If U is weakly irreducible, and U is not linear in its metavari-
ables, then it must be an instance of the left-hand side of an
axiom scheme based on scheme 7. We have U[A1 := Mi1

1 ] . . .

[Ak := Mik
k ] ≡ V

w−→−→ N, so all the weak reductions must take

place inside the terms M
i j

j or terms obtained from them by weak
reductions. Since N is not an instance of U (this would contra-
dict the fact that N is not a redex), there exists an A j such that

one occurrence of A j is replaced by M
i j

j
′ in N and another is re-
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placed by M
i j

j
′′ in N. But then since weak reduction is Church-

Rosser, there exists an L j which is a common reduct of M
i j

j
′ and

M
i j

j
′′, and in the reductions M

i j

j
′ w−→−→ L and M

i j

j
′′ w−→−→ L, we

are assuming that there is at least one weak reduction done. So

N
w−→−→ U[A1 := L1] . . . [Ak := Lk] with at least one step used

here, contradicting the assumption that N is weakly irreducible.

– If U is weakly reducible, then U ≡ S A1 A2 A3 or U ≡ K A1 A2 or
U ≡ I A1, so that either V ≡ S Mi1

1 Mi2
2 Mi3

3 or V ≡ K Mi1
1 Mi2

2 or

V ≡ I Mi1
1 . But since V1

w−→−→ N1, either S Mi1
1 Mi2

2

w−→−→ N1 and

hence N1 ≡ S N ′ N ′′, or K Mi1
1

w−→−→ N1 and hence N1 ≡ K N ′, or

I
w−→−→ N1, so that N1 ≡ I . In each case, N ≡ N1 N2 contains

a weak redex, contradicting the weak irreducibility of N. This
final contradiction completes the proof.

Given a C L-term M in R-strong normal form, we may disregard its type infor-
mation, i.e., we may consider its type-erasure, and conclude via our restated propo-
sition that the resulting ob, which is also in R-strong normal form, is >R-irreducible.
This ob is therefore also >SR-irreducible, and so M must be as well.

This completes the proof of Theorem 4.7, and hence of Theorem 3.9.
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