GADTs Are Not (Even Lax) Functors

Pierre Cagne
Appalachian State University

Abstract

We expose a fundamental incompatibility between GADTS’ function-mapping opera-
tions and function composition. To do this, we consider sound and complete semantics of
GADTs in a series of natural categorical settings. We first consider interpreting GADTs
naively as functors on categories interpreting types. But GADTSs’ function-mapping op-
erations are not total in general, so we consider semantics in categories that allow partial
morphisms. Unfortunately, however, GADTSs’ function-mapping operations do not pre-
serve composition of partial morphisms. This compels us to relax functors’ composition-
preserving property, and thus to interpret GADTSs as lax functors. This exposes yet another
behavior of GADTSs that is not computationally reasonable: if G interprets a GADT, then
G(f) can be defined on more elements than G(g) even though f is defined on fewer elements
than g. This is joint work with Patricia Johann.

In this talk, I will present several obstructions to the generalization of the usual Initial
Algebra Semantics (TAS) of Algebraic Data Types (ADTSs) to their syntactic generalizations
known as Generalized Algebraic Data Types (GADTs). ADTs — such are lists, trees, graphs,
etc. — are ubiquitous in modern programming. They encode, for example, data structures that
are critical in reducing the complexity of algorithms that process them. Moreover, they are
safe and easy to reason with precisely because of the theoretical understanding that TAS affords
them. Pattern-matching, folds, mapping, etc., are all justified by the fact that TAS is sound and
complete for ADTs. For this reason, we would like to construct an TAS for GADTs in such a way
that it specializes to the standard IAS for ADTs [MA&G]. Although GADTSs are extensively used
in practice in, say, Haskell and OCaml, they are still missing a sound and complete semantics.

The obstructions to TAS for GADTs can be illustrated using the equality defined by

data Eq @ * — *x — * where
Refl = V a. Eq a «

According to the above Haskell syntax, Eq is a binary GADT with a unique constructor Refl
inhabiting each instance of the form Eq a «. Although it seems simple at first glance, Eq
support the definition of the following transport function, which will be important below:

trp = V a 8. Eq a f = (a — B)
trp Refl x = x

Naive TAS for GADTs. Our first attempt at an IAS for GADTs is by direct extension.
Recall that the standard IAS of ADTs associates to each n-ary ADT A a functor A : C" — C
where C is a category interpreting closed types. Moreover, this functor A is obtained as the
(carrier of the) initial algebra of an endofunctor on the functor category Func (C™,C) derived
from the body of the definition of the ADT A; taking C to be the category Set of sets and
functions is usually enough to carry out most reasoning on ADTs. The completeness of TAS
for ADTs implies in particular that, for every closed type 7 with interpretation X, A(X) is (in
natural bijection with) the set of normal forms of closed terms of type A 7. The same property
cannot be obtained for GADTs. Indeed, suppose that there is a functor E : Set? — Set inter-
preting Eq. If we want the interpretation to be sound, then for each type 7 with interpretation
X we need an element ry € F(X, X) interpreting Refl :: E 7 7. Moreover, soundness and



GADTs Are Not (Even Lax) Functors Pierre Cagne

completeness imply that the interpretation of the unit type must be a singleton set 1, so for
any function z : 1 — X, there must be an element E(x,id;)(r1) € E(X,1). We can prove that,
for any types 71 and 7o with interpretations X; and X,, respectively, the interpretation of the
function trp sends elements of F(X1, X») to bijections X; ~ X5. Thus, whenever the type T
has at least one element, the element found in E(X,1) forces X ~ 1. Clearly, this semantics
fails to be complete. As shown in [CJ23], this argument is not specific to the category Set and
can be replayed in any category C with the enough structure to express the usual IAS of ADTs.

Allowing for partial functions. The failure of the first attempt is instructive: the core
issue there is that functions of the form FE(x,id;) must send the element r; to elements in
E(X,1) even when completeness would require E(X,1) to be empty. In other words, the
totality of functions of the form E(x,id;) is problematic. We can try to overcome this problem
by allowing such functions to be partial, but we need a notion of partiality that is coherent
with computations. In our view, the core feature of such a notion is that computations cannot
recover from failure. We therefore propose the following definition:

Definition 1. A structure of computational partiality on a category C is a wide subcategory of
C whose complement is a cosieve.

A wide subcategory of C is a subcategory of C that contains all objects of C, and a cosieve on C
is a subclass S of the morphisms of C such that for all morphisms f: A —- Band g: B — C
in C, if f € S then gf € S. The category PSet of sets and partial functions between them is an
example of such a category when we take the structure of computational partiality to be Set
seen as a subcategory of PSet. For this reason, we often call the morphisms of a structure of
computational partiality total, and the morphisms in the cosieve that is its complement partial.

Given a category C with a structure of computational partiality D on it, we aim to repair
the naive attempt above by interpreting the ambient language in D, except for the GADTSs,
which will be interpreted as functors from C™ to C rather than from D" to D. Informally, we
interpret everything definable in syntax in D, but we allow the function-mapping operations
of GADTSs to send total morphisms to partial morphisms. In particular, the unit type must
be interpreted as a terminal object 1 in D. Now the functor E : C? — C interpreting Eq is
free, a priori, to give a partial morphism E(z,id;) even when z : 1 — X is a total morphism.
However, such a morphism z : 1 — X is always a section, with its retraction being the unique
total morphism from X to 1 given by the fact that 1 is terminal in D. Being a functor, E(_, 1)
must send sections to sections, so that E(z,id;) is a section as well. Now our hope to fix the
issue is dashed because sections in C are always total: if s : X — Y were a partial section, then,
for any retraction r of s, idx = rs would need to be partial as well. But identities are total by
definition. We can then replay the argument of the naive attempt: being total, F(x,id;) must
send the (now global) element r; of E(1,1) to a (now global) element of F(X,1), which again
forces X ~ 1. This shows, as before, that the interpretation of any type 7 with at least one
element is the object 1, making the interpretation highly non-complete.

Relaxing GADTSs’ functorial behavior. Allowing GADTS’ functorial behavior to target
partial morphisms failed because classes of morphisms defined by equations, such as the class of
sections, are necessarily preserved by functors. We therefore can’t expect GADTS’ interpreta-
tions to respect composition on the nose. However, if we can map a function f over an element
of a GADT, and if we can also map a function g over that result, then we should obtain the
same result by mapping g . £ in one go over the original element. That is, mapping a compo-
sition should be the same as mapping the components of the composition one after the other
provided all these operations are well-defined. This suggests that C should include an order <
on each hom-set, where f < g is read informally as “g is an extension of f to a bigger domain of



GADTs Are Not (Even Lax) Functors Pierre Cagne

definition”. We therefore require that C is enriched over the category Pos of posets and mono-
tonic functions between them. We intend to interpret GADTs as normal lax functors, rather
than simple functors, into C. Anormal laz functor G : B — C between Pos-enriched categories
is defined in the same way as an enriched functor, except that we require G(g)G(f) < G(gf)
instead of G(g)G(f) = G(gf) for all composable morphisms f and g of B. Interpreting GADTs
as normal lax functors resolves the issue raised by sections in the previous paragraph: if s is a
section with retraction r, and G is a normal lax functor, then G(r)G(s) only has to be less than
or equal to G(rs) = G(id) = id, and so G(s) must no longer be a section and can be non-total.

Now consider the Pos-enriched category PSet, where f < g holds for f, ¢ : X — Y if and only
if, for all z € X, f defined on x implies g(z) = f(z). A sound and complete interpretation of
the type Bool of booleans in PSet must be a 2-element set, say B = {_L, T}, where L interprets
false and T interprets true. It must also take product types must take sets X and Y to the
cartesian product X x Y. Now, consider the partial function f : B x B — B x B defined only
on the pairs of the form (L,y), and given by f(L,y) = (L,y). Then f < g, where g is total
and defined by g(z,y) = (x,z V y). The monotonicity of the normal lax functor E interpreting
Eq implies E(f,f) < E(g,f). In particular, E(g, f) is defined on any element of E(B X
B, B x B) on which E(f, f) is defined, and agrees with E(f, f) on it. Thus, E(g, f)(rgxs) =
E(f, f)(rexs) = rexn. According to the algorithm given in [JC22], this is a contradiction: only
the pairs of function of the form (h, h) for a given h : Bx B — B X B can be mapped over rgx g.

It might be difficult to spot the source of the problem with Eq because it is so degenerate,
but the above example is important because Eq is quintessential in the theory of GADTSs. Nev-
ertheless, the issue deriving from E(f, f) < E(g, f) is perhaps better illustrated by a properly
recursive GADT that uses Eq, such as

data Seq :: * — * where
inj = V a. a — Seq «
pair = V o f 7. Seq o« — Seq 8 — Eq v (a,8) — Seq vy

Write S : PSet — PSet for the normal lax functor interpreting Seq, ip : B — S(B) for the
interpretation of inj instantiated at Bool, and pp : S(B) x S(B) x E(B x B,B x B) —
S(B x B) for the interpretation of pair instantiated at Bool, Bool, and (Bool,Bool). It
should be intuitively clear that the partial function f can be mapped over (the interpretation
of) pair (inj false) (inj true) Refl :: S (Bool,Bool). The formal justification, given
in [JC22], is that f can be written as (z,y) — (f1(z), f2(y)) for the partial functions fi, fo : B —
B, where f; is defined only on | with value L and f; is idg. To perform this mapping operation,
we simply strip the constructors, apply fi and fs to the relevant data, and reapply the con-
structors. The result is the element we started with, namely, S(f)(pp(ip(Ll),i5(T),7BxB)) =
pp(ip(L),ip(T),rBxp). Since f < g, since S(g) is defined wherever S(f) is defined, and
since S(g) agrees with S(f) there, S(g) is also defined on pp(ip(L),ip(T),r5xp) with value
pe(ip(L),i5(T),rBxp). This implies that g is also of the form (z,y) — (g1(x), g2(y)) for some
(necessarily total) functions g1, g2 : B — B. But we easily check that it is not: g(L, 1) = (L, 1)
implies that go(L) = L and ¢(T,L) = (T, T) implies that go(L) = T.

References

[CJ23] Pierre Cagne and Patricia Johann. Are GADTS really data structures? Submitted, 2023.

[JC22] Patricia Johann and Pierre Cagne. Characterizing Functions Mappable over GADTs. In Ilya
Sergey, editor, Programming Languages and Systems. Springer Nature Switzerland, 2022.

[MAS6] Ernest G. Manes and Michael A. Arbib. Algebraic Approaches to Program Semantics. Mono-
graphs in Computer Science. Springer New York, 1986.



